1
|
Rahbaran M, Kalinowski J, DeCunha JM, Croce KJ, Bergmark BA, Tsui JMG, Devlin PM, Enger SA. RapidBrachyIVBT: A dosimetry software for patient-specific intravascular brachytherapy dose calculations on optical coherence tomography images. Med Phys 2025; 52:1256-1267. [PMID: 39561213 DOI: 10.1002/mp.17525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Coronary artery disease is the most common form of cardiovascular disease. It is caused by excess plaque along the arterial wall, blocking blood flow to the heart (stenosis). A percutaneous coronary intervention widens the arterial wall with the inflation of a balloon inside the lesion area and leaves behind a metal stent to prevent re-narrowing of the artery (restenosis). However, in-stent restenosis may occur due to damage to the arterial wall tissue, triggering neointimal hyperplasia, producing fibrotic and calcified plaques and narrowing the artery again. Drug-eluting stents, which slowly release medication to inhibit neointimal hyperplasia, are used to prevent in-stent restenosis but fail up to 20% of cases. Coronary intravascular brachytherapy (IVBT), which uses β $\beta$ -emitting radionuclides to prevent in-stent restenosis, is used in these failed cases to prevent in-stent restenosis. However, current clinical dosimetry for IVBT is water-based, and heterogeneities such as the guidewire of the IVBT device, fibrotic and calcified plaques and stents are not considered. PURPOSE This study aimed to develop a Monte Carlo-based dose calculation software, accounting for patient-specific geometry from Optical Coherence Tomography (OCT) images. METHODS RapidBrachyIVBT, a Monte Carlo dose calculation software based on the Geant4 toolkit v. 10.02.p02, was developed and integrated into RapidBrachyMCTPS, a treatment planning system for brachytherapy applications. The only commercially available IVBT delivery system, the Novoste Beta-Cath 3.5F, with a90 Sr 90 Y $^{90}{\rm Sr}^{90}{\rm Y}$ source train, was modeled with 30, 40, and 60 mm source train lengths. The software was validated with published TG-149 parameters compared to Monte Carlo simulations in water. The dose calculation engine was tested with OCT images from a patient undergoing coronary IVBT for recurrent in-stent restenosis at Brigham and Women's Hospital in Boston, Massachusetts. Considering the heterogeneities, the images were segmented and used to calculate the absorbed dose to water and the absorbed dose to medium. The prescribed dose was normalized to 23 Gy at 2.0 mm from the source center, which is the target volume in IVBT. RESULTS The dose rate values in water obtained using RapidBrachyIVBT aligned with TG-149 consensus values, showing agreement within a range of 0.03% to 1.7%. Considering the heterogeneities present in the patient's OCT images, the absorbed dose in the entire artery segment was up to 77.5% lower, while within the target volume, it was up to 56.6% lower, compared to the dose calculated in a homogeneous water phantom. CONCLUSION RapidBrachyIVBT, a Monte Carlo dose calculation software for IVBT, was developed and successfully integrated into RapidBrachyMCTPS, a treatment planning system for brachytherapy applications, where accurate attenuation of the absorbed dose by heterogeneities is considered.
