1
|
Ni J, Chen H, Yu L, Guo T, Zhou Y, Jiang S, Ye R, Yang X, Chu L, Chu X, Li H, Liu W, Gu Y, Yuan Z, Gong J, Zhu Z. Predicting Regional Recurrence and Prognosis in Stereotactic Body Radiation Therapy-Treated Clinical Stage I Non-small Cell Lung Cancer Using a Radiomics Model Constructed With Surgical Data. Int J Radiat Oncol Biol Phys 2024; 120:1096-1106. [PMID: 38936632 DOI: 10.1016/j.ijrobp.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE Risk stratification of regional recurrence (RR) is clinically important in the design of adjuvant treatment and surveillance strategies in patients with clinical stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT). This study aimed to develop a radiomics model predicting occult lymph node metastasis (OLNM) using surgical data and apply it to the prediction of RR in SBRT-treated early-stage NSCLC patients. METHODS AND MATERIALS Patients with clinical stage I NSCLC who underwent curative surgery with systematic lymph node dissection from January 2013 to December 2018 (the training cohort) and from January 2019 to December 2020 (the validation cohort) were included. A preoperative computed tomography-based radiomics model, a clinical feature model, and a fusion model predicting OLNM were constructed. The performance of the 3 models was quantified and compared in the training and validation cohorts. Subsequently, the radiomics model was used to predict RR in a cohort of consecutive SBRT-treated early-stage NSCLC patients from 2 academic medical centers. RESULTS A total of 769 patients were included. Eight computed tomography features were identified in the radiomics model, achieving areas under the curves of 0.85 (95% CI, 0.81-0.89) and 0.83 (95% CI, 0.80-0.88) in the training and validation cohorts, respectively. Nevertheless, adding clinical features did not improve the performance of the radiomics model. With a median follow-up of 40.0 (95% CI, 35.2-44.8) months, 32 of the 213 patients in the SBRT cohort developed RR and those in the high-risk group based on the radiomics model had a higher cumulative incidence of RR (P < .001) and shorter regional recurrence-free survival (P = .02), progression-free survival (P = .004) and overall survival (P = .006) than those in the low-risk group. CONCLUSIONS The radiomics model based on pathologically confirmed data effectively identified patients with OLNM, which may be useful in the risk stratification among SBRT-treated patients with clinical stage I NSCLC.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Hongru Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Lu Yu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Ruiting Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Haiming Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jing Gong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| |
Collapse
|
2
|
Grasso L, Bourbonne V, Lucia F. Thoracic reirradiation of recurrent non-small cell lung carcinoma: A comprehensive review. Cancer Radiother 2024; 28:591-596. [PMID: 39406604 DOI: 10.1016/j.canrad.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024]
Abstract
Due to the recent advances in the systemic treatment of non-small cell lung cancer, the management of locoregional recurrences, especially after initial radiotherapy (with or without concurrent chemotherapy), is of increasing significance. The potential alternatives in this setting include: a salvage local strategy (based on surgery, radiotherapy or thermoablative treatment), promising approach, but sometimes difficult to implement in often frail patients, and whose modalities remain under-researched; or alternatively, the initiation of systemic treatment, where the prognosis aligns with that of de novo metastatic patients. This comprehensive literature review focused on salvage radiotherapy treatment of recurrent non-small cell lung carcinomas, after initial radiotherapy, with or without associated systemic treatment. It aims to present the main findings on this area, from patient selection and preparation, to key characteristics, including dosimetric aspects, and the main limitations and uncertainties associated with this therapeutic modality.
