1
|
Larrivière L, Supiot S, Thomin A, Jan S, Bakkar S, Calais G. [Short- and medium-term tolerance of hypofractionated prostate radiotherapy with simultaneous integrated boost]. Cancer Radiother 2024:S1278-3218(24)00100-8. [PMID: 39181777 DOI: 10.1016/j.canrad.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE This retrospective study was conducted to ensure that irradiation of the pelvic lymph node areas associated with simultaneous hypofractionated boost to the prostate according to the protocol implemented at the university hospital of Tours (France) does not result in excess urinary and digestive toxicity in the short and medium term. MATERIALS AND METHODS The study population included patients with localized unfavourable intermediate or high-risk prostate cancer. The dose delivered was 65Gy in 25 fractions of 2.6Gy to the prostate and seminal vesicles, and 50Gy in 25 fractions of 2Gy to the pelvic lymph nodes. Acute toxicity events (between the start of radiotherapy and the first follow-up consultation) and medium-term toxicity events (after the first follow-up consultation) were assessed using the CTCAE version 5.0 classification. RESULTS Sixty-three patients were treated according to the protocol between January 1st, 2020, and October 31st, 2022. The majority of them had high-risk prostate cancer (79%). The median follow-up was 15 months. Very few patients reported grade 3-4 toxicity acutely (6% urinary and 0% digestive toxicity) or in the medium term (7% urinary and 0% and digestive toxicity). CONCLUSION Radiotherapy of pelvic lymph node areas with simultaneous hypofractionated boost to the prostate is feasible, with low rates of severe acute and medium-term toxicity.
Collapse
Affiliation(s)
- Laurène Larrivière
- Service de radiothérapie, centre régional de cancérologie Henry-S.-Kaplan, centre hospitalier universitaire de Tours, 2, boulevard Tonnellé, Tours, France.
| | - Stephane Supiot
- Service de radiothérapie, Institut de cancérologie de l'Ouest René-Gauducheau, boulevard Professeur-Jacques-Monod, Saint-Herblain, France
| | - Astrid Thomin
- Service de radiothérapie, centre régional de cancérologie Henry-S.-Kaplan, centre hospitalier universitaire de Tours, 2, boulevard Tonnellé, Tours, France
| | - Simon Jan
- Service de radiothérapie, centre régional de cancérologie Henry-S.-Kaplan, centre hospitalier universitaire de Tours, 2, boulevard Tonnellé, Tours, France
| | - Sofia Bakkar
- Service de radiothérapie, centre régional de cancérologie Henry-S.-Kaplan, centre hospitalier universitaire de Tours, 2, boulevard Tonnellé, Tours, France
| | - Gilles Calais
- Service de radiothérapie, centre régional de cancérologie Henry-S.-Kaplan, centre hospitalier universitaire de Tours, 2, boulevard Tonnellé, Tours, France
| |
Collapse
|
2
|
Lischalk JW, Akerman M, Repka MC, Sanchez A, Mendez C, Santos VF, Carpenter T, Wise D, Corcoran A, Lepor H, Katz A, Haas JA. High-risk prostate cancer treated with a stereotactic body radiation therapy boost following pelvic nodal irradiation. Front Oncol 2024; 14:1325200. [PMID: 38410097 PMCID: PMC10895712 DOI: 10.3389/fonc.2024.1325200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose Modern literature has demonstrated improvements in long-term biochemical outcomes with the use of prophylactic pelvic nodal irradiation followed by a brachytherapy boost in the management of high-risk prostate cancer. However, this comes at the cost of increased treatment-related toxicity. In this study, we explore the outcomes of the largest cohort to date, which uses a stereotactic body radiation therapy (SBRT) boost following pelvic nodal radiation for exclusively high-risk prostate cancer. Methods and materials A large institutional database was interrogated to identify all patients with high-risk clinical node-negative prostate cancer treated with conventionally fractionated radiotherapy to the pelvis followed by a robotic SBRT boost to the prostate and seminal vesicles. The boost was uniformly delivered over three fractions. Toxicity was measured using the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. Oncologic outcomes were assessed using the Kaplan-Meier method. Cox proportional hazard models were created to evaluate associations between pretreatment characteristics and clinical outcomes. Results A total of 440 patients with a median age of 71 years were treated, the majority of whom were diagnosed with a grade group 4 or 5 disease. Pelvic nodal irradiation was delivered at a total dose of 4,500 cGy in 25 fractions, followed by a three-fraction SBRT boost. With an early median follow-up of 2.5 years, the crude incidence of grade 2+ genitourinary (GU) and gastrointestinal (GI) toxicity was 13% and 11%, respectively. Multivariate analysis revealed grade 2+ GU toxicity was associated with older age and a higher American Joint Committee on Cancer (AJCC) stage. Multivariate analysis revealed overall survival was associated with patient age and posttreatment prostate-specific antigen (PSA) nadir. Conclusion Utilization of an SBRT boost following pelvic nodal irradiation in the treatment of high-risk prostate cancer is oncologically effective with early follow-up and yields minimal high-grade toxicity. We demonstrate a 5-year freedom from biochemical recurrence (FFBCR) of over 83% with correspondingly limited grade 3+ GU and GI toxicity measured at 3.6% and 1.6%, respectively. Long-term follow-up is required to evaluate oncologic outcomes and late toxicity.
