1
|
Wang Y, Zhao D, Nong X. Artesunate alleviates radiation-induced submandibular gland epithelial cell damage in rats by reducing inflammation and apoptosis. Cell Biol Int 2025; 49:250-261. [PMID: 39607036 DOI: 10.1002/cbin.12261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Salivary hypofunction is a common complication in patients with head and neck cancers following radiotherapy (RT). RT-induced inflammation in salivary gland cells leads to apoptosis and fibrosis. Artesunate (ART) is a bioactive compound with anti-inflammatory and anti-fibrosis properties. This study aimed to investigate the protective effects of ART on X-ray-induced injury of submandibular gland (SMG) epithelial cells in rats. Second-generation SMG epithelial cells were randomly divided into five groups: natural control group (NC), irradiated group (IR), and irradiated groups treated with ART at concentrations of 5, 10, and 20 μM. Cells were harvested 48 h postirradiation for analysis. The results demonstrated that ART attenuated the damage to AQP5, a crucial indicator of salivary gland function, as evidenced by the decreased expression of AQP5 at both mRNA and protein levels. Additionally, ART decreased the expression of inflammatory cytokines: IL-6 and TNF-α. TUNEL staining revealed reduced apoptosis in the ART groups, particularly the IR + 10 μM group. RT-PCR and Western blot analysis of apoptosis cytokines Bax/Bcl-2 and Caspase-3 confirmed these findings. Furthermore, ART inhibited the expression of NF-κB at both mRNA and protein levels. In conclusion, these results suggest that ART may reduce inflammation and apoptosis in SMG epithelial cells following radiation by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Yuchen Wang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Danni Zhao
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
| |
Collapse
|
2
|
Zhou XR, Wang XY, Sun YM, Zhang C, Liu KJ, Zhang FY, Xiang B. Glycyrrhizin Protects Submandibular Gland Against Radiation Damage by Enhancing Antioxidant Defense and Preserving Mitochondrial Homeostasis. Antioxid Redox Signal 2024; 41:723-743. [PMID: 38069572 DOI: 10.1089/ars.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/29/2024]
Abstract
Aims: Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. Results: Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. Innovation: Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. Conclusion: These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xin-Ru Zhou
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Xin-Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Yue-Mei Sun
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Chong Zhang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Ke Jian Liu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fu-Yin Zhang
- Department of Oral Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| |
Collapse
|
3
|
Wang XY, Liu KJ, Zhang FY, Xiang B. Nicotinamide mitigates radiation injury in submandibular gland by protecting mitochondrial structure and functions. J Oral Pathol Med 2022; 51:801-809. [PMID: 35996988 DOI: 10.1111/jop.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2022] [Revised: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Radiation damage to salivary gland (SG) is inevitable in head and neck cancer patients receiving radiotherapy. Safe and effective treatments for protecting SGs from radiation are still unavailable. Mitochondrial damage is a critical mechanism in irradiated SG, however, treatment targeting mitochondria has not received much attention. Nicotinamide (NAM) is a key component of the mitochondrial metabolism. Here, we investigated the effects and underlying mechanisms of NAM on protecting irradiated submandibular gland (SMG). METHODS SMG cells and tissues were randomly divided into four groups: control, NAM alone, radiation alone, and radiation with NAM pretreatment. Cell viability was detected by PrestoBlue™ cell viability reagent. Histopathological alterations were observed with HE staining. Pilocarpine-stimulated saliva was measured from Wharton's duct. Cell apoptosis was determined by flow cytometry and TUNEL assay. Nicotinamide phosphoribosyl transferase (NAMPT) was examined with immunofluorescence. The levels of nicotinamide adenine dinucleotide (NAD), mitochondrial membrane potential (MMP) and ATP were measured with the relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. RESULTS NAM significantly mitigated radiation damage both in vitro and in vivo. Also, NAM improved saliva secretion and reduced radiation-induced apoptosis in irradiated SMGs. Moreover, NAM improved NAMPT and the levels of NAD/ATP and MMP, all of which were decreased by radiation in SMG cells. Importantly, NAM protected the mitochondrial ultrastructure from radiation. CONCLUSION These findings demonstrate that NAM alleviates radiation damage in SMG by replenishing NAD and maintaining mitochondrial function and ultrastructure, suggesting that NAM could be used as a prospective radioprotectant for preventing radiation sialadenitis.
