1
|
Chhabra AM, Snider JW, Kole AJ, Stock M, Holtzman AL, Press R, Wang CJ, Li H, Lin H, Shi C, McDonald M, Soike M, Zhou J, Sabouri P, Mossahebi S, Colaco R, Albertini F, Simone CB. Proton Therapy for Spinal Tumors: A Consensus Statement From the Particle Therapy Cooperative Group. Int J Radiat Oncol Biol Phys 2024; 120:1135-1148. [PMID: 39181272 DOI: 10.1016/j.ijrobp.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE Proton beam therapy (PBT) plays an important role in the management of primary spine tumors. The purpose of this consensus statement was to summarize safe and optimal delivery of PBT for spinal tumors. METHODS AND MATERIALS The Particle Therapy Cooperative Group Skull Base/Central nervous system/Sarcoma Subcommittee consisting of radiation oncologists and medical physicists with specific expertise in spinal irradiation developed expert recommendations discussing treatment planning considerations and current approaches in the treatment of primary spinal tumors. RESULTS Computed tomography simulation: factors that require significant consideration include (1) patient comfort, (2) setup reproducibility and stability, and (3) accessibility of appropriate beam angles. SPINE STABILIZATION HARDWARE If present, hardware should be placed with cross-links well above/below the level of the primary tumor to reduce the metal burden at the level of the tumor bed. New materials that can reduce uncertainties include polyether-ether-ketone and composite polyether-ether-ketone-carbon fiber implants. FIELD ARRANGEMENT Appropriate beam selection is required to ensure robust target coverage and organ at risk sparing. Commonly, 2 to 4 treatment fields, typically from posterior and/or posterior-oblique directions, are used. TREATMENT PLANNING METHODOLOGY Robust optimization is recommended for all pencil beam scanning plans (the preferred treatment modality) and should consider setup uncertainty (between 3 and 7 mm) and range uncertainty (3%-3.5%). In the presence of metal hardware, use of an increased range uncertainty up to 5% is recommended. CONCLUSIONS The Particle Therapy Cooperative Group Skull Base/Central nervous system/Sarcoma Subcommittee has developed recommendations to enable centers to deliver PBT safely and effectively for the management of primary spinal tumors.
Collapse
Affiliation(s)
- Arpit M Chhabra
- Department of Radiation Oncology, New York Proton Center, New York, New York.
| | - James W Snider
- Department of Radiation Oncology, South Florida Proton Therapy Institute, Delray Beach, Florida
| | - Adam J Kole
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Markus Stock
- Department of Medical Physics, EBG MedAustron, Wiener Neustadt, Austria
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Robert Press
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - C Jake Wang
- Department of Radiation Oncology, Willis Knighton Cancer Center, Shreveport, Louisiana
| | - Heng Li
- Department of Medical Physics, Johns Hopkins, Baltimore, Maryland
| | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - Chengyu Shi
- Department of Medical Physics, City of Hope, Irvine, California
| | - Mark McDonald
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Michael Soike
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Jun Zhou
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Pouya Sabouri
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sina Mossahebi
- Department of Medical Physics, Maryland Proton Treatment Center, Baltimore, Maryland
| | - Rovel Colaco
- Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Francesca Albertini
- Department of Medical Physics, Paul Scherrer Institut, Würenlingen, Switzerland
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| |
Collapse
|
2
|
Upadhyay R, Paulino AC. Risk-Stratified Radiotherapy in Pediatric Cancer. Cancers (Basel) 2024; 16:3530. [PMID: 39456624 PMCID: PMC11506666 DOI: 10.3390/cancers16203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
While the cure rate of cancer in children has markedly improved in the last few decades, late effects continue to be a problem in survivors. Radiotherapy, which is a major component of treatment in many cancers, is one of the major agents responsible for late toxicity. In the past decade, radiotherapy has been omitted in patients achieving excellent response to chemotherapy, such as in Hodgkin lymphoma and some Wilms tumors with lung metastases. Likewise, response to chemotherapy has been used to determine whether lower doses of radiation can be delivered in intracranial germinoma and pediatric nasopharyngeal carcinoma. Molecular subtyping in medulloblastoma is currently being employed, and in WNT-pathway M0 tumors, the reduction in radiotherapy dose to the craniospinal axis and tumor bed is currently being investigated. Finally, dose escalation was recently evaluated in patients with rhabdomyosarcoma > 5 cm who do not achieve a complete response to initial 9 weeks of chemotherapy as well as for unresectable Ewing sarcoma patients to improve local control.
