1
|
Li D, Weng S, Zeng K, Xu H, Wang W, Shi J, Chen J, Chen C. Long non-coding RNAs and tyrosine kinase-mediated drug resistance in pancreatic cancer. Gene 2024; 895:148007. [PMID: 37981080 DOI: 10.1016/j.gene.2023.148007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors with a dismal survival rate, this is primarily due to inevitable chemoresistance. Dysfunctional tyrosine kinases (TKs) and long non-coding RNAs (lncRNAs) affect the drug resistance and prognosis of PC. Here, we summarize the mechanisms by which TKs or lncRNAs mediate drug resistance and other malignant phenotypes. We also discuss that lncRNAs play oncogenic or tumor suppressor roles and different mechanisms including lncRNA-proteins/microRNAs to mediate drug resistance. Furthermore, we highlight that lncRNAs serve as upstream regulators of TKs mediating drug resistance. Finally, we display the clinical significance of TKs (AXL, EGFR, IGF1R, and MET), clinical trials, and lncRNAs (LINC00460, PVT1, HIF1A-AS1). In the future, TKs and lncRNAs may become diagnostic and prognostic biomarkers or drug targets to overcome the drug resistance of PC.
Collapse
Affiliation(s)
- Dangran Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210029, China
| | - Shiting Weng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Kai Zeng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hanmiao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wenyueyang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chen Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Rahimian N, Sheida A, Rajabi M, Heidari MM, Tobeiha M, Esfahani PV, Ahmadi Asouri S, Hamblin MR, Mohamadzadeh O, Motamedzadeh A, Khaksary Mahabady M. Non-coding RNAs and exosomal non-coding RNAs in pituitary adenoma. Pathol Res Pract 2023; 248:154649. [PMID: 37453360 DOI: 10.1016/j.prp.2023.154649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Pituitary adenoma (PA) is the third most common primary intracranial tumor in terms of overall disease incidence. Although they are benign tumors, they can have a variety of clinical symptoms, but are mostly asymptomatic, which often leads to diagnosis at an advanced stage when surgical intervention is ineffective. Earlier identification of PA could reduce morbidity and allow better clinical management of the affected patients. Non-coding RNAs (ncRNAs) do not generally code for proteins, but can modulate biological processes at the post-transcriptional level through a variety of molecular mechanisms. An increased number of ncRNA expression profiles have been found in PAs. Therefore, understanding the expression patterns of different ncRNAs could be a promising method for developing non-invasive biomarkers. This review summarizes the expression patterns of dysregulated ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) involved in PA, which could one day serve as innovative biomarkers or therapeutic targets for the treatment of this neoplasia. We also discuss the potential molecular pathways by which the dysregulated ncRNAs could cause PA and affect its progression.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Rajabi
- Department of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
The Role of SMAD4 Inactivation in Epithelial-Mesenchymal Plasticity of Pancreatic Ductal Adenocarcinoma: The Missing Link? Cancers (Basel) 2022; 14:cancers14040973. [PMID: 35205719 PMCID: PMC8870198 DOI: 10.3390/cancers14040973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is currently one of the deadliest cancers. Despite the progress that has been made in the research of patient care and the understanding of pancreatic cancer, the survival rate remains mediocre. SMAD4, a tumor-suppressor gene, is specifically inactivated in 50–55% of pancreatic cancers. The role of SMAD4 protein loss in PDAC remains controversial, but seems to be associated with worse overall survival and metastasis. Here, we review the function of SMAD4 inactivation in the context of a specific biological process called epithelial–mesenchymal transition, as it has been increasingly associated with tumor formation, metastasis and resistance to therapy. By improving our understanding of these molecular mechanisms, we hope to find new targets for therapy and improve the care of patients with PDAC. Abstract Pancreatic ductal adenocarcinoma (PDAC) presents a five-year survival rate of 10% and its incidence increases over the years. It is, therefore, essential to improve our understanding of the molecular mechanisms that promote metastasis and chemoresistance in PDAC, which are the main causes of death in these patients. SMAD4 is inactivated in 50% of PDACs and its loss has been associated with worse overall survival and metastasis, although some controversy still exists. SMAD4 is the central signal transducer of the transforming growth factor-beta (TGF-beta) pathway, which is notably known to play a role in epithelial–mesenchymal transition (EMT). EMT is a biological process where epithelial cells lose their characteristics to acquire a spindle-cell phenotype and increased motility. EMT has been increasingly studied due to its potential implication in metastasis and therapy resistance. Recently, it has been suggested that cells undergo EMT transition through intermediary states, which is referred to as epithelial–mesenchymal plasticity (EMP). The intermediary states are characterized by enhanced aggressiveness and more efficient metastasis. Therefore, this review aims to summarize and analyze the current knowledge on SMAD4 loss in patients with PDAC and to investigate its potential role in EMP in order to better understand its function in PDAC carcinogenesis.
