1
|
Santoso AP, Vinogradskiy Y, Robin TP, Goodman KA, Schefter TE, Miften M, Jones BL. Clinical and Dosimetric Impact of 2D kV Motion Monitoring and Intervention in Liver Stereotactic Body Radiation Therapy. Adv Radiat Oncol 2024; 9:101409. [PMID: 38298328 PMCID: PMC10828584 DOI: 10.1016/j.adro.2023.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024] Open
Abstract
Purpose Positional errors resulting from motion are a principal challenge across all disease sites in radiation therapy. This is particularly pertinent when treating lesions in the liver with stereotactic body radiation therapy (SBRT). To achieve dose escalation and margin reduction for liver SBRT, kV real-time imaging interventions may serve as a potential solution. In this study, we report results of a retrospective cohort of liver patients treated using real-time 2D kV-image guidance SBRT with emphasis on the impact of (1) clinical workflow, (2) treatment accuracy, and (3) tumor dose. Methods and Materials Data from 33 patients treated with 41 courses of liver SBRT were analyzed. During treatment, planar kV images orthogonal to the treatment beam were acquired to determine treatment interventions, namely treatment pauses (ie, adequacy of gating thresholds) or treatment shifts. Patients were shifted if internal markers were >3 mm, corresponding to the PTV margin used, from the expected reference condition. The frequency, duration, and nature of treatment interventions (ie, pause vs shift) were recorded, and the dosimetric impact associated with treatment shifts was estimated using a machine learning dosimetric model. Results Of all fractions delivered, 39% required intervention, which took on average 1.9 ± 1.6 minutes and occurred more frequently in treatments lasting longer than 7 minutes. The median realignment shift was 5.7 mm in size, and the effect of these shifts on minimum tumor dose in simulated clinical scenarios ranged from 0% to 50% of prescription dose per fraction. Conclusion Real-time kV-based imaging interventions for liver SBRT minimally affect clinical workflow and dosimetrically benefit patients. This potential solution for addressing positional errors from motion addresses concerns about target accuracy and may enable safe dose escalation and margin reduction in the context of liver SBRT.
Collapse
Affiliation(s)
- Andrew P. Santoso
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tyler P. Robin
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Karyn A. Goodman
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tracey E. Schefter
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Bernard L. Jones
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
2
|
Katano A, Minamitani M, Ohira S, Yamashita H. Recent Advances and Challenges in Stereotactic Body Radiotherapy. Technol Cancer Res Treat 2024; 23:15330338241229363. [PMID: 38321892 PMCID: PMC10851756 DOI: 10.1177/15330338241229363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Affiliation(s)
- Atsuto Katano
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Masanari Minamitani
- Department of Comprehensive Radiation Oncology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Ohira
- Department of Comprehensive Radiation Oncology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideomi Yamashita
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Young T, Lee M, Johnston M, Nguyen T, Ko R, Arumugam S. Assessment of interfraction dose variation in pancreas SBRT using daily simulation MR images. Phys Eng Sci Med 2023; 46:1619-1627. [PMID: 37747645 DOI: 10.1007/s13246-023-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Pancreatic Cancer is associated with poor treatment outcomes compared to other cancers. High local control rates have been achieved by using hypofractionated stereotactic body radiotherapy (SBRT) to treat pancreatic cancer. Challenges in delivering SBRT include close proximity of several organs at risk (OARs) and target volume inter and intra fraction positional variations. Magnetic resonance image (MRI) guided radiotherapy has shown potential for online adaptive radiotherapy for pancreatic cancer, with superior soft tissue contrast compared to CT. The aim of this study was to investigate the variability of target and OAR volumes for different treatment approaches for pancreatic cancer, and to assess the suitability of utilizing a treatment-day MRI for treatment planning purposes. Ten healthy volunteers were scanned on a Siemens Skyra 3 T MRI scanner over two sessions (approximately 3 h apart), per day over 5 days to simulate an SBRT daily simulation scan for treatment planning. A pretreatment scan was also done to simulate patient setup and treatment. A 4D MRI scan was taken at each session for internal target volume (ITV) generation and assessment. For each volunteer a treatment plan was generated in the Raystation treatment planning system (TPS) following departmental protocols on the day one, first session dataset (D1S1), with bulk density overrides applied to enable dose calculation. This treatment plan was propagated through other imaging sessions, and the dose calculated. An additional treatment plan was generated on each first session of each day (S1) to simulate a daily replan process, with this plan propagated to the second session of the day. These accumulated mock treatment doses were assessed against the original treatment plan through DVH comparison of the PTV and OAR volumes. The generated ITV showed large variations when compared to both the first session ITV and daily ITV, with an average magnitude of 22.44% ± 13.28% and 25.83% ± 37.48% respectively. The PTV D95 was reduced by approximately 23.3% for both plan comparisons considered. Surrounding OARs had large variations in dose, with the small bowel V30 increasing by 128.87% when compared to the D1S1 plan, and 43.11% when compared to each daily S1 plan. Daily online adaptive radiotherapy is required for accurate dose delivery for pancreas cancer in the absence of additional motion management and tumour tracking techniques.
Collapse
Affiliation(s)
- Tony Young
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.
- Ingham Institute, Sydney, Australia.