Collapse
Affiliation(s)
- Rituraj Upadhyay
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43212, USA;
| | - Arnold C. Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Salem PP, Chami P, Daou R, Hajj J, Lin H, Chhabra AM, Simone CB, Lee NY, Hajj C. Proton Radiation Therapy: A Systematic Review of Treatment-Related Side Effects and Toxicities. Int J Mol Sci 2024; 25:10969. [PMID: 39456752 PMCID: PMC11506991 DOI: 10.3390/ijms252010969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is the second leading cause of death worldwide. Around half of all cancer patients undergo some type of radiation therapy throughout the course of their treatment. Photon radiation remains (RT) the most widely utilized modality of radiotherapy despite recent advancements in proton radiation therapy (PBT). PBT makes use of the particle's biological property known as the Bragg peak to better spare healthy tissue from radiation damage, with data to support that this treatment modality is less toxic than photon RT. Hence, proton radiation dosimetry looks better compared to photon dosimetry; however, due to proton-specific uncertainties, unexpected acute, subacute, and long-term toxicities can be encountered. Reported neurotoxicity resulting from proton radiation treatments include radiation necrosis, moyamoya syndrome, neurosensory toxicities, brain edema, neuromuscular toxicities, and neurocognitive toxicities. Pulmonary toxicities include pneumonitis and fibrosis, pleural effusions, and bronchial toxicities. Pericarditis, pericardial effusions, and atrial fibrillations are among the cardiac toxicities related to proton therapy. Gastrointestinal and hematological toxicities are also found in the literature. Genitourinary toxicities include urinary and reproductive-related toxicities. Osteological, oral, endocrine, and skin toxicities have also been reported. The side effects will be comparable to the ones following photon RT, nonetheless at an expected lower incidence. The toxicities collected mainly from case reports and clinical trials are described based on the organs affected and functions altered.
Collapse
Affiliation(s)
- Peter P. Salem
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Remy Daou
- Family Medicine Department, Hotel Dieu de France Hospital, Beirut 1660, Lebanon;
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon;
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Arpit M. Chhabra
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Nancy Y. Lee
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Carla Hajj
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| |
Collapse
|
4
|
Bronk JK, McAleer MF, McGovern SL, Lassen-Ramshad Y, Safwat A, Daw NC, Rainusso N, Mahajan A, Grosshans DR, Paulino AC. Comprehensive radiotherapy for pediatric Ewing Sarcoma: Outcomes of a prospective proton study. Radiother Oncol 2024; 195:110270. [PMID: 38583721 DOI: 10.1016/j.radonc.2024.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND AND PURPOSE Patients with Ewing Sarcoma (EWS) are treated with multimodality therapy which includes radiation therapy (RT) as an option for local control. We report on the efficacy after proton radiation therapy (PRT) to the primary site for localized and metastatic EWS. MATERIALS AND METHODS Forty-two children with EWS (33 localized, 9 metastatic) treated between 2007 and 2020 were enrolled on 2 prospective registry protocols for pediatric patients undergoing PRT. PRT was delivered by passive scatter (74 %), pencil-beam scanning (12 %) or mixed technique (14 %). Treated sites included the spine (45 %), pelvis/sacrum (26 %), skull/cranium (14 %), extraosseous (10 %), and chest wall (5 %). Median radiation dose was 54 Gy-RBE (range 39.6-55.8 Gy-RBE). Patients with metastatic disease received consolidative RT to metastatic sites (4 at the time of PRT to the primary site, 5 after completion of chemotherapy). Median follow-up time was 47 months after PRT. RESULTS The 4-year local control (LC), progression-free survival (PFS), and overall survival (OS) rates were 83 %, 71 %, and 86 %, respectively. All local failures (n = 6) were in-field failures. Tumor size ≥ 8 cm predicted for inferior 4-year LC (69 % vs 95 %, p = 0.04). 4-year PFS and OS rates were not statistically different in patients with localized versus metastatic disease (72 % vs 67 %, p = 0.70; 89 % vs 78 %, p = 0.38, respectively). CONCLUSION In conclusion, LC for pediatric patients with EWS treated with PRT was comparable to that of historical patients who received photon-RT. Tumor size ≥ 8 cm predicted increased risk of local failure. Patients with metastatic disease, including non-pulmonary only metastases, received radiation therapy to all metastatic sites and had favorable survival outcomes.