Collapse
|
4
|
Gits HC, Tang AH, Harmsen WS, Bamlet WR, Graham RP, Petersen GM, Smyrk TC, Mahipal A, Kowalchuk RO, Ashman JB, Rule WG, Owen D, Neben Wittich MA, McWilliams RR, Halfdanarson T, Ma WW, Sio TT, Cleary SP, Truty MJ, Haddock MG, Hallemeier CL, Merrell KW. Intact SMAD-4 is a predictor of increased locoregional recurrence in upfront resected pancreas cancer receiving adjuvant therapy. J Gastrointest Oncol 2021; 12:2275-2286. [PMID: 34790392 PMCID: PMC8576222 DOI: 10.21037/jgo-21-55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Previous reports suggest that intact SMAD4 expression is associated with a locally aggressive pancreas cancer phenotype. The objectives of this work were to determine the frequency of intact SMAD4 and its association with patterns of recurrence in patients with upfront resected pancreas cancer receiving adjuvant therapy. METHODS A tissue microarray was constructed using resected specimens from patients who underwent upfront surgery and adjuvant gemcitabine with no neoadjuvant treatment for pancreas cancer. SMAD4 expression was determined by immunohistochemical staining. Associations of SMAD4 expression and clinicopathologic parameters with clinical outcomes were evaluated using Cox proportional hazard models. RESULTS One hundred twenty-seven patients were included with a median follow up of 5.7 years. Most patients had stage ≥ pT3 tumors (75%) and pN1 (68%). All patients received adjuvant gemcitabine, and 79% of patients received adjuvant chemoradiotherapy. Ten (8%) patients had intact SMAD4 expression. Grade was the only clinicopathologic parameter statistically associated with SMAD4 expression (P=0.05). Median overall survival was 2.1 years. On univariate analysis, SMAD4 expression was associated with increased locoregional recurrence (hazard ratio 7.0, P<0.01, 95% confidence interval: 2.8-18.0) but not distant recurrence (P=0.06) or overall survival (P=0.73). On multivariable analysis, SMAD4 expression (hazard ratio 9.6, P<0.01, 95% confidence interval: 3.7-24.8) and adjuvant chemoradiotherapy (hazard ratio 0.3, P=0.01, 95% confidence interval: 0.1-0.8) were associated with higher and lower locoregional recurrence, respectively. CONCLUSIONS In patients with upfront resected pancreas cancer, SMAD4 expression was associated with an increased risk of locoregional recurrence. Prospective evaluation of the frequency of SMAD4 expression and validation of its predictive utility is warranted.