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia.
| | - Mark Lee
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | | | - Theresa Nguyen
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Rebecca Ko
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Sankar Arumugam
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
- Ingham Institute, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Arumugam S, Young T, Johnston M, Pavey D, Lee M. The delivered dose assessment in pancreas SBRT with the target position determined using an in-house position monitoring system. Front Oncol 2022; 12:1009916. [PMID: 36518308 PMCID: PMC9743991 DOI: 10.3389/fonc.2022.1009916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 08/01/2023] Open
Abstract
PURPOSE This study assessed the delivered dose accuracy in pancreas SBRT by incorporating the real-time target position determined using an in-house position monitoring system. METHODS AND MATERIALS An online image-based position monitoring system, SeedTracker, was developed to monitor radiopaque marker positions using monoscopic x-ray images, available from the Elekta XVI imaging system. This system was applied to patients receiving SBRT for pancreatic cancer on the MASTERPLAN Pilot trial (ACTRN 12617001642370). All patients were implanted pre-treatment with at least three peri-tumoral radiopaque markers for target localisation. During treatment delivery, marker positions were compared to expected positions delineated from the planning CT. The position tolerance of ±3mm from the expected position of the markers was set to trigger a gating event (GE) during treatment. The dosimetric impact of position deviations and actual dose delivered with position corrections was assessed by convolving the plan control point dose matrices with temporal target positions determined during treatment. RESULTS Eight patients were treated within this study. At least one GE was observed in 38% of the treatment fractions and more than one GE was observed in 10% of the fractions. The position deviations resulted in the mean(range) difference of -0.1(-1.1 - 0.4)Gy in minimum dose to tumour and 1.9(-0.1- 4.6)Gy increase to Dmax to duodenum compared to planned dose. In actual treatment delivery with the patient realignment, the mean difference of tumour min dose and duodenal Dmax was reduced to 0.1(-1.0 - 1.1)Gy and 1.1 (-0.7 - 3.3)Gy respectively compared to the planned dose. CONCLUSIONS The in-house real-time position monitoring system improved the treatment accuracy of pancreatic SBRT in a general-purpose linac and enabled assessment of delivered dose by incorporating the temporal target position during delivery. The intrafraction motion impacts the dose to tumour even if target position is maintained within a 3mm position tolerance.
Collapse
Affiliation(s)
- Sankar Arumugam
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tony Young
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Meredith Johnston
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Darren Pavey
- Department of Radiology, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
| | - Mark Lee
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| |
Collapse
|
5
|
Grimbergen G, Eijkelenkamp H, Heerkens HD, Raaymakers BW, Intven MPW, Meijer GJ. Dosimetric impact of intrafraction motion under abdominal compression during MR-guided SBRT for (Peri-) pancreatic tumors. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8ddd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Intrafraction motion is a major concern for the safety and effectiveness of high dose stereotactic body radiotherapy (SBRT) in the upper abdomen. In this study, the impact of the intrafraction motion on the delivered dose was assessed in a patient group that underwent MR-guided radiotherapy for upper abdominal malignancies with an abdominal corset. Approach. Fast online 2D cine MRI was used to extract tumor motion during beam-on time. These tumor motion profiles were combined with linac log files to reconstruct the delivered dose in 89 fractions of MR-guided SBRT in twenty patients. Aside the measured tumor motion, motion profiles were also simulated for a wide range of respiratory amplitudes and drifts, and their subsequent dosimetric impact was calculated in every fraction. Main results. The average (SD) D
99% of the gross tumor volume (GTV), relative to the planned D
99%, was 0.98 (0.03). The average (SD) relative D
0.5cc
of the duodenum, small bowel and stomach was 0.99 (0.03), 1.00 (0.03), and 0.97 (0.05), respectively. No correlation of respiratory amplitude with dosimetric impact was observed. Fractions with larger baseline drifts generally led to a larger uncertainty of dosimetric impact on the GTV and organs at risk (OAR). The simulations yielded that the delivered dose is highly dependent on the direction of on baseline drift. Especially in anatomies where the OARs are closely abutting the GTV, even modest LR or AP drifts can lead to substantial deviations from the planned dose. Significance. The vast majority of the fractions was only modestly impacted by intrafraction motion, increasing our confidence that MR-guided SBRT with abdominal compression can be safely executed for patients with abdominal tumors, without the use of gating or tracking strategies.
Collapse
|
6
|
Evolution of Radiation Therapy in Pancreas Cancer Management toward MRI-Guided Adaptive Radiation Therapy. J Clin Med 2022; 11:jcm11185380. [PMID: 36143027 PMCID: PMC9500969 DOI: 10.3390/jcm11185380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreas cancer has a poor prognosis despite aggressive treatment and is the fourth leading cause of cancer death in the United States. At diagnosis, most patients have either metastatic or locally advanced disease. In this article, we review the evolution of treatments in locally advanced pancreas cancer (LAPC) and discuss the various radiation therapy fractionation schemes. Furthermore, we examine the data supporting dose escalation and the delivery of ablative biologically effective doses in the setting of LAPC. Finally, we review the role of MRI-guided radiation therapy in escalating dose while sparing organs at risk in the era of stereotactic magnetic resonance-guided adaptive radiation therapy.
Collapse
|
7
|
Zeng C, Lu W, Reyngold M, Cuaron JJ, Li X, Cerviño L, Li T. Intrafractional accuracy and efficiency of a surface imaging system for deep inspiration breath hold during ablative gastrointestinal cancer treatment. J Appl Clin Med Phys 2022; 23:e13740. [PMID: 35906884 PMCID: PMC9680575 DOI: 10.1002/acm2.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/18/2022] [Accepted: 07/15/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Beam gating with deep inspiration breath hold (DIBH) usually depends on some external surrogate to infer internal target movement, and the exact internal movement is unknown. In this study, we tracked internal targets and characterized residual motion during DIBH treatment, guided by a surface imaging system, for gastrointestinal cancer. We also report statistics on treatment time. METHODS AND MATERIALS We included 14 gastrointestinal cancer patients treated with surface imaging-guided DIBH volumetrically modulated arc therapy, each with at least one radiopaque marker implanted near or within the target. They were treated in 25, 15, or 10 fractions. Thirteen patients received treatment for pancreatic cancer, and one underwent separate treatments for two liver metastases. The surface imaging system monitored a three-dimensional surface with ± 3 mm translation and ± 3° rotation threshold. During delivery, a kilovolt image was automatically taken every 20° or 40° gantry rotation, and the internal marker was identified from the image. The displacement and residual motion of the markers were calculated. To analyze the treatment efficiency, the treatment time of each fraction was obtained from the imaging and treatment timestamps in the record and verify system. RESULTS Although the external surface was monitored and limited to ± 3 mm and ± 3°, significant residual internal target movement was observed in some patients. The range of residual motion was 3-21 mm. The average displacement for this cohort was 0-3 mm. In 19% of the analyzed images, the magnitude of the instantaneous displacement was > 5 mm. The mean treatment time was 17 min with a standard deviation of 4 min. CONCLUSIONS Precaution is needed when applying surface image guidance for gastrointestinal cancer treatment. Using it as a solo DIBH technique is discouraged when the correlation between internal anatomy and patient surface is limited. Real-time radiographic verification is critical for safe treatments.
