1
|
Iannalfi A, Riva G, Lillo S, Ciccone L, Fontana G, Molinelli S, Trombetta L, Ciocca M, Imparato S, Pecorilla M, Orlandi E. Proton therapy for intracranial meningioma: a single-institution retrospective analysis of efficacy, survival and toxicity outcomes. J Neurooncol 2024; 169:683-692. [PMID: 38918319 DOI: 10.1007/s11060-024-04751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE To report the outcomes of a large series of intracranial meningiomas (IMs) submitted to proton therapy (PT) with curative intent. METHODS We conducted a retrospective analysis on all consecutive IM patients treated between 2014 and 2021. The median PT prescription dose was 55.8 Gy relative biological effectiveness (RBE) and 66 GyRBE for benign/radiologically diagnosed and atypical/anaplastic IMs, respectively. Local recurrence-free survival (LRFS), distant recurrence-free survival (DRFS), overall survival (OS), and radionecrosis-free survival (RNFS) were evaluated with the Kaplan-Meier method. Univariable analysis was performed to identify potential prognostic factors for clinical outcomes. Toxicity was reported according to the latest Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. RESULTS Overall, 167 patients were included. With a median follow-up of 41 months (range, 6-99), twelve patients (7%) developed tumor local recurrence after a median time of 39 months. The 5-year LRFS was 88% for the entire cohort, with a significant difference between benign/radiologically diagnosed and atypical/anaplastic IMs (98% vs. 47%, p < 0.001); this significant difference was maintained also for the 5-year OS and the 5-year DRFS rates. Patients aged ≤ 56 years reported significantly better outcomes, whereas lower prescription doses and skull base location were associated with better RNFS rates. Two patients experienced G3 acute toxicities (1.2%), and three patients G3 late toxicities (1.8%). There were no G4-G5 adverse events. CONCLUSION PT proved to be effective with an acceptable toxicity profile. To the best of our knowledge this is one of the largest series including IM patients submitted to PT.
Collapse
Affiliation(s)
- Alberto Iannalfi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Giulia Riva
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Sara Lillo
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy.
| | - Lucia Ciccone
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Giulia Fontana
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Silvia Molinelli
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Luca Trombetta
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Mario Ciocca
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Sara Imparato
- Radiology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Mattia Pecorilla
- Radiology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
2
|
Eekers DBP, Zegers CML, Ahmed KA, Amelio D, Gupta T, Harrabi SB, Kazda T, Scartoni D, Seidel C, Shih HA, Minniti G. Controversies in neuro-oncology: Focal proton versus photon radiation therapy for adult brain tumors. Neurooncol Pract 2024; 11:369-382. [PMID: 39006517 PMCID: PMC11241386 DOI: 10.1093/nop/npae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Radiation therapy (RT) plays a fundamental role in the treatment of malignant and benign brain tumors. Current state-of-the-art photon- and proton-based RT combines more conformal dose distribution of target volumes and accurate dose delivery while limiting the adverse radiation effects. PubMed was systematically searched from from 2000 to October 2023 to identify studies reporting outcomes related to treatment of central nervous system (CNS)/skull base tumors with PT in adults. Several studies have demonstrated that proton therapy (PT) provides a reduced dose to healthy brain parenchyma compared with photon-based (xRT) radiation techniques. However, whether dosimetric advantages translate into superior clinical outcomes for different adult brain tumors remains an open question. This review aims at critically reviewing the recent studies on PT in adult patients with brain tumors, including glioma, meningiomas, and chordomas, to explore its potential benefits compared with xRT.
Collapse
Affiliation(s)
- Danielle B P Eekers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW-School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW-School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kamran A Ahmed
- Departments of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Dante Amelio
- Trento Proton Therapy Center, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Tejpal Gupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - Tomas Kazda
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University and Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Daniele Scartoni
- Trento Proton Therapy Center, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Clemens Seidel
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- IRCCS Neuromed, Pozzilli IS, Italy
| |
Collapse
|
3
|
Gaito S, Goyal L, Rieu R, France A, Burnet NG, Barker C, Pan S, Colaco RJ, Minniti G, Roncaroli F, Smith E, Aznar M, Whitfield G. Radiotherapy intensification for atypical and malignant meningiomas: A systematic review. Neurooncol Pract 2024; 11:115-124. [PMID: 38496911 PMCID: PMC10940825 DOI: 10.1093/nop/npad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background The outcomes of nonbenign (WHO Grades 2 and 3 [G2, G3]) meningiomas are suboptimal and radiotherapy (RT) dose intensification strategies have been investigated. The purpose of this review is to report on clinical practice and outcomes with particular attention to RT doses and techniques. Methods The PICO criteria (Population, Intervention, Comparison, and Outcomes) were used to frame the research question, directed at outlining the clinical outcomes in patients with G2-3 meningiomas treated with RT. The same search strategy was run in Embase and MEDLINE and, after deduplication, returned 1 807 records. These were manually screened for relevance and 25 were included. Results Tumor outcomes and toxicities are not uniformly reported in the selected studies since different endpoints and time points have been used by different authors. Many risk factors for worse outcomes are described, the most common being suboptimal RT. This includes no or delayed RT, low doses, and older techniques. A positive association between RT dose and progression-free survival (PFS) has been highlighted by analyzing the studies in this review (10/25) that report the same endpoint (5y-PFS). Conclusions This literature review has shown that standard practice RT leads to suboptimal tumor control rates in G2-3 meningiomas, with a significant proportion of disease recurring after a relatively short follow-up. Randomized controlled trials are needed in this setting to define the optimal RT approach. Given the increasing data to suggest a benefit of higher RT doses for high-risk meningiomas, novel RT technologies with highly conformal dose distributions are preferential to achieve optimal target coverage and organs at risk sparing.
Collapse
Affiliation(s)
- Simona Gaito
- Proton Clinical Outcomes Unit, Christie NHS Proton Beam Therapy Centre, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Proton Beam Therapy, Christie Proton Beam Therapy Centre, Manchester, UK
| | - Love Goyal
- Department of Proton Beam Therapy, Christie Proton Beam Therapy Centre, Manchester, UK
| | - Romelie Rieu
- Institute of Cancer Research, London, UK
- Head and Neck Unit, Royal Marsden Hospital, London, UK
| | - Anna France
- Proton Clinical Outcomes Unit, Christie NHS Proton Beam Therapy Centre, Manchester, UK
| | - Neil G Burnet
- Department of Proton Beam Therapy, Christie Proton Beam Therapy Centre, Manchester, UK
| | - Claire Barker
- Department of Proton Beam Therapy, Christie Proton Beam Therapy Centre, Manchester, UK
| | - Shermaine Pan
- Department of Proton Beam Therapy, Christie Proton Beam Therapy Centre, Manchester, UK
| | - Rovel J Colaco
- Department of Proton Beam Therapy, Christie Proton Beam Therapy Centre, Manchester, UK
| | - Giuseppe Minniti
- Department of Radiological Science, Oncology and Anatomical Pathology, Umberto I Hospital, University Sapienza, Policlinico Umberto I, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Federico Roncaroli
- Division of Neuroscience, Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ed Smith
- Proton Clinical Outcomes Unit, Christie NHS Proton Beam Therapy Centre, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Proton Beam Therapy, Christie Proton Beam Therapy Centre, Manchester, UK
| | - Marianne Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gillian Whitfield
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Proton Beam Therapy, Christie Proton Beam Therapy Centre, Manchester, UK
| |
Collapse
|
4
|
Kotecha R, La Rosa A, Mehta MP. How proton therapy fits into the management of adult intracranial tumors. Neuro Oncol 2024; 26:S26-S45. [PMID: 38437667 PMCID: PMC10911801 DOI: 10.1093/neuonc/noad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Intracranial tumors include a challenging array of primary and secondary parenchymal and extra-axial tumors which cause neurologic morbidity consequential to location, disease extent, and proximity to critical neurologic structures. Radiotherapy can be used in the definitive, adjuvant, or salvage setting either with curative or palliative intent. Proton therapy (PT) is a promising advance due to dosimetric advantages compared to conventional photon radiotherapy with regards to normal tissue sparing, as well as distinct physical properties, which yield radiobiologic benefits. In this review, the principles of efficacy and safety of PT for a variety of intracranial tumors are discussed, drawing upon case series, retrospective and prospective cohort studies, and randomized clinical trials. This manuscript explores the potential advantages of PT, including reduced acute and late treatment-related side effects and improved quality of life. The objective is to provide a comprehensive review of the current evidence and clinical outcomes of PT. Given the lack of consensus and directives for its utilization in patients with intracranial tumors, we aim to provide a guide for its judicious use in clinical practice.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Translational Medicine, Hebert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
5
|
Wilson TA, Kang Jr JI, Huang L, Vacaru A, Martins KN, Boling WW. Adjuvant proton beam therapy in patients with grade 2 meningiomas. Surg Neurol Int 2024; 15:62. [PMID: 38468681 PMCID: PMC10927181 DOI: 10.25259/sni_485_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Background The World Health Organization (WHO) grade 2 meningiomas behave aggressively with a high proclivity toward recurrence despite maximal surgical resection. Our institution, a pioneer of proton therapy, uses exclusively proton beam radiation, and thus, we present a retrospective cohort analysis of patients with WHO grade 2 meningiomas treated with adjuvant proton beam therapy (PBT) at our institution between 2007 and 2019. The effects of adjuvant PBT were evaluated. Methods Data collected include diagnosis, gender, histological subtype, WHO grade, the extent of surgical resection, adjuvant PBT radiation, details of the PBT radiation, recurrence, any additional PBT radiation, systemic medical therapy, and disease-specific survival. Results Among the WHO grade 2 meningiomas (n = 50) recommended PBT, 80% and 78% of patients with gross-total resection (GTR) and subtotal resection (STR), respectively, followed through with PBT. The median radiation dose of PBT was 59.5 Gy and 59.92 Gy for patients with GTR and STR, respectively, with a median of 33 fractions delivered in 1.8 Gy doses for both groups. Combined 3-year progression-free survival (PFS) was 96%, and 5-year PFS was 92%. Combined overall survival was 95% at five years. Minimal radiation side effects were reported with no grade 3 or higher toxicities. Conclusion Our results suggest that adjuvant PBT is well tolerated with minimal radiation toxicity. Alternative to photon radiation, PBT may be considered at least as safe and effective for adjuvant treatment of WHO grade 2 meningiomas when it is available.