Collapse
Affiliation(s)
- Julianna K Bronk
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Mary Frances McAleer
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Akmal Safwat
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Najat C Daw
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nino Rainusso
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine and Texas Children's Hospital Cancer and Hematology Centers, Houston, TX, United States
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arnold C Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
5
|
Ioakeim-Ioannidou M, Rose M, Chen YL, MacDonald SM. The Use of Proton and Carbon Ion Radiation Therapy for Sarcomas. Semin Radiat Oncol 2024; 34:207-217. [PMID: 38508785 DOI: 10.1016/j.semradonc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The unique physical and biological characteristics of proton and carbon ions allow for improved sparing of normal tissues, decreased integral dose to the body, and increased biological effect through high linear energy transfer. These properties are particularly useful for sarcomas given their histology, wide array of locations, and age of diagnosis. This review summarizes the literature and describes the clinical situations in which these heavy particles have advantages for treating sarcomas.
Collapse
Affiliation(s)
| | - Melanie Rose
- Department of Radiation Oncology, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | - Yen-Lin Chen
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
6
|
Laitinen MK, Parry MC, Morris GV, Jeys LM. Pelvic bone sarcomas, prognostic factors, and treatment: A narrative review of the literature. Scand J Surg 2023; 112:206-215. [PMID: 37438963 DOI: 10.1177/14574969231181504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Primary sarcomas of bone are rare malignant mesenchymal tumors. The most common bone sarcomas are osteosarcoma, Ewing's sarcoma, and chondrosarcoma. The prognosis has improved over the years, but bone sarcomas are still life-threatening tumors that need a multidisciplinary approach for diagnosis and treatment. Bone sarcomas arising in the pelvis present a unique challenge to orthopedic oncologists due to the absence of natural anatomical barriers, the close proximity of vital neurovascular structures, and the high mechanical demands placed on any pelvic reconstruction following the excision of the tumor. While radiotherapy has an important role especially in Ewing's sarcoma and chemotherapy for both Ewing's sarcoma and osteosarcoma, surgery remains the main choice of treatment for all three entities. While external hemipelvectomy has remained one option, the main aim of surgery is limb salvage. After complete tumor resection, the bone defect needs to be reconstructed. Possibilities to reconstruct the defect include prosthetic or biological reconstruction. The method of reconstruction is dependent on the location of tumor and the surgery required for its removal. The aim of this article is to give an insight into pelvic bone sarcomas, their oncological and surgical outcomes, and the options for treatment based on the authors' experiences.
