1
|
Utsumi T, Suzuki H, Ishikawa H, Wakatsuki M, Okonogi N, Harada M, Ichikawa T, Akakura K, Murakami Y, Tsuji H, Yamada S. Identification of Early Biochemical Recurrence Predictors in High-Risk Prostate Cancer Patients Treated with Carbon-Ion Radiotherapy and Androgen Deprivation Therapy. Curr Oncol 2023; 30:8815-8825. [PMID: 37887536 PMCID: PMC10605605 DOI: 10.3390/curroncol30100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
The aim of this retrospective study was to identify clinical predictors of early biochemical recurrence (BCR) in patients with high-risk prostate cancer (PCa) treated with carbon-ion radiotherapy (CIRT) and androgen deprivation therapy (ADT). A total of 670 high-risk PCa patients treated with CIRT and ADT were included in the study. Early BCR was defined as recurrence occurring during adjuvant ADT after CIRT or within 2 years after completion of ADT. Univariate and multivariate analyses were performed to identify clinical predictors of early BCR. Patients were also classified according to the Systemic Therapy in Advancing or Metastatic Prostate cancer (STAMPEDE) PCa classification. Early BCR was observed in 5.4% of the patients. Multivariate analysis identified clinical T3b stage and ≥75% positive biopsy cores as clinical predictors of early BCR after CIRT and ADT. The STAMPEDE PCa classification was also significantly associated with early BCR based on univariate analysis. These predictors can help clinicians identify patients who are at risk of early BCR. In the future, combination therapy of ADT with abiraterone may be an option for high-risk PCa patients who are at risk of early BCR, based on the results of the STAMPEDE study.
Collapse
Affiliation(s)
- Takanobu Utsumi
- Department of Urology, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba 285-8741, Japan; (T.U.); (H.S.)
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan; (M.W.); (N.O.); (M.H.); (H.T.); (S.Y.)
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba 285-8741, Japan; (T.U.); (H.S.)
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan; (M.W.); (N.O.); (M.H.); (H.T.); (S.Y.)
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan; (M.W.); (N.O.); (M.H.); (H.T.); (S.Y.)
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan; (M.W.); (N.O.); (M.H.); (H.T.); (S.Y.)
| | - Masaoki Harada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan; (M.W.); (N.O.); (M.H.); (H.T.); (S.Y.)
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan;
| | - Koichiro Akakura
- Department of Urology, Japan Community Health-Care Organization Tokyo Shinjuku Medical Center, 5-1 Tsukudo-cho, Shinjuku-ku, Tokyo 162-8543, Japan;
| | - Yoshitaka Murakami
- Department of Medical Statistics, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan;
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan; (M.W.); (N.O.); (M.H.); (H.T.); (S.Y.)
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan; (M.W.); (N.O.); (M.H.); (H.T.); (S.Y.)
| |
Collapse
|
2
|
Sadeghi S, Siavashpour Z, Vafaei Sadr A, Farzin M, Sharp R, Gholami S. A rapid review of influential factors and appraised solutions on organ delineation uncertainties reduction in radiotherapy. Biomed Phys Eng Express 2021; 7. [PMID: 34265746 DOI: 10.1088/2057-1976/ac14d0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Background and purpose.Accurate volume delineation plays an essential role in radiotherapy. Contouring is a potential source of uncertainties in radiotherapy treatment planning that could affect treatment outcomes. Therefore, reducing the degree of contouring uncertainties is crucial. The role of utilized imaging modality in the organ delineation uncertainties has been investigated. This systematic review explores the influential factors on inter-and intra-observer uncertainties of target volume and organs at risk (OARs) delineation focusing on the used imaging modality for these uncertainties reduction and the reported subsequent histopathology and follow-up assessment.Methods and materials.An inclusive search strategy has been conducted to query the available online databases (Scopus, Google Scholar, PubMed, and Medline). 'Organ at risk', 'target', 'delineation', 'uncertainties', 'radiotherapy' and their relevant terms were utilized using every database searching syntax. Final article extraction was performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Included studies were limited to the ones published in English between 1995 and 2020 and that just deal with computed tomography (CT) and magnetic resonance imaging (MRI) modalities.Results.A total of 923 studies were screened and 78 were included of which 31 related to the prostate 20 to the breast, 18 to the head and neck, and 9 to the brain tumor site. 98% of the extracted studies performed volumetric analysis. Only 24% of the publications reported the dose deviations resulted from variation in volume delineation Also, heterogeneity in studied populations and reported geometric and volumetric parameters were identified such that quantitative synthesis was not appropriate.Conclusion.This review highlightes the inter- and intra-observer variations that could lead to contouring uncertainties and impede tumor control in radiotherapy. For improving volume delineation and reducing inter-observer variability, the implementation of well structured training programs, homogeneity in following consensus and guidelines, reliable ground truth selection, and proper imaging modality utilization could be clinically beneficial.