Collapse
Affiliation(s)
- Maryam Rahbaran
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Jonathan Kalinowski
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Joseph M DeCunha
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Medical Physics Program, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kevin J Croce
- Department of Cardiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian A Bergmark
- Department of Cardiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James M G Tsui
- McGill University Health Centre, Montréal, Québec, Canada
| | - Phillip M Devlin
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
2
|
Cui Z, Wang L, Liu W, Xu D, Zhang T, Ma B, Zhang K, Yuan L, Bing Z, Liu J, Liu B, Wu W, Tian L. Imageable Brachytherapy with Chelator-Free Radiolabeling Hydrogel. Adv Healthc Mater 2024; 13:e2401438. [PMID: 38744050 DOI: 10.1002/adhm.202401438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Brachytherapy stands as an essential clinical approach for combating locally advanced tumors. Here, an injectable brachytherapy hydrogel is developed for the treatment of both local and metastatic tumor. Fe-tannins nanoparticles are efficiently and stably radiolabeled with clinical used therapeutic radionuclides (such as 131I, 90Y, 177Lu, and 225Ac) without a chelator, and then chemically cross-linked with 4-armPEG-SH to form brachytherapy hydrogel. Upon intratumoral administration, magnetic resonance imaging (MRI) signal from ferric ions embedded within the hydrogel directly correlates with the retention dosage of radionuclides, which can real-time monitor radionuclides emitting short-range rays in vivo without penetration limitation during brachytherapy. The hydrogel's design ensures the long-term tumor retention of therapeutic radionuclides, leading to the effective eradication of local tumor. Furthermore, the radiolabeled hydrogel is integrated with an adjuvant to synergize with immune checkpoint blocking therapy, thereby activating potent anti-tumor immune responses and inhibiting metastatic tumor growth. Therefore, this work presents an imageable brachytherapy hydrogel for real-time monitoring therapeutic process, and expands the indications of brachytherapy from treatment of localized tumors to metastatic tumors.
Collapse
Affiliation(s)
- Zhencun Cui
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Liqin Wang
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Wei Liu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Dan Xu
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China
| | - Taofeng Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, 730000, China
| | - Baoliang Ma
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Kai Zhang
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Lingyan Yuan
- Key Laboratory of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China
| | - Zhitong Bing
- Key Laboratory of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China
| | - Jiangyan Liu
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Wangsuo Wu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
3
|
Robitaille M, Ménard C, Famulari G, Béliveau-Nadeau D, Enger SA. 169Yb-based high dose rate intensity modulated brachytherapy for focal treatment of prostate cancer. Brachytherapy 2024; 23:523-534. [PMID: 39038997 DOI: 10.1016/j.brachy.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE This study compares conventional 192Ir-based high dose rate brachytherapy (HDR-BT) with 169Yb-based HDR intensity modulated brachytherapy (IMBT) for focal prostate cancer treatment. Additionally, the study explores the potential to generate less invasive treatment plans with IMBT by reducing the number of catheters needed to achieve acceptable outcomes. METHODS AND MATERIALS A retrospective dosimetric study of ten prostate cancer patients initially treated with conventional 192Ir-based HDR-BT and 5-14 catheters was employed. RapidBrachyMCTPS, a Monte Carlo-based treatment planning system was used to calculate and optimize dose distributions. For 169Yb-based HDR IMBT, a custom 169Yb source combined with 0.8 mm thick platinum shields placed inside 6F catheters was used. Furthermore, dose distributions were investigated when iteratively removing catheters for less invasive treatments. RESULTS With IMBT, the urethra D10 and D0.1cc decreased on average by 15.89 and 15.65 percentage points (pp) and the rectum V75 and D2cc by 1.53 and 11.54 pp, respectively, compared to the conventional clinical plans. Similar trends were observed when the number of catheters decreased. On average, there was an observed increase in PTV V150 from 2.84 pp with IMBT when utilizing all catheters to 8.83 pp when four catheters were removed. PTV V200 increased from 0.42 to 2.96 pp on average. Hotspots in the body were however lower with IMBT compared to conventional clinical plans. CONCLUSIONS 169Yb-based HDR IMBT for focal treatment of prostate cancer has the potential to successfully deliver clinically acceptable, less invasive treatment with reduced dose to organs at risk.