Collapse
Affiliation(s)
- Jonathan W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Hospital - Long Island, New York, NY, United States
| | - Meredith Akerman
- Division of Health Services Research, New York University Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States
| | - Michael C. Repka
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Astrid Sanchez
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Hospital - Long Island, New York, NY, United States
| | - Christopher Mendez
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Hospital - Long Island, New York, NY, United States
| | - Vianca F. Santos
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Hospital - Long Island, New York, NY, United States
| | - Todd Carpenter
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Hospital - Long Island, New York, NY, United States
| | - David Wise
- Department of Medical Oncology, Perlmutter Cancer Center at New York University Langone Health - Manhattan, New York, NY, United States
| | - Anthony Corcoran
- Department of Urology, Perlmutter Cancer Center at New York University Langone Hospital - Long Island, New York, NY, United States
| | - Herbert Lepor
- Department of Urology, Perlmutter Cancer Center at New York University Grossman School of Medicine, New York, NY, United States
| | - Aaron Katz
- Department of Urology, Perlmutter Cancer Center at New York University Langone Hospital - Long Island, New York, NY, United States
| | - Jonathan A. Haas
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Hospital - Long Island, New York, NY, United States
| |
Collapse
|
3
|
Pasquier D, Nickers P, Peiffert D, Maingon P, Pommier P, Lacornerie T, Tresch E, Barthoulot M, Lartigau E. A Multicenter Phase 2 Study of Ultrahypofractionated Stereotactic Boost After External Beam Radiotherapy in Intermediate-risk Prostate Carcinoma: A Very Long-term Analysis of the CKNO-PRO Trial. EUR UROL SUPPL 2023; 54:80-87. [PMID: 37545850 PMCID: PMC10403693 DOI: 10.1016/j.euros.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 08/08/2023] Open
Abstract
Background Genitourinary (GU) or gastrointestinal (GI) complications and tumor relapse can occur in the long term after radiotherapy for prostate cancer. Objective To assess the late tolerance and relapse-free survival (RFS) in patients undergoing hypofractionated stereotactic boost therapy after external beam radiotherapy (EBRT) for intermediate-risk prostate cancer. Design setting and participants Seventy-six patients with intermediate-risk prostate carcinoma between August 2010 and April 2013 were included. The first course delivered a dose of 46 Gy by conventional fractionation; the second course was a boost of 18 Gy (3 × 6 Gy) within 10 d. Outcome measurements and statistical analysis GU and GI toxicities were evaluated as the primary outcomes. The secondary outcomes were overall survival and RFS. The cumulative incidence of toxicity was calculated using a competing-risk approach. Overall survival and RFS were estimated using the Kaplan-Meier method. Results and limitations The median follow-up period was 88 mo (range, 81-99 mo). Sixty (79%) patients were treated with the CyberKnife and 16 (21%) using a linear accelerator. The cumulative incidences of GU and GI grade ≥2 toxicities at 120 mo were 1.4% (95% confidence interval [CI]: 0.1-6.6%) and 11.0% (95% CI: 5.1-19.4%), respectively. The overall survival and RFS rates at 8 yr were 89.1% (95% CI: 77-95%) and 76.9% (95% CI: 63.1-86.1), respectively. Conclusions A very long follow-up showed low GU and GI toxicities after a hypofractionated stereotactic boost after EBRT for intermediate-risk prostate cancer. Dose escalation of the boost delivered by hypofractionated radiation therapy appears safe for use in future trials. Patient summary We found low toxicity and good survival rates after a short and high-precision boost after external beam radiotherapy for intermediate-risk prostate cancer, with a long-term follow-up of 88 mo. This long-term treatment is safe and should be considered in future trials.