Collapse
Affiliation(s)
- Taylor Anne Wilson
- Department of Neurology, Loma Linda University Medical Center, Loma Linda, California, United States
| | | | - Lei Huang
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, California, United States
| | - Alexandra Vacaru
- School of Medicine, Loma Linda University, Loma Linda, California, United States
| | | | - Warren W. Boling
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, California, United States
| |
Collapse
|
6
|
Qiu X, Gao J, Hu J, Yang J, Hu W, Huang Q, Zhang H, Lu JJ, Kong L. Particle beam radiotherapy in the treatment of WHO grade 2 and 3 meningiomas: an early experience from Shanghai Proton and Heavy Ion Center. J Neurooncol 2023; 165:241-250. [PMID: 37976030 DOI: 10.1007/s11060-023-04401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/17/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To investigate the efficacy and safety of particle beam radiotherapy (PBRT) in the management of patients with WHO grade 2 and 3 meningiomas. METHODS Thirty-six consecutive and non-selected patients with WHO grade 2 (n = 28) and grade 3 (n = 8) meningiomas were treated at the Shanghai Proton and Heavy Ion Center, from May 2015 to March 2022. The median age of the cohort at PBRT was 48 years. There were 25 and 11 patients treated with PBRT in the setting of newly diagnosed diseases and progressive/recurrent diseases, respectively. PBRT was utilized as re-irradiation in 5 patients. Proton radiotherapy (PRT) and carbon-ion radiotherapy (CIRT), with a median dose of 60 Gy-Equivalent (GyE), were provided to 30 and 6 patients, respectively. RESULTS With a median follow-up of 23.3 months, the local control rates were 92.0%, 82.0%, and 82.0% at 1, 2, and 3 years for the entire cohort, respectively. Patients with WHO grade 2 meningiomas (100%, 94.1%, 94,1% at 1,2,3 years) had a much better local control than those with WHO grade 3 meningiomas (50%, 25%, 25% at 1,2,3 years; P < 0.001). Three patients, all with WHO grade 3 meningiomas, had deceased at the time of this analysis. Multivariate analyses revealed that WHO grade (grade 2 vs. 3) (p = 0.016) was a significant prognosticator for local control. No severe toxicities (G3 or above) were observed. CONCLUSIONS Treatment-induced efficacy and toxicities to PBRT in WHO grade 2 and 3 meningiomas were both highly acceptable. Longer follow-up is needed to evaluate the long-term outcome in terms of disease control, survival, as well as potential late effects.
Collapse
Affiliation(s)
- Xianxin Qiu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Gao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiyi Hu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Yang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weixu Hu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qingting Huang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Haojiong Zhang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Proton and Heavy Ion Center, Heyou International Hospital, Tumor, Guangdong, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.
| |
Collapse
|
7
|
Krcek R, Leiser D, García-Marqueta M, Bolsi A, Weber DC. Long Term Outcome and Quality of Life of Intracranial Meningioma Patients Treated with Pencil Beam Scanning Proton Therapy. Cancers (Basel) 2023; 15:3099. [PMID: 37370709 DOI: 10.3390/cancers15123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to assess the clinical outcome, including QoL, of patients with intracranial meningiomas WHO grade 1-3 who were treated with Pencil Beam Scanning Proton Therapy (PBS PT) between 1997 and 2022. Two hundred patients (median age 50.4 years, 70% WHO grade 1) were analyzed. Acute and late side effects were classified according to CTCAE version 5.0. Time to event data were calculated. QoL was assessed descriptively by the EORTC-QLQ-C30 and BN20 questionnaires. With a median follow-up of 65 months (range: 3.8-260.8 months) the 5 year OS was 95.7% and 81.8% for WHO grade 1 and grade 2/3, respectively (p < 0.001). Twenty (10%) local failures were observed. Failures occurred significantly (p < 0.001) more frequent in WHO grade 2 or 3 meningioma (WHO grade 1: n = 7, WHO grade 2/3: n = 13), in patients with multiple meningiomas (p = 0.005), in male patients (p = 0.005), and when PT was initiated not as upfront therapy (p = 0.011). There were no high-grade toxicities in the majority (n = 176; 88%) of patients. QoL was assessed for 83 (41.5%) patients and for those patients PT did not impacted QoL negatively during the follow-up. In summary, we observed very few local recurrences of meningiomas after PBS PT, a stable QoL, and a low rate of high-grade toxicity.
Collapse
Affiliation(s)
- Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
| | - Marta García-Marqueta
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
8
|
Iannalfi A, Riva G, Ciccone L, Orlandi E. The role of particle radiotherapy in the treatment of skull base tumors. Front Oncol 2023; 13:1161752. [PMID: 37350949 PMCID: PMC10283010 DOI: 10.3389/fonc.2023.1161752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
The skull base is an anatomically and functionally critical area surrounded by vital structures such as the brainstem, the spinal cord, blood vessels, and cranial nerves. Due to this complexity, management of skull base tumors requires a multidisciplinary approach involving a team of specialists such as neurosurgeons, otorhinolaryngologists, radiation oncologists, endocrinologists, and medical oncologists. In the case of pediatric patients, cancer management should be performed by a team of pediatric-trained specialists. Radiation therapy may be used alone or in combination with surgery to treat skull base tumors. There are two main types of radiation therapy: photon therapy and particle therapy. Particle radiotherapy uses charged particles (protons or carbon ions) that, due to their peculiar physical properties, permit precise targeting of the tumor with minimal healthy tissue exposure. These characteristics allow for minimizing the potential long-term effects of radiation exposure in terms of neurocognitive impairments, preserving quality of life, and reducing the risk of radio-induced cancer. For these reasons, in children, adolescents, and young adults, proton therapy should be an elective option when available. In radioresistant tumors such as chordomas and sarcomas and previously irradiated recurrent tumors, particle therapy permits the delivery of high biologically effective doses with low, or however acceptable, toxicity. Carbon ion therapy has peculiar and favorable radiobiological characteristics to overcome radioresistance features. In low-grade tumors, proton therapy should be considered in challenging cases due to tumor volume and involvement of critical neural structures. However, particle radiotherapy is still relatively new, and more research is needed to fully understand its effects. Additionally, the availability of particle therapy is limited as it requires specialized equipment and expertise. The purpose of this manuscript is to review the available literature regarding the role of particle radiotherapy in the treatment of skull base tumors.