Collapse
Affiliation(s)
- Maude Robitaille
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Cynthia Ménard
- Department of Radiation Oncology, CHUM, Montreal, Quebec, Canada
| | - Gabriel Famulari
- Department of Radiation Oncology, Jewish General Hospital, Montreal, Quebec, Canada; Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Shirin A Enger
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Kalinowski J, Enger SA. RapidBrachyTG43: A Geant4-based TG-43 parameter and dose calculation module for brachytherapy dosimetry. Med Phys 2024; 51:3746-3757. [PMID: 38252746 DOI: 10.1002/mp.16948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The AAPM TG-43U1 formalism remains the clinical standard for dosimetry of low- and high-energy γ $\gamma$ -emitting brachytherapy sources. TG-43U1 and related reports provide consensus datasets of TG-43 parameters derived from various published measured data and Monte Carlo simulations. These data are used to perform standardized and fast dose calculations for brachytherapy treatment planning. PURPOSE Monte Carlo TG-43 dosimetry parameters are commonly derived to characterize novel brachytherapy sources. RapidBrachyTG43 is a module of RapidBrachyMCTPS, a Monte Carlo-based treatment planning system, designed to automate this process, requiring minimal user input to prepare Geant4-based Monte Carlo simulations for a source. RapidBrachyTG43 may also perform a TG-43 dose to water-in-water calculation for a plan, substantially accelerating the same calculation performed using RapidBrachyMCTPS's Monte Carlo dose calculation engine. METHODS TG-43 parametersS K / A $S_K/A$ , Λ $\Lambda$ ,g L ( r ) $g_L(r)$ , andF ( r , θ ) $F(r,\theta)$ were calculated using three commercial source models, one each of125 $^{125}$ I,192 $^{192}$ Ir, and60 $^{60}$ Co, and were benchmarked to published data. TG-43 dose to water was calculated for a clinical breast brachytherapy plan and was compared to a Monte Carlo dose calculation with all patient tissues, air, and catheters set to water. RESULTS TG-43 parameters for the three simulated sources agreed with benchmark datasets within tolerances specified by the High Energy Brachytherapy Dosimetry working group. A gamma index comparison between the TG-43 and Monte Carlo dose-to-water calculations with a dose difference and difference to agreement criterion of 1%/1 mm yielded a 98.9% pass rate, with all relevant dose volume histogram metrics for the plan agreeing within 1%. Performing a TG-43-based dose calculation provided an acceleration of dose-to-water calculation by a factor of 165. CONCLUSIONS Determination of TG-43 parameter data for novel brachytherapy sources may now be facilitated by RapidBrachyMCTPS. These parameter datasets and existing consensus or published datasets may also be used to determine the TG-43 dose for a plan in RapidBrachyMCTPS.
Collapse
Affiliation(s)
- Jonathan Kalinowski
- Medical Physics Unit, Faculty of Medicine, Department of Oncology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Shirin A Enger
- Medical Physics Unit, Faculty of Medicine, Department of Oncology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
5
|
Quetin S, Bahoric B, Maleki F, Enger SA. Deep learning for high-resolution dose prediction in high dose rate brachytherapy for breast cancer treatment. Phys Med Biol 2024; 69:105011. [PMID: 38604185 DOI: 10.1088/1361-6560/ad3dbd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective.Monte Carlo (MC) simulations are the benchmark for accurate radiotherapy dose calculations, notably in patient-specific high dose rate brachytherapy (HDR BT), in cases where considering tissue heterogeneities is critical. However, the lengthy computational time limits the practical application of MC simulations. Prior research used deep learning (DL) for dose prediction as an alternative to MC simulations. While accurate dose predictions akin to MC were attained, graphics processing unit limitations constrained these predictions to large voxels of 3 mm × 3 mm × 3 mm. This study aimed to enable dose predictions as accurate as MC simulations in 1 mm × 1 mm × 1 mm voxels within a clinically acceptable timeframe.Approach.Computed tomography scans of 98 breast cancer patients treated with Iridium-192-based HDR BT were used: 70 for training, 14 for validation, and 14 for testing. A new cropping strategy based on the distance to the seed was devised to reduce the volume size, enabling efficient training of 3D DL models using 1 mm × 1 mm × 1 mm dose grids. Additionally, novel DL architecture with layer-level fusion were proposed to predict MC simulated dose to medium-in-medium (Dm,m). These architectures fuse information from TG-43 dose to water-in-water (Dw,w) with patient tissue composition at the layer-level. Different inputs describing patient body composition were investigated.Main results.The proposed approach demonstrated state-of-the-art performance, on par with the MCDm,mmaps, but 300 times faster. The mean absolute percent error for dosimetric indices between the MC and DL-predicted complete treatment plans was 0.17% ± 0.15% for the planning target volumeV100, 0.30% ± 0.32% for the skinD2cc, 0.82% ± 0.79% for the lungD2cc, 0.34% ± 0.29% for the chest wallD2ccand 1.08% ± 0.98% for the heartD2cc.Significance.Unlike the time-consuming MC simulations, the proposed novel strategy efficiently converts TG-43Dw,wmaps into preciseDm,mmaps at high resolution, enabling clinical integration.