Collapse
Affiliation(s)
- Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Fu Yin Zhang
- Department of Oral Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Dos Santos DR, Fiais GA, Oliveira HA, Ribas TB, Souza RO, Tsosura TVS, Matsushita DH, Ervolino E, Dornelles RCM, Nakamune ACDMS, Chaves-Neto AH. Assessment of redox state and biochemical parameters of salivary glands in rats treated with anti-obesity drug sibutramine hydrochloride. Clin Oral Investig 2022; 26:5833-5846. [PMID: 35556176 DOI: 10.1007/s00784-022-04539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2021] [Accepted: 05/04/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To investigate the effects of anti-obesity drug sibutramine hydrochloride (SB) on redox state and biochemical parameters in the salivary glands. MATERIALS AND METHODS Adult male Wistar rats were randomly divided into the following groups (n = 8 per group): control rats treated with vehicle (C) and rats treated with SB (10 mg/kg/day) by intragastric gavage for 28 days. The parotid (PG) and submandibular (SMG) glands were processed using histomorphometric analysis, and total protein, amylase, mucin, and oxidative damage to lipids were determined by measuring the formation of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), uric acid (UA), total glutathione (tGSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and AKT phosphorylation. RESULTS SB decreased the acinar area, and increased the stromal area in PG, while no effect on the morphometric parameters was observed in SMG. SB also increased oxidative damage to lipids (TBARs). The SB group showed lower total protein, amylase, TAC, UA, tGSH, SOD, CAT, and GPx than the C group in PG, while in SMG, SB decreased total protein, mucin, tGSH, SOD, CAT, and GPx. However, increased AKT phosphorylation observed in both salivary glands suggests that SB exerts low-intensity oxidative stress. CONCLUSIONS SB impaired enzymatic and non-enzymatic antioxidant defenses in the salivary glands of rats. CLINICAL RELEVANCE Chronic treatment with SB could mitigate salivary gland dysfunction due to disturbance of redox state.
Collapse
Affiliation(s)
- Damáris Raissa Dos Santos
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil.,Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas-SBFIs, Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Aracatuba, São Paulo, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil.,Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas-SBFIs, Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Aracatuba, São Paulo, Brazil
| | - Henrique Arnaldo Oliveira
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil
| | - Tayná Buffulin Ribas
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil
| | - Rayne Oliveira Souza
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil
| | - Thaís Verônica Saori Tsosura
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil.,Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas-SBFIs, Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Aracatuba, São Paulo, Brazil
| | - Doris Hissako Matsushita
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil.,Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas-SBFIs, Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Aracatuba, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil
| | - Rita Cássia Menegati Dornelles
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil.,Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas-SBFIs, Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Aracatuba, São Paulo, Brazil
| | - Ana Cláudia de Melo Stevanato Nakamune
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil.,Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas-SBFIs, Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Aracatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Rodovia Marechal Rondon, km 527/528, Aracatuba, São Paulo, CEP 16018-805, Brazil. .,Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas-SBFIs, Department of Basic Sciences, School of Dentistry of Araçatuba- UNESP - Universidade Estadual Paulista, Aracatuba, São Paulo, Brazil.
| |
Collapse
|
5
|
Vasin MV. B-190 (Indralin) in Light of the History of the Formation of Ideas about the Mechanism of Action of Radioprotectors. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
6
|
Xiang B, Wang XY, Liu KJ. Dual Roles of Nicotinamide Phosphoribosyltransferase as a Promising Target for Cancer Radiotherapy. Radiat Res 2021; 196:429-435. [PMID: 34399423 DOI: 10.1667/rade-20-00273.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2020] [Accepted: 07/31/2021] [Indexed: 11/03/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the key rate-limiting enzyme in the regulation of nicotinamide adenine dinucleotide (NAD) biosynthesis, and its activity is critical for the replenishment of NAD level as well as cell survival or death. As one of the most important components in the electron transport chain of complex I in mitochondrion, sustained supply of NAD is essential to the maintenance of energy metabolism both in normal and cancer cells. Recent research showed that X-ray radiation sharply downregulated the expression of NAMPT, which may be the main cause of radiation damage in salivary gland. Consistently, upregulation of NAMPT by phenylephrine restored the function and tissue structure of salivary gland, indicating the cytoprotective role of NAMPT in preventing radiation damage in normal tissues of patients with head and neck cancer during radiotherapy. On the other hand, NAMPT downregulation and NAD depletion could induce cell death in oral squamous cell cancer, suggesting that a combination of NAMPT inhibitor and radiotherapy presents a promising therapeutic strategy for cancer treatment. Based on our and other's studies, NAMPT may have dual roles in cancer radiotherapy: the upregulation of NAMPT could serve to suppress radiotherapy complications such as radiation sialadenitis, and combination regimens that involve NAMPT inhibitors may enhance efficacy of radiotherapy for cancer treatment.