Collapse
Affiliation(s)
- Chuan Zeng
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Wei Lu
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Marsha Reyngold
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - John J. Cuaron
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiang Li
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Laura Cerviño
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Tianfang Li
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
8
|
Willmann J, Sidiqi B, Wang C, Czmielewski C, Li HJ, Dick-Godfrey R, Chawla M, Lee RP, Gelb E, Wu AJ, Lovelock M, Zhang Z, Yorke ED, Rimner A. Four-Dimensional Computed Tomography-Based Correlation of Respiratory Motion of Lung Tumors With Implanted Fiducials and an External Surrogate. Adv Radiat Oncol 2022; 7:100885. [PMID: 35198837 PMCID: PMC8792087 DOI: 10.1016/j.adro.2021.100885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Our purpose was to assess the suitability of airway-implanted internal fiducial markers and an external surrogate of respiratory motion for motion management during radiation therapy of lung tumors. Methods and Materials We analyzed 4-dimensional computed tomography scans acquired during radiation therapy simulation for 28 patients with lung tumors who had anchored fiducial markers bronchoscopically implanted inside small airways in or near the tumor in a prospective trial. We used a linear mixed model to build population-based correlative models of tumor and surrogate motion. The first 24 of the 28 patients were used to build correlative models, and 4 of the 28 consecutive patients were excluded and used as an internal validation cohort. Of the 24 patients from the model building cohort, all were used for the models based on the internal fiducial. The external surrogate was completely visualized in 11 patients from the model building cohort, so only those were used for the models based on the external surrogate. Furthermore, we determined the predicted residual error sum of squares for our correlative models, which may serve as benchmarks for future research. Results The motion of the internal fiducials was significantly associated with the tumor motion in the anterior-posterior (P < .0001) and superior-inferior (SI) directions (P < .0001). We also observed a strong correlation of the external surrogate anterior-posterior motion to the tumor dominant SI motion (P < .0001). In the validation cohort, the internal fiducial SI motion was the only reliable predictor of lung tumor motion. Conclusions The internal fiducials appear to be more reliable predictors of lung tumor motion than the external surrogate. The suitability of such airway-implanted internal fiducial markers for advanced motion management techniques should be further investigated. Although the external surrogate seems to be less reliable, its wide availability and noninvasive application support its clinical utility, albeit the greater uncertainty will need to be compensated for.
Collapse
|
9
|
Ermongkonchai T, Khor R, Muralidharan V, Tebbutt N, Lim K, Kutaiba N, Ng SP. Stereotactic radiotherapy and the potential role of magnetic resonance-guided adaptive techniques for pancreatic cancer. World J Gastroenterol 2022; 28:745-754. [PMID: 35317275 PMCID: PMC8891728 DOI: 10.3748/wjg.v28.i7.745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a malignancy with one of the poorest prognoses amongst all cancers. Patients with unresectable tumours either receive palliative care or undergo various chemoradiotherapy regimens. Conventional techniques are often associated with acute gastrointestinal toxicities, as adjacent critical structures such as the duodenum ultimately limits delivered doses. Stereotactic body radiotherapy (SBRT) is an advanced radiation technique that delivers highly ablative radiation split into several fractions, with a steep dose fall-off outside target volumes.
AIM To discuss the latest data on SBRT and whether there is a role for magnetic resonance-guided techniques in multimodal management of locally advanced, unresectable pancreatic cancer.
METHODS We conducted a search on multiple large databases to collate the latest records on radiotherapy techniques used to treat pancreatic cancer. Out of 1229 total records retrieved from our search, 36 studies were included in this review.
RESULTS Studies indicate that SBRT is associated with improved clinical efficacy and toxicity profiles compared to conventional radiotherapy techniques. Further dose escalation to the tumour with SBRT is limited by the poor soft-tissue visualisation of computed tomography imaging during radiation planning and treatment delivery. Magnetic resonance-guided techniques have been introduced to improve imaging quality, enabling treatment plan adaptation and re-optimisation before delivering each fraction.
CONCLUSION Therefore, SBRT may lead to improved survival outcomes and safer toxicity profiles compared to conventional techniques, and the addition of magnetic resonance-guided techniques potentially allows dose escalation and conversion of unresectable tumours to operable cases.