Collapse
Affiliation(s)
- Sébastien Quetin
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
- Montreal Institute for Learning Algorithms, Mila, Montreal, QC, Canada
| | - Boris Bahoric
- Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Farhad Maleki
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
- Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada
- Department of Radiology, University of Florida, Gainesville, FL, United States of America
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
- Montreal Institute for Learning Algorithms, Mila, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
6
|
Hadadi A, Ghanavati S. 75Se - A promising alternative to 192Ir for potential use in the skin cancer brachytherapy: A Monte Carlo simulation study using FLUKA code. Appl Radiat Isot 2023; 197:110786. [PMID: 37023694 DOI: 10.1016/j.apradiso.2023.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
This study aimed to evaluate the possibility of utilizing the HDR 75Se source for skin cancer brachytherapy. In this work, based on the BVH-20 skin applicator, two cup-shaped applicators, without and with the flattening filter, were modeled. To obtain the optimal flattening filter shape, an approach based on the MC simulation in combination with an analytical estimation was used. Then, the dose distributions for 75Se-applicators were generated using MC simulations in water, and their dosimetric characterizations such as flatness, symmetry, and penumbra were evaluated. Furthermore, the radiation leakage in the backside of the applicators was estimated by additional MC simulation. Finally, to evaluate the treatment times, calculations were performed for two 75Se-applicators assuming 5 Gy per fraction. The flatness, symmetry, and penumbra values for the 75Se-applicator without the flattening filter were estimated to be 13.7%, 1.05, and 0.41 cm respectively. The corresponding values for 75Se-applicator with the flattening filter were estimated to be 1.6%, 1.06, and 0.10 cm respectively. The radiation leakage value at a distance of 2 cm from the applicator surface was calculated to be 0.2% and 0.4% for the 75Se-applicator without and with the flattening filter respectively. Our results showed that the treatment time for the 75Se-applicator is comparable with that of the 192Ir-Leipzig applicator. The findings revealed that the dosimetric parameters of the 75Se applicator are comparable with the 192Ir skin applicator. Overall, the 75Se source can be an alternative to 192Ir sources for HDR brachytherapy of skin cancer.
Collapse
|
7
|
Morén B, Antaki M, Famulari G, Morcos M, Larsson T, Enger SA, Tedgren ÅC. Dosimetric impact of a robust optimization approach to mitigate effects from rotational uncertainty in prostate intensity-modulated brachytherapy. Med Phys 2023; 50:1029-1043. [PMID: 36478226 DOI: 10.1002/mp.16134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Intensity-modulated brachytherapy (IMBT) is an emerging technology for cancer treatment, in which radiation sources are shielded to shape the dose distribution. The rotatable shields provide an additional degree of freedom, but also introduce an additional, directional, type of uncertainty, compared to conventional high-dose-rate brachytherapy (HDR BT). PURPOSE We propose and evaluate a robust optimization approach to mitigate the effects of rotational uncertainty in the shields with respect to planning criteria. METHODS A previously suggested prototype for platinum-shielded prostate 169 Yb-based dynamic IMBT is considered. We study a retrospective patient data set (anatomical contours and catheter placement) from two clinics, consisting of six patients that had previously undergone conventional 192 Ir HDR BT treatment. The Monte Carlo-based treatment planning software RapidBrachyMCTPS is used for dose calculations. In our computational experiments, we investigate systematic rotational shield errors of ±10° and ±20°, and the same systematic error is applied to all dwell positions in each scenario. This gives us three scenarios, one nominal and two with errors. The robust optimization approach finds a compromise between the average and worst-case scenario outcomes. RESULTS We compare dose plans obtained from standard models and their robust counterparts. With dwell times obtained from a linear penalty model (LPM), for 10° errors, the dose to urethra ( D 0.1 c c $D_{0.1cc}$ ) and rectum ( D 0.1 c c $D_{0.1cc}$ and D 1 c c $D_{1cc}$ ) increase with up to 5% and 7%, respectively, in the worst-case scenario, while with the robust counterpart, the corresponding increases were 3% and 3%. For all patients and all evaluated criteria, the worst-case scenario outcome with the robust approach had lower deviation compared to the standard model, without compromising target coverage. We also evaluated shield errors up to 20° and while the deviations increased to a large extent with the standard models, the robust models were capable of handling even such large errors. CONCLUSIONS We conclude that robust optimization can be used to mitigate the effects from rotational uncertainty and to ensure the treatment plan quality of IMBT.