Collapse
Affiliation(s)
- Hunter C. Gits
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Amy H. Tang
- Leroy T. Canoles Jr. Cancer Research Center, Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - William S. Harmsen
- Department of Biostatistics and Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - William R. Bamlet
- Department of Biostatistics and Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Rondell P. Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Gloria M. Petersen
- Department of Epidemiology and Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Thomas C. Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amit Mahipal
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - William G. Rule
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Wen Wee Ma
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Sean P. Cleary
- Department of Hepatobiliary & Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mark J. Truty
- Department of Hepatobiliary & Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
5
|
Karimpour M, Ravanbakhsh R, Maydanchi M, Rajabi A, Azizi F, Saber A. Cancer driver gene and non-coding RNA alterations as biomarkers of brain metastasis in lung cancer: A review of the literature. Biomed Pharmacother 2021; 143:112190. [PMID: 34560543 DOI: 10.1016/j.biopha.2021.112190] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Brain metastasis (BM) is the most common event in patients with lung cancer. Despite multimodal treatments and advances in systemic therapies, development of BM remains one of the main factors associated with poor prognosis and mortality in patients with lung cancer. Therefore, better understanding of mechanisms involved in lung cancer brain metastasis (LCBM) is of great importance to suppress cancer cells and to improve the overall survival of patients. Several cancer-related genes such as EGFR and KRAS have been proposed as potential predictors of LCBM. In addition, there is ample evidence supporting crucial roles of non-coding RNAs (ncRNAs) in mediating LCBM. In this review, we provide comprehensive information on risk assessment, predictive, and prognostic panels for early detection of BM in patients with lung cancer. Moreover, we present an overview of LCBM molecular mechanisms, cancer driver genes, and ncRNAs which may predict the risk of BM in lung cancer patients. Recent clinical studies have focused on determining mechanisms involved in LCBM and their association with diagnosis, prognosis, and treatment outcomes. These studies have shown that alterations in EGFR, KRAS, BRAF, and ALK, as the most frequent coding gene alterations, and dysregulation of ncRNAs such as miR-423, miR-330-3p, miR-145, piR-651, and MALAT1 can be considered as potential biomarkers of LCBM.
Collapse
Affiliation(s)
- Mina Karimpour
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Melika Maydanchi
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Faezeh Azizi
- Genetics Office, Non-Communicable Disease Control Department, Public Health Department, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Saber
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran.
| |
Collapse
|
6
|
Geleta B, Park KC, Jansson PJ, Sahni S, Maleki S, Xu Z, Murakami T, Pajic M, Apte MV, Richardson DR, Kovacevic Z. Breaking the cycle: Targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma. FASEB J 2021; 35:e21347. [PMID: 33484481 DOI: 10.1096/fj.202002279r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PaCa) is characterized by dense stroma that hinders treatment efficacy, with pancreatic stellate cells (PSCs) being a major contributor to this stromal barrier and PaCa progression. Activated PSCs release hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-1) that induce PaCa proliferation, metastasis and resistance to chemotherapy. We demonstrate for the first time that the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), is a potent inhibitor of the PaCa-PSC cross-talk, leading to inhibition of HGF and IGF-1 signaling. NDRG1 also potently reduced the key driver of PaCa metastasis, namely GLI1, leading to reduced PSC-mediated cell migration. The novel clinically trialed anticancer agent, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which upregulates NDRG1, potently de-sensitized PaCa cells to ligands secreted by activated PSCs. DpC and NDRG1 also inhibited the PaCa-mediated activation of PSCs via inhibition of sonic hedgehog (SHH) signaling. In vivo, DpC markedly reduced PaCa tumor growth and metastasis more avidly than the standard chemotherapy for this disease, gemcitabine. Uniquely, DpC was selectively cytotoxic against PaCa cells, while "re-programming" PSCs to an inactive state, decreasing collagen deposition and desmoplasia. Thus, targeting NDRG1 can effectively break the oncogenic cycle of PaCa-PSC bi-directional cross-talk to overcome PaCa desmoplasia and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Bekesho Geleta
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Cancer Drug Resistance Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sanaz Maleki
- Histopathology Laboratory, Department of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Takashi Murakami
- Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Zaklina Kovacevic