Collapse
Affiliation(s)
- Tai Ermongkonchai
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| | - Richard Khor
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| | | | - Niall Tebbutt
- Department of Medical Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| | - Kelvin Lim
- Department of Diagnostic Radiology, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Numan Kutaiba
- Department of Diagnostic Radiology, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| |
Collapse
|
10
|
Niedzielski JS, Liu Y, Ng SSW, Martin RM, Perles LA, Beddar S, Rebueno N, Koay EJ, Taniguchi C, Holliday EB, Das P, Smith GL, Minsky BD, Ludmir EB, Herman JM, Koong A, Sawakuchi GO. Dosimetric Uncertainties Resulting From Interfractional Anatomic Variations for Patients Receiving Pancreas Stereotactic Body Radiation Therapy and Cone Beam Computed Tomography Image Guidance. Int J Radiat Oncol Biol Phys 2021; 111:1298-1309. [PMID: 34400267 DOI: 10.1016/j.ijrobp.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To estimate the effects of interfractional anatomic changes on dose to organs at risk (OARs) and tumors, as measured with cone beam computed tomography (CBCT) image guidance for pancreatic stereotactic body radiation therapy. METHODS AND MATERIALS We evaluated 11 patients with pancreatic cancer whom were treated with stereotactic body radiation therapy (33-40 Gy in 5 fractions) using daily CT-on-rails (CTOR) image guidance immediately before treatment with breath-hold motion management. CBCT alignment was simulated in the treatment planning software by aligning the original planning CT to each fractional CTOR image set via fiducial markers. CTOR data sets were used to calculate fractional doses after alignment by applying the rigid shift of the planning CT and CTOR image sets to the planning treatment isocenter and recalculating the fractional dose. Accumulated dose to the gross tumor volume (GTV), tumor vessel interface, duodenum, small bowel, and stomach were calculated by summing the 5 fractional absolute dose-volume histograms into a single dose-volume histogram for comparison with the original planned dose. RESULTS Four patients had a GTV D100% of at least 1.5 Gy less than the fractional planned value in several fractions; 4 patients had fractional underestimation of duodenum dose by 1.0 Gy per fraction. The D1.0 cm3 <35 Gy constraint was violated for at least 1 OAR in 3 patients, with either the duodenum (n = 2) or small bowel (n = 1) D1.0 cm3 being higher on the accumulated dose distribution (P = .01). D100% was significantly lower according to accumulated dose GTV (P = .01) and tumor vessel interface (P = .02), with 4 and 2 patients having accumulated D100% ≥4 Gy lower than the planned value for the GTV and tumor vessel interface, respectively. CONCLUSIONS For some patients, CBCT image guidance based on fiducial alignment may cause large dosimetric uncertainties for OARs and target structures, according to accumulated dose.
Collapse
Affiliation(s)
| | - Yufei Liu
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Sylvia S W Ng
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | | | - Luis A Perles
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Sam Beddar
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Neal Rebueno
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Eugene J Koay
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | | | - Emma B Holliday
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Prajnan Das
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Grace L Smith
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Bruce D Minsky
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Ethan B Ludmir
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Joseph M Herman
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Albert Koong
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, UT-MD Anderson Cancer Center; Graduate School of Biomedical Sciences, UT-MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
11
|
Shao HC, Huang X, Folkert MR, Wang J, Zhang Y. Automatic liver tumor localization using deep learning-based liver boundary motion estimation and biomechanical modeling (DL-Bio). Med Phys 2021; 48:7790-7805. [PMID: 34632589 DOI: 10.1002/mp.15275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Recently, two-dimensional-to-three-dimensional (2D-3D) deformable registration has been applied to deform liver tumor contours from prior reference images onto estimated cone-beam computed tomography (CBCT) target images to automate on-board tumor localizations. Biomechanical modeling has also been introduced to fine-tune the intra-liver deformation-vector-fields (DVFs) solved by 2D-3D deformable registration, especially at low-contrast regions, using tissue elasticity information and liver boundary DVFs. However, the caudal liver boundary shows low contrast from surrounding tissues in the cone-beam projections, which degrades the accuracy of the intensity-based 2D-3D deformable registration there and results in less accurate boundary conditions for biomechanical modeling. We developed a deep-learning (DL)-based method to optimize the liver boundary DVFs after 2D-3D deformable registration to further improve the accuracy of subsequent biomechanical modeling and liver tumor localization. METHODS The DL-based network was built based on the U-Net architecture. The network was trained in a supervised fashion to learn motion correlation between cranial and caudal liver boundaries to optimize the liver boundary DVFs. Inputs of the network had three channels, and each channel featured the 3D DVFs estimated by the 2D-3D deformable registration along one Cartesian direction (x, y, z). To incorporate patient-specific liver boundary information into the DVFs, the DVFs were masked by a liver boundary ring structure generated from the liver contour of the prior reference image. The network outputs were the optimized DVFs along the liver boundary with higher accuracy. From these optimized DVFs, boundary conditions were extracted for biomechanical modeling to further optimize the solution of intra-liver tumor motion. We evaluated the method using 34 liver cancer patient cases, with 24 for training and 10 for testing. We evaluated and compared the performance of three methods: 2D-3D deformable registration, 2D-3D-Bio (2D-3D deformable registration with biomechanical modeling), and DL-Bio (DL model prediction with biomechanical modeling). The tumor localization errors were quantified through calculating the center-of-mass-errors (COMEs), DICE coefficients, and Hausdorff distance between deformed liver tumor contours and manually segmented "gold-standard" contours. RESULTS The predicted DVFs by the DL model showed improved accuracy at the liver boundary, which translated into more accurate liver tumor localizations through biomechanical modeling. On a total of 90 evaluated images and tumor contours, the average (± sd) liver tumor COMEs of the 2D-3D, 2D-3D-Bio, and DL-Bio techniques were 4.7 ± 1.9 mm, 2.9 ± 1.0 mm, and 1.7 ± 0.4 mm. The corresponding average (± sd) DICE coefficients were 0.60 ± 0.12, 0.71 ± 0.07, and 0.78 ± 0.03; and the average (± sd) Hausdorff distances were 7.0 ± 2.6 mm, 5.4 ± 1.5 mm, and 4.5 ± 1.3 mm, respectively. CONCLUSION DL-Bio solves a general correlation model to improve the accuracy of the DVFs at the liver boundary. With improved boundary conditions, the accuracy of biomechanical modeling can be further increased for accurate intra-liver low-contrast tumor localization.