Collapse
Affiliation(s)
- Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
7
|
Vasin MV, Ushakov IB. An Analysis of the Role of Bioenergetic Processes under Radioprotective Effects Mediated by Alpha1-Adrenergic Agonists. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
|
8
|
Xiao L, Mao Y, Tong Z, Zhao Y, Hong H, Wang F. Radiation exposure triggers the malignancy of non‑small cell lung cancer cells through the activation of visfatin/Snail signaling. Oncol Rep 2021; 45:1153-1161. [PMID: 33432364 PMCID: PMC7859998 DOI: 10.3892/or.2021.7929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2020] [Accepted: 12/02/2020] [Indexed: 01/23/2023] Open
Abstract
It is estimated that one-half of patients with non-small cell lung cancer (NSCLC) undergo radiotherapy worldwide. However, the outcome of radiotherapy alone is not always satisfactory. The aim of the present study was to evaluate the effects of radiotherapy on the malignancy of NSCLC cells. It was demonstrated that radiation therapy could increase the migration and invasion of NSCLC cells in vitro. Moreover, the upregulation of visfatin, a 52-kDa adipokine, mediated radiation-induced cell motility. A neutralizing antibody specific for visfatin blocked radiation-induced cell migration. Radiation and visfatin induced the expression of Snail, a key molecule that regulates epithelial to mesenchymal transition in NSCLC cells. Furthermore, visfatin positively regulated the mRNA stability of Snail in NSCLC cells, but had no effect on its protein degradation. This may be explained by visfatin-mediated downregulation of microRNA (miR)-34a, which was shown to bind the 3′ untranslated region of Snail mRNA to promote its decay. Collectively, these findings suggested that radiation could induce cell motility in NSCLC cells through visfatin/Snail signaling.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yiwen Mao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhuting Tong
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hao Hong
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
9
|
Experimental Animal Model Systems for Understanding Salivary Secretory Disorders. Int J Mol Sci 2020; 21:ijms21228423. [PMID: 33182571 PMCID: PMC7696548 DOI: 10.3390/ijms21228423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Salivary secretory disorders are life-disrupting pathologic conditions with a high prevalence, especially in the geriatric population. Both patients and clinicians frequently feel helpless and get frustrated by the currently available therapeutic strategies, which consist mainly of palliative managements. Accordingly, to unravel the underlying mechanisms and to develop effective and curative strategies, several animal models have been developed and introduced. Experimental findings from these models have contributed to answer biological and biomedical questions. This review aims to provide various methodological considerations used for the examination of pathological fundamentals in salivary disorders using animal models and to summarize the obtained findings. The information provided in this review could provide plausible solutions for overcoming salivary disorders and also suggest purpose-specific experimental animal systems.