Collapse
Affiliation(s)
- Björn Morén
- Department of Mathematics, Linköping University, Linköping, Sweden
| | - Majd Antaki
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, QC, Canada
| | - Gabriel Famulari
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, QC, Canada.,Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Marc Morcos
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, QC, Canada
| | - Torbjörn Larsson
- Department of Mathematics, Linköping University, Linköping, Sweden
| | - Shirin A Enger
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Åsa Carlsson Tedgren
- Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Morcos M, Viswanathan AN, Enger SA. On the impact of absorbed dose specification, tissue heterogeneities, and applicator heterogeneities on Monte Carlo-based dosimetry of Ir-192, Se-75, and Yb-169 in conventional and intensity-modulated brachytherapy for the treatment of cervical cancer. Med Phys 2021; 48:2604-2613. [PMID: 33619739 DOI: 10.1002/mp.14802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the impact of dose reporting schemes and tissue/applicator heterogeneities for 192 Ir-, 75 Se-, and 169 Yb-based MRI-guided conventional and intensity-modulated brachytherapy. METHODS AND MATERIALS Treatment plans using a variety of dose reporting and tissue/applicator segmentation schemes were generated for a cohort (n = 10) of cervical cancer patients treated with 192 Ir-based Venezia brachytherapy. Dose calculations were performed using RapidBrachyMCTPS, a Geant4-based research Monte Carlo treatment planning system. Ultimately, five dose calculation scenarios were evaluated: (a) dose to water in water (Dw,w ); (b) Dw,w taking the applicator material into consideration (Dw,wApp ); (c) dose to water in medium (Dw,m ); (d and e) dose to medium in medium with mass densities assigned either nominally per structure (Dm,m (Nom) ) or voxel-by-voxel (Dm,m ). RESULTS Ignoring the plastic Venezia applicator (Dw,wApp ) overestimates Dm,m by up to 1% (average) with high energy source (192 Ir and 75 Se) and up to 2% with 169 Yb. Scoring dose to water (Dw,wApp or Dw,m ) generally overestimates dose and this effect increases with decreasing photon energy. Reporting dose other than Dm,m (or Dm,m Nom ) for 169 Yb-based conventional and intensity-modulated brachytherapy leads to a simultaneous overestimation (up to 4%) of CTVHR D90 and underestimation (up to 2%) of bladder D2cc due to a significant dip in the mass-energy absorption ratios at the depths of nearby targets and OARs. Using a nominal mass-density assignment per structure, rather than a CT-derived voxel-by-voxel assignment for MRI-guided brachytherapy, amounts to a dose error up to 1% for all radionuclides considered. CONCLUSIONS The effects of the considered dose reporting schemes trend correspondingly between conventional and intensity-modulated brachytherapy. In the absence of CT-derived mass densities, MRI-only-based dosimetry can adequately approximate Dm,m by assigning nominal mass densities to structures. Tissue and applicator heterogeneities do not significantly impact dosimetry for 192 Ir and 75 Se, but do for 169 Yb; dose reporting must be explicitly defined since Dw,m and Dw,w may overstate the dosimetric benefits.