Collapse
Affiliation(s)
- David Pasquier
- Academic Department of Radiation Oncology, Centre Oscar Lambret, Lille, France
- Univ. Lille, &, CNRS, Centrale Lille, UMR 9189 - CRIStAL, Lille, France
| | - Philippe Nickers
- Academic Department of Radiation Oncology, Centre Oscar Lambret, Lille, France
| | - Didier Peiffert
- Institut de Cancérologie de Lorraine-Alexis Vautrin, Nancy, France
| | | | - Pascal Pommier
- Department of Radiation Oncology, Centre Leon Berard, Lyon, France
| | | | | | - Maël Barthoulot
- Department of Biostatistics, Centre Oscar Lambret, Lille, France
| | - Eric Lartigau
- Academic Department of Radiation Oncology, Centre Oscar Lambret, Lille, France
- Univ. Lille, &, CNRS, Centrale Lille, UMR 9189 - CRIStAL, Lille, France
| |
Collapse
|
4
|
Wegener E, Samuels J, Sidhom M, Trada Y, Sridharan S, Dickson S, McLeod N, Martin JM. Virtual HDR Boost for Prostate Cancer: Rebooting a Classic Treatment Using Modern Tech. Cancers (Basel) 2023; 15:cancers15072018. [PMID: 37046680 PMCID: PMC10093761 DOI: 10.3390/cancers15072018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Prostate cancer (PC) is the most common malignancy in men. Internal radiotherapy (brachytherapy) has been used to treat PC successfully for over a century. In particular, there is level-one evidence of the benefits of using brachytherapy to escalate the dose of radiotherapy compared with standard external beam radiotherapy approaches. However, the use of PC brachytherapy is declining, despite strong evidence for its improved cancer outcomes. A method using external beam radiotherapy known as virtual high-dose-rate brachytherapy boost (vHDRB) aims to noninvasively mimic a brachytherapy boost radiation dose plan. In this review, we consider the evidence supporting brachytherapy boosts for PC and the continuing evolution of vHDRB approaches, culminating in the current generation of clinical trials, which will help define the role of this emerging modality.
Collapse
Affiliation(s)
- Eric Wegener
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
- GenesisCare, Maitland, NSW 2323, Australia
- GenesisCare, Gateshead, NSW 2290, Australia
- Correspondence:
| | - Justin Samuels
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Mark Sidhom
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Yuvnik Trada
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Swetha Sridharan
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
- GenesisCare, Gateshead, NSW 2290, Australia
| | - Samuel Dickson
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Nicholas McLeod
- Department of Urology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Jarad M. Martin
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
- GenesisCare, Maitland, NSW 2323, Australia
- GenesisCare, Gateshead, NSW 2290, Australia
| |
Collapse
|
5
|
Kissel M, Créhange G, Graff P. Stereotactic Radiation Therapy versus Brachytherapy: Relative Strengths of Two Highly Efficient Options for the Treatment of Localized Prostate Cancer. Cancers (Basel) 2022; 14:2226. [PMID: 35565355 PMCID: PMC9105931 DOI: 10.3390/cancers14092226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) has become a valid option for the treatment of low- and intermediate-risk prostate cancer. In randomized trials, it was found not inferior to conventionally fractionated external beam radiation therapy (EBRT). It also compares favorably to brachytherapy (BT) even if level 1 evidence is lacking. However, BT remains a strong competitor, especially for young patients, as series with 10-15 years of median follow-up have proven its efficacy over time. SBRT will thus have to confirm its effectiveness over the long-term as well. SBRT has the advantage over BT of less acute urinary toxicity and, more hypothetically, less sexual impairment. Data are limited regarding SBRT for high-risk disease while BT, as a boost after EBRT, has demonstrated superiority against EBRT alone in randomized trials. However, patients should be informed of significant urinary toxicity. SBRT is under investigation in strategies of treatment intensification such as combination of EBRT plus SBRT boost or focal dose escalation to the tumor site within the prostate. Our goal was to examine respective levels of evidence of SBRT and BT for the treatment of localized prostate cancer in terms of oncologic outcomes, toxicity and quality of life, and to discuss strategies of treatment intensification.