Collapse
Affiliation(s)
- Sogand Sadeghi
- Department of Nuclear Physics, Faculty of Sciences, University of Mazandaran, Babolsar, Iran
| | - Zahra Siavashpour
- Department of Radiation Oncology, Shohada-e Tajrish Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Vafaei Sadr
- Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, Geneva, Switzerland
| | - Mostafa Farzin
- Radiation Oncology Research Center (RORC), Tehran University of Medical Science, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ryan Sharp
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, United States of America
| | - Somayeh Gholami
- Radiotherapy Oncology Department, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang YF, Tadimalla S, Hayden AJ, Holloway L, Haworth A. Artificial intelligence and imaging biomarkers for prostate radiation therapy during and after treatment. J Med Imaging Radiat Oncol 2021; 65:612-626. [PMID: 34060219 DOI: 10.1111/1754-9485.13242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is increasingly used in the management of prostate cancer (PCa). Quantitative MRI (qMRI) parameters, derived from multi-parametric MRI, provide indirect measures of tumour characteristics such as cellularity, angiogenesis and hypoxia. Using Artificial Intelligence (AI), relevant information and patterns can be efficiently identified in these complex data to develop quantitative imaging biomarkers (QIBs) of tumour function and biology. Such QIBs have already demonstrated potential in the diagnosis and staging of PCa. In this review, we explore the role of these QIBs in monitoring treatment response during and after PCa radiotherapy (RT). Recurrence of PCa after RT is not uncommon, and early detection prior to development of metastases provides an opportunity for salvage treatments with curative intent. However, the current method of monitoring treatment response using prostate-specific antigen levels lacks specificity. QIBs, derived from qMRI and developed using AI techniques, can be used to monitor biological changes post-RT providing the potential for accurate and early diagnosis of recurrent disease.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Sirisha Tadimalla
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Amy J Hayden
- Sydney West Radiation Oncology, Westmead Hospital, Wentworthville, New South Wales, Australia
- Faculty of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lois Holloway
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Can Diagnostic Magnetic Resonance Imaging for Suspected Clinically Significant Prostate Cancer Predict Unfavorable Long-term Outcome for Diagnosed Men for Pretreatment Counseling? Eur Urol Oncol 2021; 4:529-531. [PMID: 33478935 DOI: 10.1016/j.euo.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/09/2023]
|
5
|
Baty M, Créhange G, Pasquier D, Palard X, Deleuze A, Gnep K, Key S, Beuzit L, Castelli J, de Crevoisier R. Salvage reirradiation for local prostate cancer recurrence after radiation therapy. For who? When? How? Cancer Radiother 2019; 23:541-558. [PMID: 31421999 DOI: 10.1016/j.canrad.2019.07.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Literature review reporting results of salvage brachytherapy and stereotactic body radiotherapy for prostate recurrence only after radiotherapy for prostate cancer. MATERIALS AND METHODS A total of 38 studies (including at least 15 patients per study) were analysed: 19 using low-dose-rate brachytherapy, nine high-dose-rate brachytherapy and ten stereotactic body radiotherapy. Only five studies were prospective. The median numbers of patients were 30 for low-dose-rate brachytherapy, 34 for high-dose-rate brachytherapy, and 30 for stereotactic body radiotherapy. The median follow-up were 47months for low-dose-rate brachytherapy, 36months for high-dose-rate brachytherapy and 21months for stereotactic body radiotherapy. RESULTS Late genitourinary toxicity rates ranged, for grade 2: from 4 to 42% for low-dose-rate brachytherapy, from 7 to 54% for high-dose-rate brachytherapy and from 3 to 20% for stereotactic body radiotherapy, and for grade 3 or above: from 0 to 24% for low-dose-rate brachytherapy, from 0 to 13% for high-dose-rate brachytherapy and from 0 to 3% for grade 3 or above (except 12% in one study) for stereotactic body radiotherapy. Late gastrointestinal toxicity rates ranged, for grade 2: from 0 to 6% for low-dose-rate brachytherapy, from 0 to 14% for high-dose-rate brachytherapy and from 0 to 11% for stereotactic body radiotherapy, and for grade 3 or above: from 0 to 6% for low-dose-rate brachytherapy, and from 0 to 1% for high-dose-rate brachytherapy and stereotactic body radiotherapy. The 5-year biochemical disease-free survival rates ranged from 20 to 77% for low-dose-rate brachytherapy and from 51 to 68% for high-dose-rate brachytherapy. The 2- and 3-year disease-free survival rates ranged from 40 to 82% for stereotactic body radiotherapy. Prognostic factors of biochemical recurrence have been identified. CONCLUSION Despite a lack of prospective data, salvage reirradiation for prostate cancer recurrence can be proposed to highly selected patients and tumours. Prospective comparative studies are needed.
Collapse
Affiliation(s)
- M Baty
- Department of radiotherapy, centre Eugène-Marquis, 3, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France
| | - G Créhange
- Department of radiotherapy, centre Georges-François-Leclerc, 1, rue du Professeur-Marion, 21000 Dijon, France
| | - D Pasquier
- Department of radiation oncology, centre Oscar-Lambret, 3, avenue Frédéric-Combemale, 59020 Lille, France
| | - X Palard
- Department of nuclear medicine, centre Eugène-Marquis, 3, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France
| | - A Deleuze
- Department of oncology, centre Eugène-Marquis, 3, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France
| | - K Gnep
- Department of radiotherapy, centre Eugène-Marquis, 3, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France
| | - S Key
- Department of radiotherapy, centre Eugène-Marquis, 3, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France
| | - L Beuzit
- Department of radiology, CHU de Rennes, 35000 Rennes, France
| | - J Castelli
- Department of radiotherapy, centre Eugène-Marquis, 3, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France; LTSI, Inserm U1099, 35042 Rennes, France; Université Rennes 1, 35042 Rennes, France
| | - R de Crevoisier
- Department of radiotherapy, centre Eugène-Marquis, 3, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France; LTSI, Inserm U1099, 35042 Rennes, France; Université Rennes 1, 35042 Rennes, France.
| |
Collapse
|