Collapse
Affiliation(s)
- Hua-Chieh Shao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaokun Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael R Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - You Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Han-Oh S, Ding K, Song D, Narang A, Wong J, Rong Y, Bliss D. Feasibility study of fiducial marker localization using microwave radar. Med Phys 2021; 48:7271-7282. [PMID: 34482551 DOI: 10.1002/mp.15197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/05/2021] [Accepted: 08/21/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE We explore the potential use of radar technology for fiducial marker tracking for monitoring of respiratory tumor motion during radiotherapy. Historically microwave radar technology has been widely deployed in various military and civil aviation applications to provide detection, position, and tracking of single or multiples objects from far away and even through barriers. Recently, due to many advantages of the microwave technology, it has been successfully demonstrated to detect breast tumor, and to monitor vital signs in real time such as breathing signals or heart rates. We demonstrate a proof-of-concept for radar-based fiducial marker tracking through the synthetic human tissue phantom. METHODS We performed a series of experiments with the vector network analyzer (VNA) and wideband directional horn antenna. We considered the frequency range from 2.0 to 6.0 GHz, with a maximum power of 3 dBm. A horn antenna, transmitting and receiving radar pulses, was connected to the vector network analyzer to probe a gold fiducial marker through a customized synthetic human tissue phantom, consisting of 1-mm thickness of skin, 5-mm fat, and 25-mm muscle layers. A 1.2 × 10-mm gold fiducial marker was exploited as a motion surrogate, which was placed behind the phantom and statically positioned with an increment of 12.7 mm to simulate different marker displacements. The returned signals from the marker were acquired and analyzed to evaluate the localization accuracy as a function of the marker position. RESULTS The fiducial marker was successfully localized at various measurement positions through a simplified phantom study. The averaged localization accuracy across measurements was 3.5 ± 1.3 mm, with a minimum error of 1.9 mm at the closest measurement location and a maximum error of 4.9 mm at the largest measurement location. CONCLUSIONS We demonstrated that the 2-6 GHz radar can penetrate through the attenuating tissues and localize a fiducial marker. This successful feasibility study establishes a foundation for further investigation of radar technology as a non-ionizing tumor localization device for radiotherapy.
Collapse
Affiliation(s)
- Sarah Han-Oh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University of School of Medicine, Baltimore, Maryland, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University of School of Medicine, Baltimore, Maryland, USA
| | - Daniel Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University of School of Medicine, Baltimore, Maryland, USA
| | - Amol Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University of School of Medicine, Baltimore, Maryland, USA
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University of School of Medicine, Baltimore, Maryland, USA
| | - Yu Rong
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, USA
| | - Daniel Bliss
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
13
|
Zakem SJ, Mueller AC, Meguid C, Torphy RJ, Holt DE, Schefter T, Messersmith WA, McCarter MD, Del Chiaro M, Schulick RD, Goodman KA. Impact of neoadjuvant chemotherapy and stereotactic body radiation therapy (SBRT) on R0 resection rate for borderline resectable and locally advanced pancreatic cancer. HPB (Oxford) 2021; 23:1072-1083. [PMID: 33277184 DOI: 10.1016/j.hpb.2020.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The role of neoadjuvant stereotactic body radiation therapy (SBRT) in patients with borderline resectable pancreas cancer (BRPC) and locally advanced pancreas cancer (LAPC) remains controversial. METHODS We retrospectively evaluated BRPC and LAPC patients treated at our institution who underwent 2-3 months of chemotherapy followed by SBRT to a dose of 30-33 Gy. Overall survival (OS) and recurrence-free survival (RFS) were estimated and compared by Kaplan-Meier and log-rank methods. RESULTS We identified 103 (85 BRPC and 18 LAPC) patients treated per our neoadjuvant paradigm between 2011 and 2018, with resectability based on NCCN definitions. Median follow up was 25 months. Of patients completing neoadjuvant therapy, 73 (71%) underwent definitive resection. Seventy-one (97%) patients with definitively resected tumors had R0 resection and 5 (7%) had a complete pathologic response CR to neoadjuvant therapy. The median overall survival (OS) of the cohort was 24 months. Those with a complete or marked pathologic response had significantly better OS than those with a moderate response (41 vs 24 months, p < 0.02) and patients unable to undergo definitive surgery (17 months, p < 0.0003). Six resected patients experienced grade ≥3 surgical complications. CONCLUSIONS Neoadjuvant chemotherapy and SBRT are associated with promising pathologic response rates and R0 resection rates, with acceptable perioperative morbidity.
Collapse
Affiliation(s)
- Sara J Zakem
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Adam C Mueller
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cheryl Meguid
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert J Torphy
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Douglas E Holt
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tracey Schefter
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Martin D McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
14
|
The first real-time intrafraction target position monitoring in pancreas SBRT on an Elekta linear accelerator. Phys Eng Sci Med 2021; 44:625-638. [PMID: 34019228 DOI: 10.1007/s13246-021-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
To perform implanted fiducial based real-time target position monitoring in pancreas stereotactic body radiotherapy (SBRT) using the x-ray imaging system available in a Elekta linear accelerator. An in-house system was developed and clinically utilised for real-time target position monitoring of pancreas SBRT delivery. The developed system was used for the target position monitoring of a pancreas cancer patient treated in free breathing treatment within the study entitled 'Mfolfirinox And STEreotactic Radiotherapy for Patients with Locally Advanced paNcreas cancer (MASTERPLAN): a feasibility study' (ACTRN 12617001642370) consisting of five treatment fractions. The clinical efficacy of the system was studied by performing a retrospective cumulative dose assessment of delivered dose using observed position deviations. The developed system identified two events of baseline shifts in target position that exceeded the accepted tolerance level of ± 3 mm from reference planned position. The retrospective dose assessment study showed that if the position deviations were not detected and corrected for, the maximum dose to duodenum would have increased from 34.6 to 38.8 Gy. The first real-time position monitoring in pancreas SBRT on an Elekta linear accelerator was successfully performed. The developed system was shown to improve the safety and accuracy of SBRT delivery.