Collapse
|
10
|
Wang XY, Yu J, Zhang Y, Zhang FY, Liu KJ, Xiang B. Phenylephrine alleviates 131I damage in submandibular gland through promoting endogenous stem cell regeneration via lissencephaly-1 upregulation. Toxicol Appl Pharmacol 2020; 396:114999. [PMID: 32278511 DOI: 10.1016/j.taap.2020.114999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 01/07/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. 131I ablation therapy is an effective treatment for patients with differentiated thyroid cancer (DTC) but frequently causes radiation damage in salivary glands (SGs). Stem cell-based regenerative therapy has been found to reduce radiation sialadenitis. We hypothesize that microtubule motor-regulating protein lissencephaly-1 (LIS1) may be a key stem cell regulator responsible for its efficacy and that upregulating LIS1 would decrease131I-induced radiation sialadenitis. Here, we report that LIS1 was reduced by 131I in submandibular glands (SMGs) of rats, using both proteomic analysis and Western blot approach. Moreover, the levels of LIS1-Sca-1 and LIS1-SOX2 were downregulated by 131I together with the decrease of LIS1. In contrast, phenylephrine pretreatment enhanced LIS1 and improved the co-expressions and co-localizations of LIS1-Sca-1 and LIS1-SOX2 in 131I-irradiated SMGs. Since Sca-1 and SOX2 are the established stem cell biomarkers in salivary gland, our findings demonstrate that LIS1 may be a potential target for regulating stem cell maintenance in irradiated SGs. Importantly, phenylephrine may have the ability to promote endogenous stem cell regeneration in SMGs via upregulating the LIS1/Sca-1 and LIS1/SOX2 signaling pathways, suggesting that phenylephrine application before 131I ablation therapy may provide a practical and effective way to prevent radiation sialadenitis for DTC patients.
Collapse
Affiliation(s)
- Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jing Yu
- Department of Nuclear Medicine, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Fu Yin Zhang
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
11
|
Wang XY, Yu J, Zhang FY, Liu KJ, Xiang B. Phenylephrine Alleviates 131I Radiation Damage in Submandibular Gland Through Maintaining Mitochondrial Homeostasis. Int J Radiat Oncol Biol Phys 2019; 104:644-655. [PMID: 30844421 DOI: 10.1016/j.ijrobp.2019.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2018] [Revised: 01/28/2019] [Accepted: 02/25/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE The impairment of the salivary glands is a permanent side effect of 131I ablation therapy for patients with differentiated thyroid cancer. Effective and safe treatments for protecting the salivary glands against 131I are currently not available. Mitochondria are susceptible to ionizing radiation, but alterations after 131I exposure are unknown. Here, we investigated the mechanisms of 131I damage in submandibular glands (SMGs) and evaluated the cytoprotective effect of phenylephrine (PE) against mitochondrial radiation damage. METHODS AND MATERIALS Rats were randomly divided into 4 groups: control, PE alone, 131I alone, and 131I with PE pretreatment. The mitochondrial structure of SMGs was observed under transmission electron microscopy. Apoptosis was detected using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Cytochrome c, cleaved-caspase 3, SIRT1, NAMPT, and PGC-1α protein levels were determined with Western blot and immunohistochemistry. Levels of mitochondrial membrane potential, nicotinamide adenine dinucleotide (NAD), and adenosine triphosphate (ATP) were measured with relevant kits. RESULTS After exposing rat SMGs to 131I, the mitochondrial membrane structures were destroyed, the mitochondrial membrane potential decreased, the release of cytochrome c increased, and cleaved-caspase 3 and cell apoptosis were activated. Moreover, the expression of SIRT1, NAMPT, and PGC-1α was downregulated, and the levels of NAD and ATP decreased. In contrast, PE alleviated the 131I-induced mitochondrial damages and upregulated the expression of SIRT1/NAMPT/PGC-1α and the levels of NAD and ATP. CONCLUSIONS These findings demonstrate that 131I impairs the salivary glands via the downregulation of SIRT1/NAMPT/PGC-1α signal pathways, which disturbs mitochondrial homeostasis. PE alleviated the 131I damage in SMGs at the mitochondrial level, suggesting that PE could be used as a potential radioprotector for patients with differentiated thyroid cancer with radiation sialadenitis.
Collapse
Affiliation(s)
- Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, China
| | - Jing Yu
- Department of Nuclear Medicine, Second Hospital of Dalian Medical University, Dalian, China
| | - Fu Yin Zhang
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Abstract
Ongoing genetic and epigenetic research involving DNA methylation, salivary biomarkers, wild-type p53 tumor suppressor gene proteins, and HPV oncogenes are being directed at identification and treatment of dysplastic and malignant squamous cell mucosal lesions. Research is being conducted to improve immunotherapy drug response rates by increasing the amount of inflammation within the tumor microenvironment. Ongoing research is focused on the application of the antidiabetic drug metformin for the prevention and management of oral squamous cell dysplastic lesions. Professional and nonprofit cancer support organizations are essential for furthering education and research within the area of head and neck cancer.