Collapse
|
9
|
Holtzman AL, Glassman GE, Dagan R, Rao D, Fiester PJ, Tavanaieour D, Morris CG, Indelicato DJ, Mendenhall WM. Long-term outcomes of fractionated proton beam therapy for benign or radiographic intracranial meningioma. J Neurooncol 2023; 161:481-489. [PMID: 36692832 DOI: 10.1007/s11060-022-04207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Benign intracranial meningioma is one of the most common primary brain neoplasms. Proton therapy has been increasingly utilized for nonoperative management of this neoplasm, yet few long-term outcomes studies exist. METHODS The medical records of a total of 59 patients with 64 lesions were reviewed under a prospective outcomes tracking protocol for histologically proven or radiographically benign meningioma. The patients were treated with proton therapy at the University of Florida Proton Therapy Institute between 2007 and 2019 and given a median dose of 50.4 GyRBE at 1.8 GyRBE (relative biological effectiveness) (range 48.6-61.2 GyRBE) in once-daily treatments. RESULTS With a median clinical and imaging follow-up of 6.3 and 4.7 years, the rates of 5-year actuarial local progression and cumulative incidence of grade 3 or greater toxicity were 6% (95% confidence interval [CI] 1%-14%), and 2% (95% CI < 1%-15%), respectively. Two patients experienced local progression after 5 years. The 5-year actuarial overall survival rate was 87% (95% CI 74-94%). CONCLUSION Fractionated PBT up to 50.4 GyRBE is a safe and highly effective therapy for treating benign intracranial meningioma.
Collapse
Affiliation(s)
- Adam L Holtzman
- Department of Radiation Oncology, University of Florida College of Medicine, 2015 North Jefferson Street, Jacksonville, FL, 32206, USA.
| | | | - Roi Dagan
- Department of Radiation Oncology, University of Florida College of Medicine, 2015 North Jefferson Street, Jacksonville, FL, 32206, USA
| | - Dinesh Rao
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, USA
| | - Peter J Fiester
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, USA
| | - Daryoush Tavanaieour
- Department of Neurosurgery, University of Florida College of Medicine Jacksonville, Jacksonville, FL, USA
| | - Christopher G Morris
- Department of Radiation Oncology, University of Florida College of Medicine, 2015 North Jefferson Street, Jacksonville, FL, 32206, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, 2015 North Jefferson Street, Jacksonville, FL, 32206, USA
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, 2015 North Jefferson Street, Jacksonville, FL, 32206, USA
| |
Collapse
|
10
|
Corniola MV, Meling TR. Management of Recurrent Meningiomas: State of the Art and Perspectives. Cancers (Basel) 2022; 14:cancers14163995. [PMID: 36010988 PMCID: PMC9406695 DOI: 10.3390/cancers14163995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Intracranial meningiomas account for 30% to 40% of the primary lesions of the central nervous system. Surgery is the mainstay treatment whenever symptoms related to an intra-cranial meningioma are encountered. However, the management of recurrences after initial surgery, which are not uncommon, is still a matter of debate. Here, we present the alternatives described in the management of meningioma recurrence (radiotherapy, stereotaxic radiosurgery, protontherapy, and chemotherapy, among others). Their overall results are compared to surgery and future perspectives are presented. Abstract Background: While meningiomas often recur over time, the natural history of repeated recurrences and their management are not well described. Should recurrence occur, repeat surgery and/or use of adjuvant therapeutic options may be necessary. Here, we summarize current practice when it comes to meningioma recurrence after initial surgical management. Methods: A total of N = 89 articles were screened. N = 41 articles met the inclusion criteria and N = 16 articles failed to assess management of meningioma recurrence. Finally, N = 24 articles were included in our review. Results: The articles were distributed as follows: studies on chemotherapy (N = 14), radiotherapy, protontherapy, and stereotaxic radiosurgery (N = 6), boron-neutron capture therapy (N = 2) and surgery (N = 3). No study seems to provide serious alternatives to surgery in terms of progression-free and overall survival. Recurrence can occur long after the initial surgery and also affects WHO grade 1 meningiomas, even after initial gross total resection at first surgery, emphasizing the need for a long-term and comprehensive follow-up. Conclusions: Surgery still seems to be the state-of-the-art management when it comes to meningioma recurrence, since none of the non-surgical alternatives show promising results in terms of progression-free and overall survival.
Collapse
Affiliation(s)
- Marco Vincenzo Corniola
- Service de Neurochirurgie, Pôle des Neurosciences, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
- Faculté de Médecine, Université de Rennes 1, 35000 Rennes, France
- Faculté de Médecine, Université de Genève, 1205 Geneve, Switzerland
- Laboratoire du Traitement de Signal, Unité Médicis, INSERM UMR 1099 LTSI, Université de Rennes 1, 35000 Rennes, France
| | - Torstein R. Meling
- Faculté de Médecine, Université de Genève, 1205 Geneve, Switzerland
- Department of Neurosurgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Besta NeuroSim Center, Fondazione IRCCS, Istituto Neurologico Carlo Basta, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
11
|
Radiation therapy for atypical and anaplastic meningiomas: an overview of current results and controversial issues. Neurosurg Rev 2022; 45:3019-3033. [PMID: 35665867 PMCID: PMC9492595 DOI: 10.1007/s10143-022-01806-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023]
Abstract
Meningiomas are the most common intracranial tumors. Most meningiomas are WHO grade 1 tumors whereas less than one-quarter of all meningiomas are classified as atypical (WHO grade 2) and anaplastic (WHO grade 3) tumors, based on local invasiveness and cellular features of atypia. Surgical resection remains the cornerstone of meningioma therapy and represents the definitive treatment for the majority of patients; however, grade 2 and grade 3 meningiomas display more aggressive behavior and are difficult to treat. Several retrospective series have shown the efficacy and safety of postoperative adjuvant external beam radiation therapy (RT) for patients with atypical and anaplastic meningiomas. More recently, two phase II prospective trials by the Radiation Therapy Oncology Group (RTOG 0539) and the European Organisation for Research and Treatment of Cancer (EORTC 2042) have confirmed the potential benefits of fractionated RT for patients with intermediate and high-risk meningiomas; however, several issues remain a matter of debate. Controversial topics include the timing of radiation treatment in patients with totally resected atypical meningiomas, the optimal radiation technique, dose and fractionation, and treatment planning/target delineation. Ongoing randomized trials are evaluating the efficacy of early adjuvant RT over observation in patients undergoing gross total resection.
Collapse
|
12
|
Li JY, Li JW, Jin YC, Li MX, Guo LP, Bing ZT, Zhang QN, Bai F, Wang XH, Li XX, Yang KH. The Efficacy and Safety of Carbon Ion Radiotherapy for Meningiomas: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:620534. [PMID: 34113557 PMCID: PMC8185343 DOI: 10.3389/fonc.2021.620534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Objective The purpose of this systematic review and meta-analysis is to evaluate the efficacy and safety of carbon ion radiotherapy (CI-RT) in improving meningioma by comparing photon and protons radiotherapy. Methods A comprehensive search for relevant studies published until March 17, 2021, was conducted in PubMed, the Cochrane Library, Chinese Biomedical Literature Database and EMBASE. Statistical analyses were performed with R 4.0.3. Results We identified 396 studies, of which 18 studies involving 985 participants were included. Except for one low quality study, the quality of the included studies was found to be either moderate or high quality. The analyses conducted according random effects model indicated that the 1-year overall survival rate (OS) of benign and non-benign meningiomas after the CI-RT treatment was 99% (95%CL=.91-1.00, I2 = 0%). The overall average 5-year OS for meningiomas was 72% (95%CL=0.52-0.86, I2 = 35%), not as effective as proton radiotherapy (PR-RT) 85% (95%CL=.72-.93, I2 = 73, Q=4.17, df=2, p=.12). Additionally, 5-year OS of atypical meningiomas (81%) was found to be significantly higher than anaplastic meningiomas (52%). The 10-year OS after CI-RT of patients with mixed grade meningioma was 91% (95%CL=.75-.97, I2 = 73%). The 15-year OS after CI-RT 87% (95%CL=.11-1.00) or PR-RT 87% (95%CL=.23-.99, I2 = 79%) were the same (Q=0, df=1, p=.99). After undergoing CI-RT for 3 and 5 years, the LC for benign meningioma was 100% and 88%, respectively, while the 2-year LC of non-benign meningiomas (atypical/anaplastic) was 33%. Headache, sensory impairment, cognitive impairment, and hearing impairment were found to be the most common adverse reactions, with individual incidences of 19.4%, 23.7%, 9.1%, and 9.1%, respectively. Conclusion CI-RT is a rapidly developing technique that has been proven to be an effective treatment against meningioma. The efficacy and safety of CI-RT for meningiomas were similar to those of PR-RT, better than photon radiotherapy (PH-RT). However, there is a need for more prospective trials in the future that can help provide more supportive evidence.