Collapse
Affiliation(s)
- Louis Grasso
- Service de radiothérapie, CHU Grenoble-Alpes, boulevard de la Chantourne, 38700 La Tronche, France.
| | - Vincent Bourbonne
- Service de radiothérapie, CHU de Brest, 2, avenue Foch, 29200 Brest, France
| | - Francois Lucia
- Service de radiothérapie, CHU de Brest, 2, avenue Foch, 29200 Brest, France
| |
Collapse
|
3
|
Zygogianni A, Koukourakis IM, Georgakopoulos J, Armpilia C, Liakouli Z, Desse D, Ntoumas G, Simopoulou F, Nikoloudi M, Kouloulias V. Robotic Stereotactic Ablative Radiotherapy for Patients with Early-Stage Lung Cancer: Results of an Interim Analysis. Cancers (Basel) 2024; 16:3227. [PMID: 39335198 PMCID: PMC11429671 DOI: 10.3390/cancers16183227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Surgery is the primary treatment for early-stage lung cancer. Patients with medically inoperable lung carcinomas and patients who refuse to undergo surgery are treated with definite radiotherapy. Stereotactic ablative radiotherapy (SABR) is a compelling non-invasive therapeutic modality for this group of patients that confers promising results. METHODS We report an interim analysis of an ongoing trial. Eighty-one patients with medically inoperable early-stage (T1,2N0) lung cancer underwent SABR in our institution. SABR was delivered via the CyberKnife M6 robotic radiosurgery system. The endpoints of the analysis were treatment efficacy and tolerance. RESULTS There were no acute or late toxicities from the skin or the connective tissue of the thorax. A grade 2/3 lung injury of non-clinical significance was noted in 6% of patients, which was directly related to a higher biologically effective dose (BEDα/β = 3) and larger irradiation lung volumes in both univariate and multivariate analyses. A local control (LC) was achieved in 100% of the patients at the first follow-up, and the projected 24-month local progression-free survival (LPFS) rate was 95%. The projected 24-month disease-specific overall survival (OS) was 94%. CONCLUSIONS High LC and OS rates can be achieved with SABR for early-stage lung cancer, with minimal toxicity. This study continues to recruit patients.
Collapse
Affiliation(s)
- Anna Zygogianni
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Ioannis M. Koukourakis
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - John Georgakopoulos
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Christina Armpilia
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Zoi Liakouli
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Dimitra Desse
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Georgios Ntoumas
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Foteini Simopoulou
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Maria Nikoloudi
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (J.G.); (C.A.); (Z.L.); (D.D.); (G.N.); (F.S.); (M.N.)
| | - Vassilis Kouloulias
- Department of Clinical Radiation Oncology, Attikon Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
4
|
Wang HH, Chen Y, Liu X, Zaorsky NG, Mani K, Niu ZM, Zheng BY, Zeng HY, Yan YY, Li YJ, He Y, Ji CZ, Sun BS, Meng MB. Reirradiation with stereotactic body radiotherapy for primary or secondary lung malignancies: Tumor control probability and safety analyses. Radiother Oncol 2023; 187:109817. [PMID: 37480993 DOI: 10.1016/j.radonc.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Reirradiation with stereotactic body radiotherapy (SBRT) for patients with primary or secondary lung malignancies represents an appealing definitive approach, but its feasibility and safety are not well defined. The purpose of this study was to investigate the tumor control probability (TCP) and toxicity for patients receiving reirradiation with SBRT. PATIENTS AND METHODS Eligible patients with recurrence of primary or secondary lung malignancies from our hospital were subjected to reirradiation with SBRT, and PubMed- and Embase-indexed articles were reviewed. The patient characteristics, pertinent SBRT dosimetric details, local tumor control, and toxicities were extracted. The logistic dose-response models were compared for TCP and overall survival (OS) in terms of the physical dose and three-, four-, and five-fraction equivalent doses. RESULTS The data of 17 patients from our hospital and 195 patients extracted from 12 articles were summarized. Reirradiation with SBRT yielded 2-year estimates of 80% TCP for doses of 50.10 Gy, 55.85 Gy, and 60.54 Gy in three, four, and five fractions, respectively. The estimated TCP with common fractionation schemes were 50%, 60%, and 70% for 42.04 Gy, 47.44 Gy, and 53.32 Gy in five fractions, respectively. Similarly, the 2-year estimated OS was 50%, 60%, and 70% for 41.62 Gy, 46.88 Gy, and 52.55 Gy in five fractions, respectively. Central tumor localization may be associated with severe toxicity. CONCLUSIONS Reirradiation with SBRT doses of 50-60 Gy in 3-5 fractions is feasible for appropriately selected patients with recurrence of peripheral primary or secondary lung malignancies, but should be carefully considered for centrally-located tumors due to potentially severe toxicity. Further studies are warranted for optimal dose/fractionation schedules and more accurate selection of patients suitable for reirradiation with SBRT.