Collapse
Affiliation(s)
- Joshua E Lubek
- Oral-Head and Neck Surgery/Microvascular Surgery, Department of Oral and Maxillofacial Surgery, University of Maryland, 650 West Baltimore Street, Suite 1401, Baltimore, MD 21201, USA.
| |
Collapse
|
13
|
Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4278658. [PMID: 30881591 PMCID: PMC6381575 DOI: 10.1155/2019/4278658] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF.
Collapse
|
14
|
Sowa P, Misiolek M, Orecka B, Czecior E, Adamczyk-Sowa M. Serum levels of selected adipocytokines in benign and malignant parotid gland tumor patients. Cytokine 2018; 106:40-44. [PMID: 29549722 DOI: 10.1016/j.cyto.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate serum levels of adiponectin, leptin, visfatin and IL-6 in patients with pleomorphic adenoma, Warthin's tumor and acinic cell carcinoma of the parotid gland. MATERIALS AND METHODS Venous blood samples were collected from 30 patients with pleomorphic adenoma, 21 patients with Warthin's tumor and 8 patients with acinic cell carcinoma. Serum adiponectin, leptin, visfatin, IL-6 and CRP concentrations were determined. RESULTS Our results revealed significantly lower adiponectin serum levels in patients with malignant tumors compared to benign tumor individuals. Moreover, in benign cases the level was significantly higher compared to controls. Furthermore, serum leptin concentrations of benign tumor patients were higher compared to controls. Those differences, however, were observed only in males. The serum visfatin level was elevated in all tumor subjects compared to healthy individuals, whereas the serum IL-6 concentration was similar. CONCLUSIONS We anticipate that adiponectin may play a potential protective role in salivary gland tumors. Also leptin and visfatin seem to play an important role in salivary gland tumor pathology, although in males and females leptin may act or be regulated in a different manner. The influence of visfatin on salivary gland tumors is probably independent of IL-6 production.
Collapse
Affiliation(s)
- Pawel Sowa
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia in Katowice, Curie-Sklodowskiej 10, 41-800 Zabrze, Poland.
| | - Maciej Misiolek
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia in Katowice, Curie-Sklodowskiej 10, 41-800 Zabrze, Poland
| | - Boguslawa Orecka
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia in Katowice, Curie-Sklodowskiej 10, 41-800 Zabrze, Poland
| | - Eugeniusz Czecior
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia in Katowice, Curie-Sklodowskiej 10, 41-800 Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology in Zabrze, Medical University of Silesia in Katowice, 3-go Maja 15, 41-800 Zabrze, Poland
| |
Collapse
|
15
|
Current Status of Targeted Radioprotection and Radiation Injury Mitigation and Treatment Agents: A Critical Review of the Literature. Int J Radiat Oncol Biol Phys 2017; 98:662-682. [PMID: 28581409 DOI: 10.1016/j.ijrobp.2017.02.211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/17/2023]
Abstract
As more cancer patients survive their disease, concerns about radiation therapy-induced side effects have increased. The concept of radioprotection and radiation injury mitigation and treatment offers the possibility to enhance the therapeutic ratio of radiation therapy by limiting radiation therapy-induced normal tissue injury without compromising its antitumor effect. Advances in the understanding of the underlying mechanisms of radiation toxicity have stimulated radiation oncologists to target these pathways across different organ systems. These generalized radiation injury mechanisms include production of free radicals such as superoxides, activation of inflammatory pathways, and vascular endothelial dysfunction leading to tissue hypoxia. There is a significant body of literature evaluating the effectiveness of various treatments in preventing, mitigating, or treating radiation-induced normal tissue injury. Whereas some reviews have focused on a specific disease site or agent, this critical review focuses on a mechanistic classification of activity and assesses multiple agents across different disease sites. The classification of agents used herein further offers a useful framework to organize the multitude of treatments that have been studied. Many commonly available treatments have demonstrated benefit in prevention, mitigation, and/or treatment of radiation toxicity and warrant further investigation. These drug-based approaches to radioprotection and radiation injury mitigation and treatment represent an important method of making radiation therapy safer.
Collapse
|