Collapse
Affiliation(s)
- Marc Morcos
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Akila N Viswanathan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
9
|
RapidBrachyDL: Rapid Radiation Dose Calculations in Brachytherapy Via Deep Learning. Int J Radiat Oncol Biol Phys 2020; 108:802-812. [DOI: 10.1016/j.ijrobp.2020.04.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
|
10
|
Morcos M, Antaki M, Viswanathan AN, Enger SA. A novel minimally invasive dynamic-shield, intensity-modulated brachytherapy system for the treatment of cervical cancer. Med Phys 2020; 48:71-79. [PMID: 32916763 DOI: 10.1002/mp.14459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To present a novel, MRI-compatible dynamicshield intensity modulated brachytherapy (IMBT) applicator and delivery system using 192 Ir, 75 Se, and 169 Yb radioisotopes for the treatment of locally advanced cervical cancer. Needle-free IMBT is a promising technique for improving target coverage and organs at risk (OAR) sparing. METHODS AND MATERIALS The IMBT delivery system dynamically controls the rotation of a novel tungsten shield placed inside an MRI-compatible, 6-mm wide intrauterine tandem. Using 36 cervical cancer cases, conventional intracavitary brachytherapy (IC-BT) and intracavitary/interstitial brachytherapy (IC/IS-BT) (10Ci 192 Ir) plans were compared to IMBT (10Ci 192 Ir; 11.5Ci 75 Se; 44Ci 169 Yb). All plans were generated using the Geant4-based Monte Carlo dose calculation engine, RapidBrachyMC. Treatment plans were optimized then normalized to the same high-risk clinical target volume (HR-CTV) D90 and the D2cc for bladder, rectum, and sigmoid in the research brachytherapy planning system, RapidBrachyMCTPS. Plans were renormalized until either of the three OAR reached dose limits to calculate the maximum achievable HR-CTV D90 and D98 . RESULTS Compared to IC-BT, IMBT with either of the three radionuclides significantly improves the HR-CTV D90 and D98 by up to 5.2% ± 0.3% (P < 0.001) and 6.7% ± 0.5% (P < 0.001), respectively, with the largest dosimetric enhancement when using 169 Yb followed by 75 Se and then 192 Ir. Similarly, D2cc for all OAR improved with IMBT by up to 7.7% ± 0.6% (P < 0.001). For IC/IS-BT cases, needle-free IMBT achieved clinically acceptable plans with 169 Yb-based IMBT further improving HR-CTV D98 by 1.5% ± 0.2% (P = 0.034) and decreasing sigmoid D2cc by 1.9% ± 0.4% (P = 0.048). Delivery times for IMBT are increased by a factor of 1.7, 3.3, and 2.3 for 192 Ir, 75 Se, and 169 Yb, respectively, relative to conventional 192 Ir BT. CONCLUSIONS Dynamic shield IMBT provides a promising alternative to conventional IC- and IC/IS-BT techniques with significant dosimetric enhancements and even greater improvements with intermediate energy radionuclides. The ability to deliver a highly conformal, OAR-sparing dose without IS needles provides a simplified method for improving the therapeutic ratio less invasively and in a less resource intensive manner.
Collapse
Affiliation(s)
- Marc Morcos
- Medical Physics Unit, McGill University, Montreal, QC, Canada
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Majd Antaki
- Medical Physics Unit, McGill University, Montreal, QC, Canada
| | - Akila N Viswanathan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Shirin A Enger
- Medical Physics Unit, McGill University, Montreal, QC, Canada
- Department of Oncology, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Monte Carlo dosimetry study of novel rotating MRI-compatible shielded tandems for intensity modulated cervix brachytherapy. Phys Med 2020; 71:178-184. [DOI: 10.1016/j.ejmp.2020.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 11/19/2022] Open
|