Collapse
Affiliation(s)
- Jie-Yun Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Jing-Wen Li
- Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Yuan-Chang Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China.,Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Mei-Xuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Li-Ping Guo
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Zhi-Tong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Ning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China.,Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Fei Bai
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,National Health Commission Medical Management Center, Beijing, China
| | - Xiao-Hu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China.,Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Xiu-Xia Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Ke-Hu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
13
|
Sato H, Mizumoto M, Okumura T, Sakurai H, Sakamoto N, Akutsu H, Ishikawa E, Tsuboi K. Long-term outcomes of patients with unresectable benign meningioma treated with proton beam therapy. JOURNAL OF RADIATION RESEARCH 2021; 62:427-437. [PMID: 33855438 PMCID: PMC8127652 DOI: 10.1093/jrr/rrab017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/01/2021] [Indexed: 05/07/2023]
Abstract
This study aimed to evaluate the long-term efficacy of proton beam therapy (PBT) for unresectable benign meningiomas at the University of Tsukuba, Japan. From 1986-1998, 10 patients were treated at the Particle Radiation Medical Science Center (PRMSC) with a relative biological effectiveness (RBE) value of 1.0 using an accelerator built for physics experiments. The total dose was compensated with an X-ray in three patients. Following that, from 2002-2017, 17 patients were treated with a RBE value of 1.1 at the Proton Medical Research Center (PMRC) which was built for medical use. At the PRMSC, the total dose ranged from 50.4-66 Gy (median: 54 Gy). During the follow-up, which lasted between 3.8 and 31.6 years (median: 25.1 years), the 5-, 10-, 15-, 20- and 30-year local control rates were 100%, and the 5-, 10-, 15-, 20- and 30-year survival rates were 90, 80, 70, 70 and 36%, respectively. One patient died of brainstem radiation necrosis 5.1 years after PBT. At PMRC, the total dose ranged from 45.0-61.2 GyE, with a median of 50.4 GyE. During the follow-up, which lasted between 3 and 17 years with a median of 10.5 years, the 5-, 10- and 15-year local control rates were 94.1%, and the 5-, 10- and 15-year survival rates were 100, 100 and 88.9%, respectively. Neither malignant transformation nor secondary malignancy was observed, indicating that fractionated PBT may be effective and safely control benign unresectable meningioma even for the lifelong period of time.
Collapse
Affiliation(s)
- Hiroshige Sato
- Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology, Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Noriaki Sakamoto
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Koji Tsuboi
- Tumor Therapy Center, Tsukuba Central Hospital, 1589-3 Kashiwada, Ushiku, Ibaraki 300-1211, Japan
| |
Collapse
|
14
|
Rombi B, Ruggi A, Sardi I, Zucchelli M, Scagnet M, Toni F, Cammelli S, Giulietti G, Fabbri VP, Gianno F, Amichetti M, Yock TI, Morganti AG, Pession A, Melchionda F. Proton therapy: A therapeutic opportunity for aggressive pediatric meningioma. Pediatr Blood Cancer 2021; 68:e28919. [PMID: 33682333 DOI: 10.1002/pbc.28919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 11/12/2022]
Abstract
Meningiomas are an extremely rare histology among pediatric brain tumors, and there is a shortage of literature on their management. Proton therapy is currently used safely and effectively for many types of both pediatric and adult cancer, and its main advantage is the sparing of healthy tissues from radiation, which could translate in the reduction of late side effects. We review the literature on radiotherapy and proton therapy for pediatric meningiomas and report clinical outcomes for two aggressive pediatric meningiomas we treated with protons. Proton therapy might be a safe and effective therapeutic option for this rare subgroup of tumors.
Collapse
Affiliation(s)
- Barbara Rombi
- Proton Therapy Center, Santa Chiara Hospital, Trento, Italy.,Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | | | - Iacopo Sardi
- Pediatric Neuro-Oncology Unit, Meyer Children's Hospital, Florence, Italy
| | - Mino Zucchelli
- Pediatric Neurosurgery, Institute of Neurological Science, IRCCS Bellaria Hospital, Bologna, Italy
| | - Mirko Scagnet
- Department of Neurosurgery, Meyer Children's Hospital, Florence, Italy
| | - Francesco Toni
- Pediatric Neuroradiology of Institute of Neurological Science, IRCCS Bellaria Hospital, Bologna, Italy
| | - Silvia Cammelli
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | | | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, Pathology Department, University of Bologna, IRCCS Bellaria Hospital, Bologna, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Torunn Ingrid Yock
- Pediatric Radiation Oncology Department, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alessio Giuseppe Morganti
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Pediatrics, University of Bologna, Bologna, Italy
| | | |
Collapse
|
15
|
Radiation-induced brain injury in patients with meningioma treated with proton or photon therapy. J Neurooncol 2021; 153:169-180. [PMID: 33886111 DOI: 10.1007/s11060-021-03758-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Radiation therapy is often used to treat meningioma with adverse features or when unresectable. Proton therapy has advantages over photon therapy in reducing integral dose to the brain. This study compared the incidence of radiological and clinical adverse events after photon versus proton therapy in the treatment of meningioma. METHODS A retrospective review was conducted on patients with meningioma treated with proton or photon therapy at two high-volume tertiary cancer centers. Patients with a history of prior radiation therapy (RT) or less than 3 months of follow-up were excluded. Post-RT imaging changes were categorized into abnormal T2 signal intensities (T2 changes) or abnormal T1 post-contrast and T2 signal intensities (T1c+T2 changes) on magnetic resonance imaging (MRI). Clinical outcomes of adverse events and survival were compared between the proton and photon therapies. RESULTS Among the total of 77 patients, 38 patients received proton therapy and 39 patients received photon therapy. The median age at diagnosis was 55 years and median follow-up was 2.2 years. No significant differences in symptomatic adverse events were observed between the two groups: grade ≥ 2 adverse events were seen in 4 (10.5%) patients in the proton group and 3 (7.7%) patients in the photon group (p = 0.67). The 2-year cumulative incidences of T2 changes were 38.3% after proton therapy and 47.7% after photon therapy (p = 0.53) and the 2-year cumulative incidences of T1c+T2 changes were 26.8% after proton therapy and 5.3% after photon therapy (p = 0.02). One patient experienced grade ≥ 4 adverse event in each group (p = 0.99). Estimated 2-year progression-free survival was 79.5% (proton therapy 76.0% vs. photon therapy 81.3%, p = 0.66) and 2-year overall survival was 89.7% (proton therapy 86.6% vs. photon therapy 89.3%, p = 0.65). CONCLUSIONS Following RT, high rates of T2 changes were seen in meningioma patients regardless of treatment modality. Proton therapy was associated with significantly higher rates of T1c+T2 changes compared with photon therapy, but severe adverse events were uncommon in both groups and survival outcomes were comparable between the two groups. Future studies will aim at correlating the MRI changes with models that can be incorporated into RT planning to avoid toxicity.