Collapse
Affiliation(s)
| | | | - Pierre Graff
- Department of Radiation Oncology, Institut Curie, 26 Rue d’Ulm, 75005 Paris, France; (M.K.); (G.C.)
| |
Collapse
|
6
|
Graff P, Crehange G. [Ultra-hypofractionated radiotherapy for the treatment of localized prostate cancer: Results, limits and prospects]. Cancer Radiother 2021; 25:684-691. [PMID: 34274223 DOI: 10.1016/j.canrad.2021.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Still an emerging approach a few years ago, stereotactic body radiation therapy (SBRT) has ranked as a valid option for the treatment of localized prostate cancer. Inherent properties of prostatic adenocarcinoma (low α/β) make it the perfect candidate. We propose a critical review of the literature trying to put results into perspective to identify their strengths, limits and axes of development. Technically sophisticated, the stereotactic irradiation of the prostate is well tolerated. Despite the fact that median follow-up of published data is still limited, ultra-hypofractionated radiotherapy seems very efficient for the treatment of low and intermediate risk prostate cancers. Data seem satisfying for high-risk cancers as well. New developments are being studied with a main interest in treatment intensification for unfavorable intermediate risk and high-risk cancers. Advantage is taken of the sharp dose gradient of stereotactic radiotherapy to offer safe reirradiation to patients with local recurrence in a previously irradiated area.
Collapse
Affiliation(s)
- P Graff
- Département d'oncologie radiothérapie, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | - G Crehange
- Département d'oncologie radiothérapie, Institut Curie, 26, rue d'Ulm, 75005 Paris, France
| |
Collapse
|
7
|
Remick JS, Sabouri P, Zhu M, Bentzen SM, Sun K, Kwok Y, Kaiser A. Simulation of an HDR "Boost" with Stereotactic Proton versus Photon Therapy in Prostate Cancer: A Dosimetric Feasibility Study. Int J Part Ther 2021; 7:11-23. [PMID: 33604412 PMCID: PMC7886266 DOI: 10.14338/ijpt-20-00029.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose/Objectives To compare the dose escalation potential of stereotactic body proton therapy (SBPT) versus stereotactic body photon therapy (SBXT) using high-dose rate prostate brachytherapy (HDR-B) dose-prescription metrics. Patients and Methods Twenty-five patients previously treated with radiation for prostate cancer were identified and stratified by prostate size (≤ 50cc; n = 13, > 50cc; n = 12). Initial CT simulation scans were re-planned using SBXT and SBPT modalities using a prescription dose of 19Gy in 2 fractions. Target coverage goals were designed to mimic the dose distributions of HDR-B and maximized to the upper limit constraint for the rectum and urethra. Dosimetric parameters between SBPT and SBXT were compared using the signed-rank test and again after stratification for prostate size (≤ 50cm3 and >50cm3) using the Wilcoxon rank test. Results Prostate volume receiving 100% of the dose (V100) was significantly greater for SBXT (99%) versus SBPT (96%) (P ≤ 0.01), whereas the median V125 (82% vs. 73%, P < 0.01) and V200 (12% vs. 2%, P < 0.01) was significantly greater for SBPT compared to SBXT. Median V150 was 49% for both cohorts (P = 0.92). V125 and V200 were significantly correlated with prostate size. For prostates > 50cm3, V200 was significantly greater with SBPT compared to SBXT (14.5% vs. 1%, P = 0.005), but not for prostates 50cm3 (9% vs 4%, P = 0.11). Median dose to 2cm3 of the bladder neck was significantly lower with SBPT versus SBXT (9.6 Gy vs. 14 Gy, P < 0.01). Conclusion SBPT and SBXT can be used to simulate an HDR-B boost for locally advanced prostate cancer. SBPT demonstrated greater dose escalation potential than SBXT. These results are relevant for future trial design, particularly in patients with high risk prostate cancer who are not amenable to brachytherapy.
Collapse
Affiliation(s)
- Jill S Remick
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Pouya Sabouri
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mingyao Zhu
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Søren M Bentzen
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kai Sun
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adeel Kaiser
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, USA
| |
Collapse
|
8
|
Luo HC, Fu ZC, Wang XP, Cai LJ, Wang FM, Yin Q, Lin G, Chen ZH, Liao SG. Treating the primary in low burden metastatic prostate cancer: Where do we stand? Medicine (Baltimore) 2020; 99:e23715. [PMID: 33371121 PMCID: PMC7748322 DOI: 10.1097/md.0000000000023715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
ABSTRACT On the basis of endocrine therapy for patients with low burden metastatic prostate cancer (LBMP), the clinical efficacy and quality of life were compared between prostate-only directed radiotherapy (PODT) and prostate and metastasis radiotherapy (PMRT).From November 2009 to November 2015, total 91 patients newly diagnosed with LBMP were retrospectively analyzed, of which 52 patients received PODT and 39 patients received PMRT. The biochemical failure free interval (IBF), prostate specific survival (PCSS), and overall survival (OS) time were compared between the 2 groups, and expanded prostate cancer index composite (EPIC) scale was used to evaluate the difference in quality of life between the 2 groups.The median IBF of the PODT group was 31 months, which was significantly lower than the 39 months of the PMRT group (P < .05); the 5-year OS and PCSS were 58.9%, 65.3% in PODT group, and 58.9%, 71.79% in PMRT group, respectively. There was no significant between the 2 groups (P > .05); the side effects of acute radiotherapy in PMRT group were significantly higher than PODT group (P < .05), especially in bone marrow suppression and gastrointestinal reactions; The scores of urinary system function and intestinal system function in PMRT group were significantly higher than PODT group at the end of radiotherapy, 3 months after radiotherapy, and 6 months after radiotherapy (P < .05). The score of sexual function in PMRT group was significantly lower than that in PODT group after radiotherapy (P < .05), and higher than that in PORT group at other follow-up time points (P < .05). The hormone function was decreased at each follow-up time point in 2 groups, and there was no significant difference between the 2 groups (P > .05).Patients with LBMP receiving PMRT can improve IBF, but cannot increase PCSS and OS, and increase the incidence of acute radiation injury.