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Cabozantinib Inhibits Photodynamic Therapy-Induced Auto- and Paracrine MET Signaling in Heterotypic Pancreatic Microtumors. Cancers (Basel) 2020; 12:cancers12061401. [PMID: 32485915 PMCID: PMC7352584 DOI: 10.3390/cancers12061401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
Extensive desmoplasia is a hallmark of pancreatic ductal adenocarcinoma (PDAC), which frequently associates with treatment resistance. Recent findings indicate that a combination of photodynamic therapy and the multi-kinase inhibitor cabozantinib achieved local tumor control and a significant decrease in tumor metastases in preclinical PDAC models, but the underlying therapeutic mechanisms remain unclear. This study elucidates the molecular basis of this multi-agent regimen, focusing on the role of MET signaling. Since MET activation stems from its interaction with hepatocyte growth factor (HGF), which is typically secreted by fibroblasts, we developed heterotypic PDAC microtumor models that recapitulate these interactions. In these models, MET signaling can be constitutively activated through paracrine and autocrine mechanisms. Photodynamic therapy caused significant elevations in HGF secretion by fibroblasts, suggesting it plays a complex role in the modulation of the paracrine HGF–MET signaling cascade in desmoplastic tumors. Blocking MET phosphorylation with adjuvant cabozantinib caused a significant improvement in photodynamic therapy efficacy, most notably by elevating spheroid necrosis at low radiant exposures. These findings highlight that adjuvant photodynamic therapy can augment chemotherapy efficacies, and potentially achieve improved management of desmoplastic PDAC in a more tolerable manner.
Collapse
|
8
|
Tian G, Li G, Liu P, Wang Z, Li N. Glycolysis-Based Genes Associated with the Clinical Outcome of Pancreatic Ductal Adenocarcinoma Identified by The Cancer Genome Atlas Data Analysis. DNA Cell Biol 2020; 39:417-427. [PMID: 31968179 DOI: 10.1089/dna.2019.5089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadly tumors in digestive tract tumors. Although there has been advancement in PDAC treatment, its prognosis still remains unsatisfactory, mainly because of dismal diagnosis. This article aims to develop new prognostic factors related to energy metabolism in PDAC and to use these genes for novel risk stratification. Hundred fifty messenger RNA (mRNA) expression profiles and clinicopathological data of PDAC were downloaded from The Cancer Genome Atlas dataset. The glycolysis pathway was the significant pathway based on the gene set enrichment analysis. We chose the glycolysis pathway-related 176 genes for further analysis. Multivariate Cox regression analysis and forward stepwise Cox regression model established a novel three-gene glycolytic signature (including MET, B3GNT3, and SPAG4) for PDAC patients' prognosis prediction. All 150 patients were classified into two groups by the median risk score. High-risk group had a worse outcome compared to the low-risk group. The risk score was also significantly correlated with age and radiotherapy. A nomogram, including the glycolytic gene signature, has shown some clinical net benefit for overall survival prediction. We also validated the validity and reliability in the Puleo dataset. This novel gene expression signature may be involved in the pathophysiology and used for risk stratification and prognosis prediction in PDAC.
Collapse
Affiliation(s)
- Guangwei Tian
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peipei Liu
- Department of Histology and Embryology, Shenyang Medical College, Shenyang, China
| | - Zihui Wang
- Department of Neuroscience, Cleveland Clinic, Cleveland, Ohio
| | - Nan Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Wang HY, Gao HQ. Reduction of miR-212 contributes to pituitary adenoma cell invasion via targeting c-Met. Kaohsiung J Med Sci 2019; 36:81-88. [PMID: 31643121 DOI: 10.1002/kjm2.12137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/15/2019] [Indexed: 11/07/2022] Open
Abstract
The current study aimed to evaluate the expression and role of miR-212 in the progression of pituitary adenoma (PA), thereby providing a theoretical basis and potential therapy methods for PA patients. Our data showed that miR-212 levels were significantly reduced in PA tissues than normal pituitary tissues. However, no significant difference was identified in the serum of PA patients and healthy control. In addition, the expression of miR-212 in invasive PA was significantly lower than that in noninvasive and normal pituitary tissues. Moreover, the level of miR-212 was decreased with the increase of tumor invasion. Meanwhile, the expression of miR-212 in giant adenomas was significantly lower than that in macroadenomas and microadenomas. Furthermore, inhibition of miR-212 significantly enhanced the proliferation and invasive capacity of GH3 cells. Dual luciferase reporter assay and western blot analysis confirmed that c-Met was a target gene of miR-212. More importantly, upregulation of c-Met significantly prompted PA cell proliferation mainly as a result of the enhanced level of phosphorylation of AKT. This effect could be abolished when c-Met was silenced in GH3 cells. In summary, reduced miR-212 expression in PA contributed to abnormal cancer cell proliferation and invasion mainly by targeting c-Met.