Collapse
|
16
|
Vanmarcke D, Menten J, Defraene G, Van Calenbergh F, De Vleeschouwer S, Lambrecht M. Stroke rate after external fractionated radiotherapy for benign meningioma. J Neurooncol 2021; 152:99-106. [PMID: 33394261 DOI: 10.1007/s11060-020-03678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Patients with a benign meningioma often have a long survival following the treatment of their meningioma. Since radiotherapy is frequently part of the treatment, long-term side effects are of considerable concern. A controversial long-term side effect of radiotherapy is stroke. Due to its severity, it is important to know the frequency of this side effect. The aim of this study was to assess the stroke incidence and risk factors among patients receiving radiotherapy for their benign meningioma. METHODS We performed a retrospective database study of patients who underwent primary or adjuvant radiotherapy for their benign meningioma at University Hospitals Leuven from January 2003 to December 2017. RESULTS We included 169 patients with a median age of 51 years (range 22-84). Every patient received fractionated radiotherapy using photons with a median dose of 56 Gy (range 54-56) in fractions of 2 Gy (range 1.8-2). The median follow-up was 5.3 years (range 0.1-14). The cumulative stroke incidence function showed an incidence of 11.6% after 9 years of follow-up, translating to a stroke incidence per year of 1.29%. We found two significant risk factors for stroke: medically treated arterial hypertension (p = 0.005) and history of previous stroke or transient ischemic attack (p < 0.001). 5-year local control and overall survival rates were respectively 97.4% and 91.2%. Other late grade III/IV toxicities occurred in 16.0% (27/169) of patients. CONCLUSION Our study shows a higher incidence of stroke in patients who received radiotherapy for their benign meningioma compared to the general population.
Collapse
Affiliation(s)
| | - Johan Menten
- Radiotherapy-Oncology, University Hospitals, Leuven, Belgium
| | - Gilles Defraene
- Department of Oncology-Laboratory Experimental Radiotherapy, KU Leuven-University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
17
|
Weber DC, Bizzocchi N, Bolsi A, Jenkinson MD. Proton Therapy for Intracranial Meningioma for the Treatment of Primary/Recurrent Disease Including Re-Irradiation. Front Oncol 2020; 10:558845. [PMID: 33381447 PMCID: PMC7769250 DOI: 10.3389/fonc.2020.558845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/28/2020] [Indexed: 01/14/2023] Open
Abstract
Meningeal tumors represent approximately 10-25% of primary brain tumors and occur usually in elderly female patients. Most meningiomas are benign (80-85%) and for symptomatic and/or large tumors, surgery, with or without radiation therapy (RT), has been long established as an effective means of local tumor control. RT can be delivered to inoperable lesions or to those with non-benign histology and for Simpson I-III and IV-V resection. RT can be delivered with photons or particles (protons or carbon ions) in stereotactic or non-stereotactic conditions. Particle therapy delivered for these tumors uses the physical properties of charged carbon ions or protons to spare normal brain tissue (i.e. Bragg peak), with or without or a dose-escalation paradigm for non-benign lesions. PT can substantially decrease the dose delivered to the non-target brain tissues, including but not limited to the hippocampi, optic apparatus or cochlea. Only a limited number of meningioma patients have been treated with PT in the adjuvant or recurrent setting, as well as for inoperable lesions with pencil beam scanning and with protons only. Approximately 500 patients with image-defined or WHO grade I meningioma have been treated with protons. The reported outcome, usually 5-year local tumor control, ranges from 85 to 99% (median, 96%). For WHO grade II or III patients, the outcome of only 97 patients has been published, reporting a median tumor local control rate of 52% (range, 38-71.1). Only 24 recurring patients treated previously with photon radiotherapy and re-treated with PT were reported. The clinical outcome of these challenging patients seems interesting, provided that they presented initially with benign tumors, are not in the elderly category and have been treated previously with conventional radiation dose of photons. Overall, the number of meningioma patients treated or-re-irradiated with this treatment modality is small and the clinical evidence level is somewhat low (i.e. 3b-5). In this review, we detail the results of upfront PT delivered to patients with meningioma in the adjuvant setting and for inoperable tumors. The outcome of meningioma patients treated with this radiation modality for recurrent tumors, with or without previous RT, will also be reviewed.
Collapse
Affiliation(s)
- Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland.,Radiation Oncology Department, University Hospital Zürich, Zürich, Switzerland.,Radiation Oncology Department, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Combs SE, Baumert BG, Bendszus M, Bozzao A, Brada M, Fariselli L, Fiorentino A, Ganswindt U, Grosu AL, Lagerwaard FL, Niyazi M, Nyholm T, Paddick I, Weber DC, Belka C, Minniti G. ESTRO ACROP guideline for target volume delineation of skull base tumors. Radiother Oncol 2020; 156:80-94. [PMID: 33309848 DOI: 10.1016/j.radonc.2020.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE For skull base tumors, target definition is the key to safe high-dose treatments because surrounding normal tissues are very sensitive to radiation. In the present work we established a joint ESTRO ACROP guideline for the target volume definition of skull base tumors. MATERIAL AND METHODS A comprehensive literature search was conducted in PubMed using various combinations of the following medical subjects headings (MeSH) and free-text words: "radiation therapy" or "stereotactic radiosurgery" or "proton therapy" or "particle beam therapy" and "skull base neoplasms" "pituitary neoplasms", "meningioma", "craniopharyngioma", "chordoma", "chondrosarcoma", "acoustic neuroma/vestibular schwannoma", "organs at risk", "gross tumor volume", "clinical tumor volume", "planning tumor volume", "target volume", "target delineation", "dose constraints". The ACROP committee identified sixteen European experts in close interaction with the ESTRO clinical committee who analyzed and discussed the body of evidence concerning target delineation. RESULTS All experts agree that magnetic resonance (MR) images with high three-dimensional spatial accuracy and tissue-contrast definition, both T2-weighted and volumetric T1-weighted sequences, are required to improve target delineation. In detail, several key issues were identified and discussed: i) radiation techniques and immobilization, ii) imaging techniques and target delineation, and iii) technical aspects of radiation treatments including planning techniques and dose-fractionation schedules. Specific target delineation issues with regard to different skull base tumors, including pituitary adenomas, meningiomas, craniopharyngiomas, acoustic neuromas, chordomas and chondrosarcomas are presented. CONCLUSIONS This ESTRO ACROP guideline achieved detailed recommendations on target volume definition for skull base tumors, as well as comprehensive advice about imaging modalities and radiation techniques.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Munich, Germany; German Cancer Consortium (DKTK) Partner Site (DKTK), Munich, Germany
| | - Brigitta G Baumert
- Institute of Radiation Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Germany
| | - Alessandro Bozzao
- Dipartimento NESMOS, Università Sapienza Roma, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Michael Brada
- Department of Radiation Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - Laura Fariselli
- Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alba Fiorentino
- Radiation Oncology Department, General Regional Hospital F. Miulli, Acquaviva delle fonti, Italy
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Faculty, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - Frank L Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, The Netherlands
| | - Maximilian Niyazi
- German Cancer Consortium (DKTK) Partner Site (DKTK), Munich, Germany; Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Tufve Nyholm
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Ian Paddick
- Queen Square Radiosurgery Centre, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
19
|
Lim PS, Tran S, Kroeze SGC, Pica A, Hrbacek J, Bachtiary B, Walser M, Leiser D, Lomax AJ, Weber DC. Outcomes of adolescents and young adults treated for brain and skull base tumors with pencil beam scanning proton therapy. Pediatr Blood Cancer 2020; 67:e28664. [PMID: 32881313 DOI: 10.1002/pbc.28664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND The use of proton therapy (PT) in adolescents and young adults (AYAs) is becoming increasingly popular. This study aims to assess the outcomes and late toxicity consequences in AYAs (15-39 years) with brain/skull base tumors treated with pencil beam scanning proton therapy. METHODS One hundred seventy six AYAs treated curatively at the Paul Scherrer Institute (PSI) were identified. Median age was 30 years (range 15-39) and median prescribed dose was 70.0 Gy (relative biological effectiveness [RBE]) (range 50.4-76.0). The most common tumors treated were chordomas/chondrosarcomas (61.4%), followed by gliomas (15.3%), and meningiomas (14.2%). RESULTS After a median follow up of 66 months (range 12-236), 24 (13.6%) local only failures and one (0.6%) central nervous system (CNS) distant only failure were observed. The 6-year local control, distant progression-free survival, and overall survival were 83.2%, 97.4%, and 90.2%, respectively. The 6-year high-grade (≥grade [G] 3) PT-related late toxicity-free survival was 88.5%. Crude late toxicity rates were 26.2% G1, 37.8% G2, 12.2% G3, 0.6% G4, and 0.6% G5. The one G4 toxicity was a retinopathy and one G5 toxicity was a brainstem hemorrhage. The 6-year cumulative incidences for any late PT-related pituitary, ototoxicity, and neurotoxicity were 36.3%, 18.3%, and 25.6%; whilst high-grade (≥G3) ototoxicity and neurotoxicity were 3.4% and 2.9%, respectively. No secondary malignancies were observed. The rate of unemployment was 9.5% pre-PT, increasing to 23.8% post-PT. Sixty-two percent of survivors were working whilst 12.7% were in education post-PT. CONCLUSIONS PT is an effective treatment for brain/skull base tumors in the AYA population with a reasonable late toxicity profile. Despite good clinical outcomes, around one in four AYA survivors are unemployed after treatment.