Collapse
|
15
|
Zeng C, Li X, Lu W, Reyngold M, Gewanter RM, Cuaron JJ, Yorke E, Li T. Accuracy and efficiency of respiratory gating comparable to deep inspiration breath hold for pancreatic cancer treatment. J Appl Clin Med Phys 2020; 22:218-225. [PMID: 33378792 PMCID: PMC7856516 DOI: 10.1002/acm2.13137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Deep inspiration breath hold (DIBH) and respiratory gating (RG) are widely used to reduce movement of target and healthy organs caused by breathing during irradiation. We hypothesized that accuracy and efficiency comparable to DIBH can be achieved with RG for pancreas treatment. Methods and Materials Twenty consecutive patients with pancreatic cancer treated with DIBH (eight) or RG (twelve) volumetric modulated arc therapy during 2017–2019 were included in this study, with radiopaque markers implanted near or in the targets. Seventeen patients received 25 fractions, while the other three received 15 fractions. Only patients who could not tolerate DIBH received RG treatment. While both techniques relied on respiratory signals from external markers, internal target motions were monitored with kV X‐ray imaging during treatment. A 3‐mm external gating window was used for DIBH treatment; RG treatment was centered on end‐expiration with a duty cycle of 40%, corresponding to an external gating window of 2–3 mm. During dose delivery, kV images were automatically taken every 20◦ or 40◦ gantry rotation, from which internal markers were identified. The marker displacement from their initial positions and the residual motion amplitudes were calculated. For the analysis of treatment efficiency, the treatment time of every session was calculated from the motion management waveform files recorded at the treatment console. Results Within one fraction, the displacement was 0–5 mm for DIBH and 0–6 mm for RG. The average magnitude of displacement for each patient during the entire course of treatment ranged 0–3 mm for both techniques. No statistically significant difference in displacement or residual motion was observed between the two techniques. The average treatment time was 15 min for DIBH and 17 min for RG, with no statistical significance. Conclusions The accuracy and efficiency were comparable between RG and DIBH treatment for pancreas irradiation. RG is a feasible alternative strategy to DIBH.
Collapse
Affiliation(s)
- Chuan Zeng
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marsha Reyngold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard M Gewanter
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John J Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tianfang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
16
|
Anastasi G, Bertholet J, Poulsen P, Roggen T, Garibaldi C, Tilly N, Booth JT, Oelfke U, Heijmen B, Aznar MC. Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part I: Intra-fraction breathing motion management. Radiother Oncol 2020; 153:79-87. [PMID: 32585236 PMCID: PMC7758783 DOI: 10.1016/j.radonc.2020.06.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The POP-ART RT study aims to determine to what extent and how intra-fractional real-time respiratory motion management (RRMM) and plan adaptation for inter-fractional anatomical changes (ART), are used in clinical practice and to understand barriers to implementation. Here we report on part I: RRMM. MATERIAL AND METHODS A questionnaire was distributed worldwide to assess current clinical practice, wishes for expansion or new implementation and barriers to implementation. RRMM was defined as inspiration/expiration gating in free-breathing or breath-hold, or tracking where the target and the beam are continuously realigned. RESULTS The questionnaire was completed by 200 centres from 41 countries. RRMM was used by 68% of respondents ('users') for a median (range) of 2 (1-6) tumour sites. Eighty-one percent of users applied inspiration breath-hold in at least one tumour site (breast: 96%). External marker was used to guide RRMM by 61% of users. KV/MV imaging was frequently used for liver and pancreas (with fiducials) and for lung (with or without fiducials). Tracking was mainly performed on robotic linacs with hybrid internal-external monitoring. For breast and lung, approximately 75% of respondents used or wished to implement RRMM, which was lower for liver (44%) and pancreas (27%). Seventy-one percent of respondents wished to implement RRMM for a new tumour site. Main barriers were human/financial resources and capacity on the machine. CONCLUSION Sixty-eight percent of respondents used RRMM and 71% wished to implement RRMM for a new tumour site. The main barriers to implementation were human/financial resources and capacity on treatment machines.
Collapse
Affiliation(s)
- Gail Anastasi
- St. Luke's Cancer Centre, Royal Surrey Foundation Trust, Radiotherapy Physics, Guildford, United Kingdom.
| | - Jenny Bertholet
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London, United Kingdom; Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, Switzerland
| | - Per Poulsen
- Aarhus University Hospital, Department of Oncology and Danish Center for Particle Therapy, Aarhus, Denmark
| | - Toon Roggen
- Varian Medical Systems Imaging Laboratory GmbH, Applied Research, Dättwil AG, Switzerland
| | - Cristina Garibaldi
- European Institute of Oncology IRCCS, IEO-Unit of Radiation Research, Milan, Italy
| | - Nina Tilly
- Elekta Instruments AB, Stockholm, Sweden; Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Jeremy T Booth
- Royal North Shore Hospital, Northern Sydney Cancer Centre, Australia
| | - Uwe Oelfke
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London, United Kingdom
| | - Ben Heijmen
- Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam, Netherlands
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom; Nuffield Department of Population Health, University of Oxford, United Kingdom
| |
Collapse
|
17
|
Ono S, Ueda Y, Ohira S, Isono M, Sumida I, Inui S, Morimoto M, Ashida R, Miyazaki M, Ogawa K, Teshima T. Detectability of fiducials' positions for real-time target tracking system equipping with a standard linac for multiple fiducial markers. J Appl Clin Med Phys 2020; 21:153-162. [PMID: 33058408 PMCID: PMC7700931 DOI: 10.1002/acm2.13050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To investigate the detectability of fiducial markers' positions for real-time target tracking system equipping with a standard linac. The hypothesis is that the detectability depends on the type of fiducial marker and the gantry angle of acquired triggered images. METHODS Three types of ball fiducials and four slim fiducials with lengths of 3 and 5 mm were prepared for this study. Triggered images with three similar fiducials were acquired at every 10° during the conformal arc irradiation to detect the target position. Although only one type of arrangement was prepared for the ball fiducials, a three-type arrangement was prepared for the slim fiducials, such as parallel, orthogonal, and oblique with 45° to the gantry-couch direction. To measure the detectability of the real-time target tracking system for each fiducial and arrangement, detected marker positions were compared with expected marker positions at every angle of acquired triggered images. RESULTS For the ball-type fiducial, the maximum difference between the detected marker positions and expected marker positions was 0.3 mm in all directions. For the slim fiducial arranged parallel and oblique with 45°, the maximum difference was 0.4 mm in all directions. When each slim fiducial was arranged orthogonal to the gantry-couch direction, the maximum difference was 1.5 mm for the length of 3 mm, and 3.2 mm for the length of 5 mm. CONCLUSIONS The detectability of fiducial markers' positions for the real-time target tracking system equipping with a standard linac depends on the form and insertion angles of the fiducials.