Collapse
Affiliation(s)
- Hong-Yan Wang
- Department of Neurology, Zibo Central Hospital, Zibo, Shandong Province, China
| | - Huai-Qing Gao
- Department of Neurology, Zibo Central Hospital, Zibo, Shandong Province, China
| |
Collapse
|
10
|
Abstract
The aim of this study was to evaluate outcomes of patients with resectable pancreatic adenocarcinoma (PDAC) who underwent neoadjuvant chemotherapy. The MEDLINE and PubMed databases were searched to identify relevant original articles investigating neoadjuvant therapy in resectable PDAC. Qualitative analyses were performed to investigate patient selection, disease stage, impact on perioperative outcomes, and cost-effectiveness. Forty-three studies met inclusion criteria for this review. Neoadjuvant chemotherapy for upfront resectable PDAC is cost-effective, safe, may result in lower stage disease and has potential survival advantages. With proper patient selection, neoadjuvant chemotherapy is an appropriate approach for upfront resectable PDAC. Nevertheless, the risk for disease progression and losing a curative surgical window highlights the need for appropriate patient identification, further discovery of superior biomarkers or molecular profiles representative of positive treatment response, and additional prospective comparative study.
Collapse
|
11
|
Zhou C, Zhao Y, Yin Y, Hu Z, Atyah M, Chen W, Meng Z, Mao H, Zhou Q, Tang W, Wang P, Li Z, Weng J, Bruns C, Popp M, Popp F, Dong Q, Ren N. A robust 6-mRNA signature for prognosis prediction of pancreatic ductal adenocarcinoma. Int J Biol Sci 2019; 15:2282-2295. [PMID: 31595147 PMCID: PMC6775308 DOI: 10.7150/ijbs.32899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/03/2019] [Indexed: 01/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. PDAC prognostic and diagnostic biomarkers are still being explored. The aim of this study is to establish a robust molecular signature that can improve the ability to predict PDAC prognosis. 155 overlapping differentially expressed genes between tumor and non-tumor tissues from three Gene Expression Omnibus (GEO) datasets were explored. A least absolute shrinkage and selection operator method (LASSO) Cox regression model was employed for selecting prognostic genes. We developed a 6-mRNA signature that can distinguish high PDAC risk patients from low risk patients with significant differences in overall survival (OS). We further validated this signature prognostic value in three independent cohorts (GEO batch, P < 0.0001; ICGC, P = 0.0036; Fudan, P = 0.029). Furthermore, we found that our signature remained significant in patients with different histologic grade, TNM stage, locations of tumor entity, age and gender. Multivariate cox regression analysis showed that 6-mRNA signature can be an independent prognostic marker in each of the cohorts. Receiver operating characteristic curve (ROC) analysis also showed that our signature possessed a better predictive role of PDAC prognosis. Moreover, the gene set enrichment analysis (GSEA) analysis showed that several tumorigenesis and metastasis related pathways were indeed associated with higher scores of risk. In conclusion, identifying the 6-mRNA signature could provide a valuable classification method to evaluate clinical prognosis and facilitate personalized treatment for PDAC patients. New therapeutic targets may be developed upon the functional analysis of the classifier genes and their related pathways.