Collapse
Affiliation(s)
- Pei S Lim
- Department of Radiation Oncology, University College London Hospitals, London, United Kingdom
| | - Sébastien Tran
- Department of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Stephanie G C Kroeze
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Jan Hrbacek
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Barbara Bachtiary
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Marc Walser
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH Zürich, Zürich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,University of Zürich, Zürich, Switzerland.,University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Wu A, Jin MC, Meola A, Wong HN, Chang SD. Efficacy and toxicity of particle radiotherapy in WHO grade II and grade III meningiomas: a systematic review. Neurosurg Focus 2020; 46:E12. [PMID: 31153145 DOI: 10.3171/2019.3.focus1967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVEAdjuvant radiotherapy has become a common addition to the management of high-grade meningiomas, as immediate treatment with radiation following resection has been associated with significantly improved outcomes. Recent investigations into particle therapy have expanded into the management of high-risk meningiomas. Here, the authors systematically review studies on the efficacy and utility of particle-based radiotherapy in the management of high-grade meningioma.METHODSA literature search was developed by first defining the population, intervention, comparison, outcomes, and study design (PICOS). A search strategy was designed for each of three electronic databases: PubMed, Embase, and Scopus. Data extraction was conducted in accordance with the PRISMA guidelines. Outcomes of interest included local disease control, overall survival, and toxicity, which were compared with historical data on photon-based therapies.RESULTSEleven retrospective studies including 240 patients with atypical (WHO grade II) and anaplastic (WHO grade III) meningioma undergoing particle radiation therapy were identified. Five of the 11 studies included in this systematic review focused specifically on WHO grade II and III meningiomas; the others also included WHO grade I meningioma. Across all of the studies, the median follow-up ranged from 6 to 145 months. Local control rates for high-grade meningiomas ranged from 46.7% to 86% by the last follow-up or at 5 years. Overall survival rates ranged from 0% to 100% with better prognoses for atypical than for malignant meningiomas. Radiation necrosis was the most common adverse effect of treatment, occurring in 3.9% of specified cases.CONCLUSIONSDespite the lack of randomized prospective trials, this review of existing retrospective studies suggests that particle therapy, whether an adjuvant or a stand-alone treatment, confers survival benefit with a relatively low risk for severe treatment-derived toxicity compared to standard photon-based therapy. However, additional controlled studies are needed.
Collapse
Affiliation(s)
- Adela Wu
- 1Department of Neurosurgery, Stanford Health Care, Palo Alto
| | - Michael C Jin
- 2Stanford University School of Medicine, Stanford; and
| | - Antonio Meola
- 1Department of Neurosurgery, Stanford Health Care, Palo Alto
| | - Hong-Nei Wong
- 3Lane Medical Library, Stanford Medicine, Palo Alto, California
| | - Steven D Chang
- 1Department of Neurosurgery, Stanford Health Care, Palo Alto
| |
Collapse
|
21
|
Schaub L, Harrabi SB, Debus J. Particle therapy in the future of precision therapy. Br J Radiol 2020; 93:20200183. [PMID: 32795176 DOI: 10.1259/bjr.20200183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first hospital-based treatment facilities for particle therapy started operation about thirty years ago. Since then, the clinical experience with protons and carbon ions has grown continuously and more than 200,000 patients have been treated to date. The promising clinical results led to a rapidly increasing number of treatment facilities and many new facilities are planned or under construction all over the world. An inverted depth-dose profile combined with potential radiobiological advantages make charged particles a precious tool for the treatment of tumours that are particularly radioresistant or located nearby sensitive structures. A rising number of trials have already confirmed the benefits of particle therapy in selected clinical situations and further improvements in beam delivery, image guidance and treatment planning are expected. This review summarises some physical and biological characteristics of accelerated charged particles and gives some examples of their clinical application. Furthermore, challenges and future perspectives of particle therapy will be discussed.
Collapse
Affiliation(s)
- Lukas Schaub
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Palmer JD, Gamez ME, Ranta K, Ruiz-Garcia H, Peterson JL, Blakaj DM, Prevedello D, Carrau R, Mahajan A, Chaichana KL, Trifiletti DM. Radiation therapy strategies for skull-base malignancies. J Neurooncol 2020; 150:445-462. [PMID: 32785868 DOI: 10.1007/s11060-020-03569-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The management of skull base malignancies continues to evolve with improvements in surgical technique, advances in radiation delivery and novel systemic agents. METHODS In this review, we aim to discuss in detail the management of common skull base pathologies which typically require multimodality therapy, focusing on the radiotherapeutic aspects of care. RESULTS Technological advances in the administration of radiation therapy have led to a wide variety of different treatment strategies for the treatment of skull base malignances, with outcomes summarized herein. CONCLUSION Radiation treatment plays a key and critical role in the management of patients with skull base tumors. Recent advancements continue to improve the risk/benefit ratio for radiotherapy in this setting.
Collapse
Affiliation(s)
- J D Palmer
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neurosurgery, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - M E Gamez
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - K Ranta
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - H Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - J L Peterson
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - D M Blakaj
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - D Prevedello
- Department of Neurosurgery, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Otolaryngology - Head and Neck Surgery at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - R Carrau
- Department of Neurosurgery, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Otolaryngology - Head and Neck Surgery at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - A Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - K L Chaichana
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - D M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA. .,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
23
|
Rosas S, Belosi FM, Bizzocchi N, Böhlen T, Zepter S, Morach P, Lomax AJ, Weber DC, Hrbacek J. Benchmarking a commercial proton therapy solution: The Paul Scherrer Institut experience. Br J Radiol 2020; 93:20190920. [PMID: 31944827 PMCID: PMC7066977 DOI: 10.1259/bjr.20190920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE For the past 20 years, Paul Scherrer Institut (PSI) has treated more than 1500 patients with deep-seated tumors using PSI-Plan, an in-house developed treatment planning system (TPS) used for proton beam scanning proton therapy, in combination with its home-built gantries. The goal of the present work is to benchmark the performance of a new TPS/Gantry system for proton therapy centers which have established already a baseline standard of care. METHODS AND MATERIALS A total of 31 cases (=52 plans) distributed around 7 anatomical sites and 12 indications were randomly selected and re-planned using Eclipse™. The resulting plans were compared with plans formerly optimized in PSI-Plan, in terms of target coverage, plan quality, organ-at-risk (OAR) sparing and number of delivered pencil beams. RESULTS Our results show an improvement on target coverage and homogeneity when using Eclipse™ while PSI-Plan showed superior plan conformity. As for OAR sparing, both TPS achieved the clinical constraints. The number of pencil beams required per plan was on average 3.4 times higher for PSI-Plan. CONCLUSION Both systems showed a good capacity to produce satisfactory plans, with Eclipse™ being able to achieve better target coverage and plan homogeneity without compromising OARs. ADVANCES IN KNOWLEDGE A benchmark between a clinically tested and validated system with a commercial solution is of interest for emerging proton therapy, equipped with commercial systems and no previous experience with proton beam scanning.