Collapse
Affiliation(s)
- Huan-Huan Wang
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yuan Chen
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xin Liu
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Kyle Mani
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhi-Min Niu
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Bo-Yu Zheng
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Hong-Yu Zeng
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yuan-Yuan Yan
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yan-Jin Li
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yuan He
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chao-Zhi Ji
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Bing-Sheng Sun
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mao-Bin Meng
- Department of Radiation Oncology and CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
5
|
Fan S, Zhang Q, Chen J, Chen G, Zhu J, Li T, Xiao H, Du S, Zeng Z, He J. Comparison of long-term outcomes of stereotactic body radiotherapy (SBRT) via Helical tomotherapy for early-stage lung cancer with or without pathological proof. Radiat Oncol 2023; 18:49. [PMID: 36890550 PMCID: PMC9996902 DOI: 10.1186/s13014-023-02229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Stereotactic body radio therapy (SBRT) has emerged as a standard treatment option for nonsurgical candidates with early-stage non-small cell lung cancer (NSCLC). Pathological proof is sometimes difficult to obtain in patients with solitary pulmonary nodules (SPNs). We aimed to compare the clinical outcomes of stereotactic body radiotherapy via helical tomotherapy (HT-SBRT) for early-stage lung cancer patients with or without a pathological diagnosis. METHODS Between June 2011 and December 2016, we treated 119 lung cancer patients with HT-SBRT, including 55 with a clinical diagnosis and 64 with a pathological diagnosis. Survival outcomes, including local control (LC), progression-free survival (PFS), cancer-specific survival (CSS), and overall survival (OS), were compared between two cohorts with and without a pathological diagnosis. RESULTS The median follow-up for the whole group was 69 months. Patients with a clinical diagnosis were significantly older (p = 0.002). No significant differences were observed between the clinical and pathological diagnosis cohorts in terms of the long-term outcome, with 5-year LC, PFS, CSS, and OS of 87% versus 83% (p = 0.58), 48% versus 45% (p = 0.82), 87% versus 84% (p = 0.65), and 60% versus 63% (p = 0.79), respectively. Recurrence patterns and toxicity were also similar. CONCLUSIONS Empiric SBRT appears to be a safe and effective treatment option in a multidisciplinary setting when patients with SPNs highly suggestive of malignancy are unable/refuse to obtain a definitive pathological diagnosis.
Collapse
Affiliation(s)
- Shaonan Fan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qi Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jingyao Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Gang Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiangyi Zhu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tingting Li
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Han Xiao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian He
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Biopsy of Subsolid Nodules Suspicious for Adenocarcinoma: Counterpoint-Biopsy Has Limited Utility in the Diagnostic Evaluation of Subsolid Nodules. AJR Am J Roentgenol 2021; 217:815-816. [PMID: 33852361 DOI: 10.2214/ajr.20.25323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Koh TL, Ong WL, Farrugia B, Leong T, Lapuz C, Lim A. To biopsy or not to biopsy? Outcomes following stereotactic body radiotherapy (SBRT) for biopsy-confirmed versus radiologically-diagnosed primary lung cancer in a single Australian institution. Asia Pac J Clin Oncol 2021; 18:319-325. [PMID: 34187094 DOI: 10.1111/ajco.13614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Obtaining tissue diagnosis for lung cancer can sometimes be difficult and unsafe. We evaluated outcomes of biopsy-confirmed versus radiologically-diagnosed lung cancer treated with stereotactic body radiotherapy (SBRT). METHODS A single-institutional retrospective cohort of lung cancer patients treated with SBRT between February 2014 and October 2018. Outcomes of interest were: local failure (LF), distant failure (DF), and overall survival (OS). Probability of LF, DF, and OS were estimated using the Kaplan-Meier method. Differences in outcomes between biopsy-confirmed versus radiologically-diagnosed lung cancer were evaluated using the log-rank test. RESULTS Sixty-five lung lesions in 61 patients were treated with SBRT. Mean age was 75.6 years. Twenty-seven patients (44.3%) were ECOG 2-3. Thirty-nine patients (64%) were radiologically-diagnosed. There were five cases of LF observed at median of 12.8 months post-SBRT and 12-month LF-free survival was 96% (95% CI, 86-99%), with no differences between groups (p = 0.1). Sixteen patients developed DF, with 12-month DF-free survival of 84% (95% CI, 71-91%), and no difference between groups (p = 0.06). Sixteen deaths were reported at a median of 12.5 months post-SBRT, with 12-month OS of 85% (95% CI, 73-92%), and no differences between study groups (p = 0.5). No grade 3 toxicities were reported. CONCLUSION The oncological outcomes were similar in patients with early lung cancer treated with SBRT with or without biopsy-confirmation. In situations where tissue diagnosis is not feasible or unsafe, it is not unreasonable to offer SBRT based on clinical and radiological suspicion following multidisciplinary discussions.