Collapse
Affiliation(s)
- Shunsuke Ono
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masaru Isono
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiro Morimoto
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Reiko Ashida
- Department of Cancer survey and gastrointestinal oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
18
|
Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver. Clin Oncol (R Coll Radiol) 2020; 32:792-804. [PMID: 33036840 DOI: 10.1016/j.clon.2020.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022]
Abstract
Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion management with a focus on lung and liver radiotherapy.
Collapse
|
19
|
Mahl A, Miller B, Miften M, Jones BL. Optimizing Coded Aperture Imaging techniques to allow for online tracking of fiducial markers with high-energy scattered radiation from treatment beam. Med Phys 2020; 47:4428-4438. [PMID: 32609886 DOI: 10.1002/mp.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/17/2020] [Accepted: 06/15/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Real-time visualization of target motion using fiducial markers during radiation therapy treatment will allow for more accurate dose delivery. The purpose of this study was to optimize techniques for online fiducial marker tracking by detecting the scattered treatment beam through coded aperture imaging (CAI). Coded aperture imaging is a novel imaging technique that can allow target tracking in real time during treatment, and do so without adding any additional radiation dose, by making use of the scattered treatment beam radiation. METHODS Radiotherapy beams of various energies, incident on phantoms containing gold fiducial markers were modeled using MCNP6.2 Monte Carlo transport code. Orthogonal scatter radiographs were collected through a CAI geometry. After decoding the simulated radiograph data, the centroid location and FWHM/SNR of the fiducial signals were analyzed. The effects of properties related to the CA (rank, pattern, and physical dimensions), detector (dimensions and pixel count), position (CA and phantom), and the incident beam (spectrum and direction) were investigated. These variables were evaluated by quantifying the positional accuracy, resolution, and SNR of the fiducials' signal. The effects of phantom scatter and decoding artifacts were reduced via Fourier filtering to avoid treatment interruption and physical interaction with the coded mask. RESULTS The method was able to accurately localize the markers to within 1 pixel of a simulated radiograph. A 10 × 10 × 2 cm tungsten mask was chosen to attenuate >99 % of incident scatter through opaque elements, while minimizing collimation artifacts which arise from vignetting of the coded radiograph. Clear separation of centroids from fiducial signals with 2.5 mm separation was maintained, and initial optimization of parameters has produced an aperture which decodes the location of multiple fiducial markers inside a human phantom properly with a high SNR in the final radiograph image. CONCLUSION Current results show a proof of concept for a novel real-time imaging method. Coded aperture imaging is a promising technique for extracting the fiducial scatter signal from a broader Compton-scatter background. These results can be used to further optimize the CAI parameter space and guide fabrication and testing of a clinical device.
Collapse
Affiliation(s)
- Adam Mahl
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brian Miller
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bernard L Jones
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
20
|
Yoshimura T, Shimizu S, Hashimoto T, Nishioka K, Katoh N, Inoue T, Taguchi H, Yasuda K, Matsuura T, Takao S, Tamura M, Ito YM, Matsuo Y, Tamura H, Horita K, Umegaki K, Shirato H. Analysis of treatment process time for real-time-image gated-spot-scanning proton-beam therapy (RGPT) system. J Appl Clin Med Phys 2019; 21:38-49. [PMID: 31886616 PMCID: PMC7020995 DOI: 10.1002/acm2.12804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/27/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
We developed a synchrotron‐based real‐time‐image gated‐spot‐scanning proton‐beam therapy (RGPT) system and utilized it to clinically operate on moving tumors in the liver, pancreas, lung, and prostate. When the spot‐scanning technique is linked to gating, the beam delivery time with gating can increase, compared to that without gating. We aim to clarify whether the total treatment process can be performed within approximately 30 min (the general time per session in several proton therapy facilities), even for gated‐spot‐scanning proton‐beam delivery with implanted fiducial markers. Data from 152 patients, corresponding to 201 treatment plans and 3577 sessions executed from October 2016 to June 2018, were included in this study. To estimate the treatment process time, we utilized data from proton beam delivery logs during the treatment for each patient. We retrieved data, such as the disease site, total target volume, field size at the isocenter, and the number of layers and spots for each field, from the treatment plans. We quantitatively analyzed the treatment process, which includes the patient load (or setup), bone matching, marker matching, beam delivery, patient unload, and equipment setup, using the data obtained from the log data. Among all the cases, 90 patients used the RGPT system (liver: n = 34; pancreas: n = 5; lung: n = 4; and prostate: n = 47). The mean and standard deviation (SD) of the total treatment process time for the RGPT system was 30.3 ± 7.4 min, while it was 25.9 ± 7.5 min for those without gating treatment, excluding craniospinal irradiation (CSI; head and neck: n = 16, pediatric: n = 31, others: n = 15); for CSI (n = 11) with two or three isocenters, the process time was 59.9 ± 13.9 min. Our results demonstrate that spot‐scanning proton therapy with a gating function can be achieved in approximately 30‐min time slots.