Collapse
Affiliation(s)
- Sara Rosas
- Zentrum für Protonentherapie, Paul Scherrer Institut, Villigen, Switzerland
| | - Francesca M Belosi
- Zentrum für Protonentherapie, Paul Scherrer Institut, Villigen, Switzerland
| | - Nicola Bizzocchi
- Zentrum für Protonentherapie, Paul Scherrer Institut, Villigen, Switzerland
| | - Till Böhlen
- Zentrum für Protonentherapie, Paul Scherrer Institut, Villigen, Switzerland
| | - Stefan Zepter
- Zentrum für Protonentherapie, Paul Scherrer Institut, Villigen, Switzerland
| | - Petra Morach
- Zentrum für Protonentherapie, Paul Scherrer Institut, Villigen, Switzerland
| | - Antony J Lomax
- Zentrum für Protonentherapie, Paul Scherrer Institut, Villigen, Switzerland
| | - Damien C Weber
- Zentrum für Protonentherapie, Paul Scherrer Institut, Villigen, Switzerland
| | - Jan Hrbacek
- Zentrum für Protonentherapie, Paul Scherrer Institut, Villigen, Switzerland
| |
Collapse
|
24
|
Seidensaal K, Harrabi SB, Uhl M, Debus J. Re-irradiation with protons or heavy ions with focus on head and neck, skull base and brain malignancies. Br J Radiol 2019; 93:20190516. [PMID: 31647306 DOI: 10.1259/bjr.20190516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Re-irradiation can offer a potentially curative solution in case of progression after initial therapy; however, a second course of radiotherapy can be associated with an increased risk of severe side-effects. Particle therapy with protons and especially carbon ions spares surrounding tissue better than most photon techniques, thus it is of high potential for re-irradiation. Irradiation of tumors of the brain, head and neck and skull base involves several delicate risk organs, e.g. optic system, brainstem, salivary gland or swallowing muscles. Adequate local control rates with tolerable side-effects have been described for several tumors of these locations as meningioma, adenoid cystic carcinoma, chordoma or chondrosarcoma and head and neck tumors. High life time doses nonetheless lead to a different scope of side-effects, e.g. an enhanced rate of carotid blow outs has been reported. This review summarizes the current data on particle irradiation of the aforementioned locations and malignancies.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Uhl
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site, Heidelberg, Germany
| |
Collapse
|
25
|
Müller C, De Prado Leal M, Dominietto MD, Umbricht CA, Safai S, Perrin RL, Egloff M, Bernhardt P, van der Meulen NP, Weber DC, Schibli R, Lomax AJ. Combination of Proton Therapy and Radionuclide Therapy in Mice: Preclinical Pilot Study at the Paul Scherrer Institute. Pharmaceutics 2019; 11:pharmaceutics11090450. [PMID: 31480730 PMCID: PMC6781294 DOI: 10.3390/pharmaceutics11090450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/26/2022] Open
Abstract
Proton therapy (PT) is a treatment with high dose conformality that delivers a highly-focused radiation dose to solid tumors. Targeted radionuclide therapy (TRT), on the other hand, is a systemic radiation therapy, which makes use of intravenously-applied radioconjugates. In this project, it was aimed to perform an initial dose-searching study for the combination of these treatment modalities in a preclinical setting. Therapy studies were performed with xenograft mouse models of folate receptor (FR)-positive KB and prostate-specific membrane antigen (PSMA)-positive PC-3 PIP tumors, respectively. PT and TRT using 177Lu-folate and 177Lu-PSMA-617, respectively, were applied either as single treatments or in combination. Monitoring of the mice over nine weeks revealed a similar tumor growth delay after PT and TRT, respectively, when equal tumor doses were delivered either by protons or by β¯-particles, respectively. Combining the methodologies to provide half-dose by either therapy approach resulted in equal (PC-3 PIP tumor model) or even slightly better therapy outcomes (KB tumor model). In separate experiments, preclinical positron emission tomography (PET) was performed to investigate tissue activation after proton irradiation of the tumor. The high-precision radiation delivery of PT was confirmed by the resulting PET images that accurately visualized the irradiated tumor tissue. In this study, the combination of PT and TRT resulted in an additive effect or a trend of synergistic effects, depending on the type of tumor xenograft. This study laid the foundation for future research regarding therapy options in the situation of metastasized solid tumors, where surgery or PT alone are not a solution but may profit from combination with systemic radiation therapy.
Collapse
Affiliation(s)
- Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland.
| | - Maria De Prado Leal
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Marco D Dominietto
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Christoph A Umbricht
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Rosalind L Perrin
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Martina Egloff
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Peter Bernhardt
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
- Department of Medical Physics and Medical Bioengeneering, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Radiation Oncology, University Hospital of Bern, 3010 Bern, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
26
|
A Systematic Review of Ion Radiotherapy in Maintaining Local Control Regarding Atypical and Anaplastic Meningiomas. World Neurosurg 2019; 132:282-291. [PMID: 31476452 DOI: 10.1016/j.wneu.2019.08.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Atypical and anaplastic meningiomas, unlike their benign counterparts, are highly aggressive, locally destructive, and likely to recur after treatment. These diseases are difficult to definitively treat with traditional radiotherapy without injuring adjacent brain parenchyma. The physical properties of ion radiotherapy allows for treatment plans that avoid damaging critical neural structures. The objectives of this systematic review were to evaluate the use and efficacy of ion radiotherapy in the treatment of atypical and anaplastic meningiomas. METHODS We performed a systematic review of the literature by querying the PubMed and Ovid databases to identify and examine literature addressing the efficacy of ion radiotherapy in maintaining long-term local tumor control for patients with atypical or anaplastic meningiomas. The outcome of interest was rate of local tumor control at 5 years after ion radiotherapy. RESULTS Across the included studies, proton therapy delivered a mean local control rate of 59.62% after 5 years. Carbon ion radiotherapy studies showed local control rates of 95% and 63% at 2 years for grade II and III meningiomas, respectively. In contrast, carbon ion radiotherapy studies that failed to differentiate between atypical and anaplastic meningiomas produced a local control rate of 33% at 2 years. CONCLUSIONS Proton and carbon ion radiotherapy maintain comparable rates of local control to conventional photon therapy and allow for more targeted treatment plans that may limit excess radiation damage. Although additional prospective trials are needed, ion therapy represents a burgeoning field in the treatment of atypical and anaplastic meningiomas.
Collapse
|
27
|
Rackwitz T, Debus J. Clinical applications of proton and carbon ion therapy. Semin Oncol 2019; 46:226-232. [PMID: 31451309 DOI: 10.1053/j.seminoncol.2019.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
Abstract
Treatment of cancer patients with charged particles like proton and carbon ions landmarks a new era in high-precision medicine. This review aims to summarize the physical and biological advantages of charged particle beams over conventional photon irradiation, presents some highlights in the treatment of selected tumor entities, and gives an update on previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Tilmann Rackwitz
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany.
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Weber DC, Lim PS, Tran S, Walser M, Bolsi A, Kliebsch U, Beer J, Bachtiary B, Lomax T, Pica A. Proton therapy for brain tumours in the area of evidence-based medicine. Br J Radiol 2019; 93:20190237. [PMID: 31067074 DOI: 10.1259/bjr.20190237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ADVANCES IN KNOWLEDGE This review details the indication of brain tumors for proton therapy and give a list of the open prospective trials for these challenging tumors.
Collapse
Affiliation(s)
- Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,University of Bern, Bern, Switzerland.,University of Zürich, Zürich, Switzerland
| | - Pei S Lim
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Sebastien Tran
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Marc Walser
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Ulrike Kliebsch
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Jürgen Beer
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Barbara Bachtiary
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Tony Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH, Zürich, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
29
|
Aljabab S, Tseng YD, Ermoian RP, Lo SS, Halasz LM. Commentary: The Promise of Proton Therapy for Central Nervous System Malignancies. Neurosurgery 2019; 84:E262-E263. [DOI: 10.1093/neuros/nyy459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 11/13/2022] Open
|
30
|
Proton therapy for treatment of intracranial benign tumors in adults: A systematic review. Cancer Treat Rev 2018; 72:56-64. [PMID: 30530009 DOI: 10.1016/j.ctrv.2018.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The depth-dose distribution of a proton beam, materialized by the Bragg peak makes it an attractive radiation modality as it reduces exposure of healthy tissues to radiations, compared with photon therapy Prominent indications, based on a long-standing experience are: intraocular melanomas, low-grade skull-base and spinal canal malignancies. However, many others potential indications are under investigations such as the benign morbid conditions that are compatible with an extended life-expectancy: low grade meningiomas, paragangliomas, pituitary adenomas, neurinomas craniopharyngioma or recurrent pleomorphic adenomas. MATERIALS Given the radiation-induced risk of secondary cancer and the potential neurocognitive and functional alteration with photonic radiotherapy, we systematically analyzed the existing clinical literature about the use of proton therapy as an irradiation modality for cervical or intracranial benign tumors. The aim of this review was to report clinical outcomes of adult patients with benign intracranial or cervical tumors treated with proton therapy and to discuss about potential advantages of proton therapy over intensity modulated radiotherapy or radiosurgery. RESULTS Twenty-four studies were included. There was no randomized studies. Most studies dealt with low grade meningiomas (n = 9). Studies concerning neurinoma (n = 4), pituitary adenoma (n = 5), paraganglioma (n = 5), or craniopharyngioma (n = 1) were fewer. Whatever the indication, long term local control was systematically higher than 90% and equivalent to series with conventional radiotherapy. CONCLUSION Proton-therapy for treatment of adult benign intracranial and cervical tumors is safe. Randomized or prospective cohorts with long term cognitive evaluations are needed to assess the real place of proton-therapy in the treatment of adults benign head and neck tumors.