Collapse
Affiliation(s)
- Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.,Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Yirui Yin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhiqiu Hu
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wanyong Chen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhefeng Meng
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Huarong Mao
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Weiguo Tang
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Pengcheng Wang
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhanming Li
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jialei Weng
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Marie Popp
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Felix Popp
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Qiongzhu Dong
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Lu J, Li X, Tu K, Guan Y, Fung KP, Liu F. Verticillin A suppresses HGF-induced migration and invasion via repression of the c-Met/FAK/Src pathway in human gastric and cervical cancer cells. Onco Targets Ther 2019; 12:5823-5833. [PMID: 31440058 PMCID: PMC6668566 DOI: 10.2147/ott.s208683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023] Open
Abstract
Background and purpose: Verticillin A is a fungal epipolythiodioxopiperazine (ETP) metabolite that was isolated from Amanita flavorubescens Alk infected by Verticillium sp. It was previously proven to possess potent anti-tumor cell growth activity, and we have recently determined that verticillin A is a selective inhibitor of H3K9me3-specific histone methyltransferase. The objective of this study was to find out whether verticillin A is an effective agent for suppression of gastric and cervical tumor progression. Materials and methods: Wound healing and transwell assays was performed to evaluate the effect of verticillin A on hepatocyte growth factor (HGF)-induced AGS and HeLa cells migration and invasion in vitro. Western blot was used to detect signaling proteins verticillin A affected. Results: We determined that verticillin A effectively suppressed hepatocyte growth factor (HGF)-induced AGS and HeLa cells migration and invasion in vitro. At the molecular level, we demonstrated that verticillin A inhibited HGF-induced c-Met phosphorylation and repressed the expression of total c-Met protein in AGS and HeLa cells, resulting from reduced expression of fatty acid synthase. In addition, verticillin A could suppress c-Met downstream FAK/Src signaling pathways by impairing c-Met phosphorylation induced by HGF. Conclusion: Our study demonstrated verticillin A inhibits the migration ability of human gastric cancer (AGS) cells and cervical cancer (HeLa) cells by targeting c-Met and its downstream FAK/Src signaling pathways, and suggested that verticillin A acts as a novel HGF/c-Met inhibitor by reducing expression of this receptor.
Collapse
Affiliation(s)
- Jingxin Lu
- Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou310058, People’s Republic of China
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xia Li
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou 310022, People’s Republic of China
| | - Kai Tu
- Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou310058, People’s Republic of China
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yuelin Guan
- Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou310058, People’s Republic of China
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, People’s Republic of China
| | - Kwok-Pui Fung
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, People’s Republic of China
- School of Biomedical Sciences (SBS), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People’s Republic of China
| | - Feiyan Liu
- Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou310058, People’s Republic of China
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
13
|
Qiu J, Zeng F, Fang Y, Li J, Xiao S. Increased miR‐323a induces bladder cancer cell apoptosis by suppressing c‐Met. Kaohsiung J Med Sci 2019; 35:542-549. [PMID: 31180621 DOI: 10.1002/kjm2.12091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jun Qiu
- Department of OncologyHunan Province People's Hospital, the First Affiliated Hospital of Hunan Normal University Changsha Hunan People's Republic of China
| | - Fu‐Ren Zeng
- Department of OncologyHunan Province People's Hospital, the First Affiliated Hospital of Hunan Normal University Changsha Hunan People's Republic of China
| | - Yi Fang
- Department of AnesthesiologyChangsha Central Hospital Changsha Hunan People's Republic of China
| | - Jian Li
- Department of Radiotherapythe Second Affiliated Hospital of Guangxi Medical University Nanning People's Republic of China
| | - Sheng‐Ying Xiao
- Department of OncologyHunan Province People's Hospital, the First Affiliated Hospital of Hunan Normal University Changsha Hunan People's Republic of China
| |
Collapse
|