Collapse
Affiliation(s)
- Tze Lui Koh
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, VIC, Australia
| | - Wee Loon Ong
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, VIC, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Center for Digital Transformation of Health, The University of Melbourne, Melbourne, VIC, Australia.,School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Briana Farrugia
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, VIC, Australia
| | - Tracy Leong
- Department of Respiratory Medicine, Austin Health, Heidelberg, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Carminia Lapuz
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, VIC, Australia
| | - Adeline Lim
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
8
|
Abdalmassih M, Bucher O, Rathod S, Dubey A, Kim JO, Ahmed N, Leylek A, Chowdhury A, Bashir B. Clinical Outcomes After Stereotactic Body Radiation Therapy for Early Stage Non-Small Cell Lung Cancer: A Single Institutional Study. Cureus 2020; 12:e11886. [PMID: 33304707 PMCID: PMC7719484 DOI: 10.7759/cureus.11886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction The standard of care for early-stage non-small cell lung cancer (NSCLC) is surgery. However, for medical inoperable patients stereotactic body radiation therapy (SBRT) is an alternative method. The aim of the study is to assess the overall survival (OS), progression-free survival (PFS) and local control (LC) of patients diagnosed with NSCLC in Manitoba, Canada, between 2013 and 2017 and managed with SBRT. Materials and methods This retrospective study included a total of 158 patients (60.13% of the population were females) that were diagnosed with stage I-II NSCLC and were treated with lung SBRT between 2013 and 2017 in Manitoba. Demographics and clinical data were retrospectively extracted from the electronic patient record. Kaplan-Meier and Cumulative incidence curves were used to describe the OS, PFS, and LC outcomes. Results From the 158 patients, 32 patients were treated with 60 Gy in eight fractions, while 121 patients were treated with 48 Gy in four fractions. Only 85 patients had biopsy-proven NSCLC. The median OS was 2.87 years (95% confidence interval [CI] 2.16-3.43). OS rates at one and two years were 85% and 66%, respectively. The median PFS was 2.03 years (95% CI 1.65-2.77). Furthermore, one-year and two-year PFS rates were 77% and 51%, respectively. Only 10 patients progressed locally at one year and 17 at two years, making the LC rate 93% at the one-year and 87% at the two-year mark. Conclusion These findings add to a growing evidence base supporting SBRT in the treatment of clinically suspected and biopsy-proven early-stage NSCLC patients.
Collapse
Affiliation(s)
| | - Oliver Bucher
- Department of Epidemiology and Cancer Registry, CancerCare Manitoba, Winnipeg, CAN
| | - Shrinivas Rathod
- Department of Radiation Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, CAN
| | - Arbind Dubey
- Department of Radiation Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, CAN
| | - Julian O Kim
- Department of Radiation Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, CAN
| | - Naseer Ahmed
- Department of Radiation Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, CAN
| | - Ahmet Leylek
- Department of Radiation Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, CAN
| | - Amitava Chowdhury
- Department of Radiation Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, CAN
| | - Bashir Bashir
- Department of Radiation Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, CAN
| |
Collapse
|