Collapse
|
31
|
Weber DC, Ares C, Villa S, Peerdeman SM, Renard L, Baumert BG, Lucas A, Veninga T, Pica A, Jefferies S, Ricardi U, Miralbell R, Stelmes JJ, Liu Y, Collette L, Collette S. Adjuvant postoperative high-dose radiotherapy for atypical and malignant meningioma: A phase-II parallel non-randomized and observation study (EORTC 22042-26042). Radiother Oncol 2018; 128:260-265. [PMID: 29960684 DOI: 10.1016/j.radonc.2018.06.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE The therapeutic strategy for non-benign meningiomas is controversial. The objective of this study was to prospectively investigate the impact of high dose radiation therapy (RT) on the progression-free survival (PFS) rate at 3 years in WHO grade II and III meningioma patients. MATERIALS AND METHODS In this multi-cohorts non-randomized phase II and observational study, non-benign meningioma patients were treated according to their WHO grade and Simpson's grade. Patients with atypical meningioma (WHO grade II) and Simpson's grade 1-3 [Arm 1] entered the non-randomized phase II study designed to show a 3-year PFS > 70% (primary endpoint). All other patients entered the 3 observational cohorts: WHO grade II Simpson grade 4-5 [Arm 2] and Grade III Simpson grade 1-3 or 4-5 [Arm 3&4] in which few patients were expected. RESULTS Between 02/2008 and 06/2013, 78 patients were enrolled into the study. This report focuses on the 56 (median age, 54 years) eligible patients with WHO grade II Simpson's grade 1-3 meningioma who received RT (60 Gy). At a median follow up of 5.1 years, the estimated 3-year PFS is 88.7%, hence significantly greater than 70%. Eight (14.3%) treatment failures were observed. The 3-year overall survival was 98.2%. The rate of late signs and symptoms grade 3 or more was 14.3%. CONCLUSIONS These data show that 3-year PFS for WHO grade II meningioma patients undergoing a complete resection (Simpson I-III) is superior to 70% when treated with high-dose (60 Gy) RT.
Collapse
Affiliation(s)
- Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland; Radiation Oncology Department, University Hospital of Bern, Bern, Switzerland; Radiation Oncology Department, University Hospital of Zürich, Switzerland.
| | - Carmen Ares
- Radiation Oncology Department, Geneva University Hospital, Switzerland; Department of Radiation-Oncology, MAASTRO Clinic, & GROW School for Oncology, Maastricht University Medical Centre, The Netherlands
| | - Salvador Villa
- Department of Radiation Oncology, Catalan Institut of Oncology, Hospital Germans Trias, Universitat Autònoma de Barcelona, Spain
| | - Saskia M Peerdeman
- Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Laurette Renard
- Department of Radiation Oncology, University Hospital St Luc, Brussels, Belgium
| | - Brigitta G Baumert
- Department of Radiation-Oncology, MAASTRO Clinic, & GROW School for Oncology, Maastricht University Medical Centre, The Netherlands; Department of Radiation Oncology, Paracelsus Clinic Osnabrück and Univeristy of Münster, Germany
| | - Anna Lucas
- Department of Radiation Oncology, Institut Català d'Oncologia - L'Hospitalet, Barcelona, Spain
| | | | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland; Radiation Oncology Department, University Hospital of Bern, Bern, Switzerland
| | - Sarah Jefferies
- Oncology Department, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | - Raymond Miralbell
- Radiation Oncology Department, Geneva University Hospital, Switzerland
| | | | - Yan Liu
- EORTC Headquarters, Brussels, Belgium
| | | | | |
Collapse
|
32
|
El Shafie RA, Czech M, Kessel KA, Habermehl D, Weber D, Rieken S, Bougatf N, Jäkel O, Debus J, Combs SE. Clinical outcome after particle therapy for meningiomas of the skull base: toxicity and local control in patients treated with active rasterscanning. Radiat Oncol 2018; 13:54. [PMID: 29587795 PMCID: PMC5870393 DOI: 10.1186/s13014-018-1002-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Meningiomas of the skull base account for 25-30% of all meningiomas. Due to the complex structure of the cranial base and its close proximity to critical structures, surgery is often associated with substantial morbidity. Treatment options include observation, aggressive surgical intervention, stereotactic or conventional radiotherapy. In this analysis we evaluate the outcome of 110 patients with meningiomas of the skull base treated with particle therapy. It was performed within the framework of the "clinical research group heavy ion therapy" and supported by the German Research Council (DFG, KFO 214). METHODS Between May 2010 and November 2014, 110 Patients with skull base meningioma were treated with particle radiotherapy at the Heidelberg Ion Therapy Center (HIT). Primary localizations included the sphenoid wing (n = 42), petroclival region (n = 23), cavernous sinus (n = 4), sella (n = 10) and olfactory nerve (n = 4). Sixty meningiomas were benign (WHO °I); whereas 8 were high-risk (WHO °II (n = 7) and °III (n = 1)). In 42 cases histology was not examined, since no surgery was performed. Proton (n = 104) or carbon ion (n = 6) radiotherapy was applied at Heidelberg Ion Therapy Center (HIT) using raster-scanning technique for active beam delivery. Fifty one patients (46.4%) received radiotherapy due to tumor progression, 17 (15.5%) after surgical resection and 42 (38.2%) as primary treatment. RESULTS Median follow-up in this analysis was 46,8 months (95% CI 39,9-53,7; Q1-Q3 34,3-61,7). Particle radiotherapy could be performed safely without toxicity-related interruptions. No grade IV or V toxicities according to CTCAE v4.0 were observed. Particle RT offered excellent overall local control rates with 100% progression-free survival (PFS) after 36 months and 96.6% after 60 months. Median PFS was not reached due to the small number of events. Histology significantly impacted PFS with superior PFS after 5 years for low-risk tumors (96.6% vs. 75.0%, p = 0,02). Overall survival was 96.2% after 60 months and 92.0% after 72 months from therapy. Of six documented deaths, five were definitely not and the sixth probably not meningioma-related. CONCLUSION Particle radiotherapy is an excellent treatment option for patients with meningiomas of the skull base and can lead to long-term tumor control with minimal side effects. Other prospective studies with longer follow-up will be necessary to further confirm the role of particle radiotherapy in skull base meningioma.
Collapse
Affiliation(s)
- Rami A El Shafie
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Maja Czech
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Kerstin A Kessel
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaninger Straße 22, 81675, Munich, Germany.,Helmholtz Zentrum München, Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Ingolstädter Landstraße 1, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - Daniel Habermehl
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaninger Straße 22, 81675, Munich, Germany.,Helmholtz Zentrum München, Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Ingolstädter Landstraße 1, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - Dorothea Weber
- Institute for Medical Biometry and Informatics (IMBI), Heidelberg University Hospital, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion Therapy Center (HIT), Im Neuenheimer Feld 470, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Nina Bougatf
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion Therapy Center (HIT), Im Neuenheimer Feld 470, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Oliver Jäkel
- Deutsches Krebsforschungszentrum (dkfz), Abteilung Medizinphysik, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Heidelberg Ion Therapy Center (HIT), Im Neuenheimer Feld 470, 69120, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion Therapy Center (HIT), Im Neuenheimer Feld 470, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaninger Straße 22, 81675, Munich, Germany.,Helmholtz Zentrum München, Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Ingolstädter Landstraße 1, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|