Collapse
Affiliation(s)
| | | | | | | | - Feng-Mei Wang
- Department of Gynaecology and Obstetrics, The 900th Hospital of Joint Logistics Force (Xiamen Dongfang Hospital), Fuzhou
| | - Qin Yin
- Department of Oncology, Longyan People's Hospital, Longyan
| | - Guishan Lin
- Department of Radiation Oncology, Fujian Province's Hospital, Fujian
| | | | - Shao-Guang Liao
- Department of Oncology, Taizhou First People's Hospital (Huangyan Hospital, Wenzhou Medical University), Taizhou, Zhejiang, China
| |
Collapse
|
9
|
Kim YJ, Ahn H, Kim CS, Kim YS. Phase I/IIa trial of androgen deprivation therapy, external beam radiotherapy, and stereotactic body radiotherapy boost for high-risk prostate cancer (ADEBAR). Radiat Oncol 2020; 15:234. [PMID: 33032643 PMCID: PMC7542889 DOI: 10.1186/s13014-020-01665-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the clinical outcomes of combination of androgen deprivation therapy (ADT), whole pelvic radiotherapy (WPRT), and stereotactic body radiotherapy (SBRT) boost in high-risk prostate cancer patients. Methods This prospective phase I/IIa study was conducted between 2016 and 2017. Following WPRT of 44 Gy in 20 fractions, patients were randomized to two boost doses, 18 Gy and 21 Gy, in 3 fractions using the Cyberknife system. Primary endpoints were incidences of acute toxicities and short-term biochemical recurrence-free survival (BCRFS). Secondary endpoints included late toxicities and short-term clinical progression-free survival (CPFS). Results A total of 26 patients were enrolled. Twelve patients received a boost dose of 18 Gy, and the rest received 21 Gy. The Median follow-up duration was 35 months. There were no grade ≥ 3 genitourinary (GU) or gastrointestinal (GI) toxicities. Sixty-one and 4% of patients experienced grade 1–2 acute GU and GI toxicities, respectively. There were 12% late grade 1–2 GU toxicities and 8% late grade 1–2 GI toxicities. Patient-reported outcomes of urinary symptoms were aggravated after WPRT and SBRT boost. However, they resolved at 1 month and returned to the baseline level at 4 months. Three-year BCRFS was 88.1%, and CPFS was 92.3%. Conclusions The present study protocol demonstrated that the combination of ADT, WPRT, and SBRT boosts for high-risk prostate cancer is safe and feasible, and may reduce total treatment time to 5 weeks. Boost dose of 21 Gy in 3 fractions seems appropriate. Trial registration ClinicalTrials.gov, ID; NCT03322020 - Retrospectively registered on 26 October 2017.
Collapse
Affiliation(s)
- Yeon Joo Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hanjong Ahn
- Department of Urology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Young Seok Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
10
|
[Radiation-oncology horizon 2030: From microbiota to plasma laser]. Cancer Radiother 2020; 24:744-750. [PMID: 32861611 DOI: 10.1016/j.canrad.2020.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/20/2022]
Abstract
Advances in physical, technological and biological fields have made radiation oncology a discipline in continual evolution. New current research areas could be implemented in the clinic in the near future. In this review in the form of several interviews, various promising themes for our specialty are described such as the gut microbiota, tumor organoids (or avatar), artificial intelligence, connected therapies, nanotechnologies and plasma laser. The individual prediction of the best therapeutic index combined with the integration of new technologies will ideally allow highly personalized treatment of patients receiving radiation therapy.
Collapse
|