Collapse
Affiliation(s)
| | - Shinichi Shimizu
- Department of Radiation OncologyFaculty of MedicineHokkaido UniversitySapporoJapan
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
| | - Takayuki Hashimoto
- Department of Radiation MedicineFaculty of MedicineHokkaido UniversitySapporoJapan
| | - Kentaro Nishioka
- Department of Radiation OncologyFaculty of MedicineHokkaido UniversitySapporoJapan
| | - Norio Katoh
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Tetsuya Inoue
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Hiroshi Taguchi
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Koichi Yasuda
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | | | - Seishin Takao
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Masaya Tamura
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Yoichi M. Ito
- Department of Statistical Data ScienceThe Institute of Statistical MathematicsTokyoJapan
| | - Yuto Matsuo
- Proton Beam Therapy CenterHokkaido University HospitalSapporoJapan
| | - Hiroshi Tamura
- Proton Beam Therapy CenterHokkaido University HospitalSapporoJapan
| | - Kenji Horita
- Proton Beam Therapy CenterHokkaido University HospitalSapporoJapan
| | - Kikuo Umegaki
- Faculty of EngineeringHokkaido UniversitySapporoJapan
| | - Hiroki Shirato
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation MedicineFaculty of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
21
|
Teboh RF, Srinivasan S, Ng SP, Aliru ML, Herman JM. Setup Management for Stereotactic Body Radiation Therapy of Patients With Pancreatic Cancer Treated via the Breath-Hold Technique. Pract Radiat Oncol 2019; 10:e280-e289. [PMID: 31669403 DOI: 10.1016/j.prro.2019.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Active Breathing Coordinator (Elekta AB, Crawley, UK) is a motion management strategy for radiation treatment. During setup, aligning the patient to the bony spine alone does not necessarily lead to an accurate alignment to soft tissue targets, and further adjustment is necessary. Determining a safe range of values for such adjustments is an important quality assurance measure and was the purpose of this study, with focus on stereotactic body radiation therapy in patients with pancreatic cancer. METHODS AND MATERIALS The retrospective study included 19 previously treated patients. For each fraction, a free-breathing cone beam computed tomography scan was registered to a reference breath-hold computed tomography for alignment to the spine. Two perpendicular breath-hold kV projection images were then acquired and compared with corresponding reference digitally reconstructed radiographs for additional alignment with a surrogate fiducial marker. By comparing the breath-hold kV projection images from subsequent treatment fractions with those from the first fraction, we derived the 3-dimensional variability of the fiducial position with respect to the reference image. RESULTS We observed intrafraction setup error to be within 2.0 mm. For interfraction, we observed average reproducibility of 1.7 ± 0.8 mm, 2.0 ± 1.4 mm, and 3.2 ± 2.5 mm in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. The average excursion values from free breathing spine to breath-hold fiducial alignment were 1.5 ± 1.4 mm, 2.0 ± 1.9 mm, and 3.0 ± 2.0 mm in the LR, AP and SI directions, respectively. The observed ranges of average excursions among all patients were 0.2 to 5.1 mm, 0.1 to 5. 9 mm, and 0.6 to 7.8 mm in the LR, AP, and SI directions, respectively. CONCLUSIONS This study demonstrates that intrafraction targeting errors can be within 2 mm, and interfraction shifts from free-breathing spine to Active Breathing Coordinator breath-hold target can be as high as 8 mm. Values that deviate significantly would need further investigation to rule out factors such as local progression, bowel gas, or fiducial shift before treatment.
Collapse
Affiliation(s)
- Roland Forbang Teboh
- Johns Hopkins University School of Medicine, Baltimore, Maryland; John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey.
| | - Senthamizhchelvan Srinivasan
- Johns Hopkins University School of Medicine, Baltimore, Maryland; Memorial Health care system, Chattanooga, Tennessee
| | | | | | - Joseph M Herman
- Johns Hopkins University School of Medicine, Baltimore, Maryland; MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
22
|
Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Nguyen DT, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol 2019; 64:15TR01. [PMID: 31226704 PMCID: PMC7655120 DOI: 10.1088/1361-6560/ab2ba8] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT.
Collapse
Affiliation(s)
- Jenny Bertholet
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
- Author to whom any correspondence should be
addressed
| | - Antje Knopf
- Department of Radiation Oncology,
University Medical Center
Groningen, University of Groningen, The
Netherlands
| | - Björn Eiben
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Jamie McClelland
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Alexander Grimwood
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Emma Harris
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Martin Menten
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus,
Denmark
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
- School of Biomedical Engineering,
University of Technology
Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| |
Collapse
|
23
|
Ding Y, Campbell WG, Miften M, Vinogradskiy Y, Goodman KA, Schefter T, Jones BL. Quantifying Allowable Motion to Achieve Safe Dose Escalation in Pancreatic SBRT. Pract Radiat Oncol 2019; 9:e432-e442. [PMID: 30951868 PMCID: PMC6592725 DOI: 10.1016/j.prro.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/04/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Tumor motion plays a key role in the safe delivery of stereotactic body radiation therapy (SBRT) for pancreatic cancer. The purpose of this study was to use tumor motion measured in patients to establish limits on motion magnitude for safe delivery of pancreatic SBRT and to help guide motion-management decisions in potential dose-escalation scenarios. METHODS AND MATERIALS Using 91 sets of pancreatic tumor motion data, we calculated the motion-convolved dose of the gross tumor volume, duodenum, and stomach for 25 patients with pancreatic cancer. We derived simple linear or quadratic models relating motion to changes in dose and used these models to establish the maximum amount of motion allowable while satisfying error thresholds on key dose metrics. In the same way, we studied the effects of dose escalation and tumor volume on allowable motion. RESULTS In our patient cohort, the mean (range) allowable motion for 33, 40, and 50 Gy to the planning target volume was 11.9 (6.3-22.4), 10.4 (5.2-19.1), and 9.0 (4.2-16.0) mm, respectively. The maximum allowable motion decreased as the dose was escalated and was smaller in patients with larger tumors. We found significant differences in allowable motion between the different plans, suggesting a patient-specific approach to motion management is possible. CONCLUSIONS The effects of motion on pancreatic SBRT are highly variable among patients, and there is potential to allow more motion in certain patients, even in dose-escalated scenarios. In our dataset, a conservative limit of 6.3 mm would ensure safe treatment of all patients treated to 33 Gy in 5 fractions.
Collapse
Affiliation(s)
- Yijun Ding
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Warren G Campbell
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | | | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Tracey Schefter
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Bernard L Jones
- Department of Radiation Oncology, University of Colorado, Denver, Colorado.
| |
Collapse
|