Collapse
Affiliation(s)
- Minna K Laitinen
- Helsinki University Hospital and University of Helsinki Helsinki Finland Bridge Hospital Haartmaninkatu 4 PL 370 00029 HUS
- The Royal Orthopaedic Hospital, Birmingham, UK
| | - Michael C Parry
- The Royal Orthopaedic Hospital, Birmingham, UK
- The Royal Orthopaedic Hospital, Birmingham, UK
| | - Guy V Morris
- The Royal Orthopaedic Hospital, Birmingham, UK
- The Royal Orthopaedic Hospital, Birmingham, UK
| | - Lee M Jeys
- The Royal Orthopaedic Hospital, Birmingham, UK
| |
Collapse
|
7
|
Perkins SM, Prime S, Watts M, Huang J, Zhao T. Pediatric Experience and Outcomes from the First Single-Vault Compact Proton Therapy Center. Cancers (Basel) 2023; 15:4072. [PMID: 37627100 PMCID: PMC10452472 DOI: 10.3390/cancers15164072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The first single-vault compact proton therapy center opened in 2013, utilizing a gantry-mounted synchrocylotron. The center was placed within a large academic radiation oncology department with a high priority for pediatric cancer care. Here we performed a retrospective study of pediatric (≤21 years) patients treated with proton therapy at our institution between 2013-2022. Patient, tumor, and treatment characteristics were obtained including race, socioeconomic status, insurance type, distance travelled, need for anesthesia, and outside referrals for proton therapy. In total, 250 pediatric patients were treated with proton therapy comprising 18% of our proton patient volume. Median follow-up was 3.1 years, 38.4% were female and 83% were white. The majority of cases were CNS (69.6%) and a large number of patients (80/250, 32%) required craniospinal irradiation. Anesthesia was required for 39.6% of patients. Average distance travelled for treatment was 111 miles and 23% of patients were referred from outside institutions for proton therapy. Insurance type was private/commercial for 61.2% followed by Medicaid for 32%. We found that 23% of patients lived in census tracts with >25% of people living below the national poverty line. Overall survival at 3 years was excellent at 83.7% with better outcomes for CNS patients compared to non-CNS patients. There were no cases of secondary malignancy at this early time point. As the world's first compact proton therapy center, we found that proton therapy increased our pediatric volume and provided proton therapy to a diverse group of children in our region. These data highlight some of the expected patient and tumor characteristics and necessary resources for providing pediatric proton beam therapy.
Collapse
Affiliation(s)
- Stephanie M. Perkins
- S. Lee Kling Proton Therapy Center, Washington University School of Medicine/Siteman Cancer Center, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
8
|
Locquet MA, Brahmi M, Blay JY, Dutour A. Radiotherapy in bone sarcoma: the quest for better treatment option. BMC Cancer 2023; 23:742. [PMID: 37563551 PMCID: PMC10416357 DOI: 10.1186/s12885-023-11232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Bone sarcomas are rare tumors representing 0.2% of all cancers. While osteosarcoma and Ewing sarcoma mainly affect children and young adults, chondrosarcoma and chordoma have a preferential incidence in people over the age of 40. Despite this range in populations affected, all bone sarcoma patients require complex transdisciplinary management and share some similarities. The cornerstone of all bone sarcoma treatment is monobloc resection of the tumor with adequate margins in healthy surrounding tissues. Adjuvant chemo- and/or radiotherapy are often included depending on the location of the tumor, quality of resection or presence of metastases. High dose radiotherapy is largely applied to allow better local control in case of incomplete primary tumor resection or for unresectable tumors. With the development of advanced techniques such as proton, carbon ion therapy, radiotherapy is gaining popularity for the treatment of bone sarcomas, enabling the delivery of higher doses of radiation, while sparing surrounding healthy tissues. Nevertheless, bone sarcomas are radioresistant tumors, and some mechanisms involved in this radioresistance have been reported. Hypoxia for instance, can potentially be targeted to improve tumor response to radiotherapy and decrease radiation-induced cellular toxicity. In this review, the benefits and drawbacks of radiotherapy in bone sarcoma will be addressed. Finally, new strategies combining a radiosensitizing agent and radiotherapy and their applicability in bone sarcoma will be presented.
Collapse
Affiliation(s)
- Marie-Anaïs Locquet
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
| | - Mehdi Brahmi
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
| | - Jean-Yves Blay
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Aurélie Dutour
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France.
| |
Collapse
|
9
|
Hoppe BS, Petersen IA, Wilke BK, DeWees TA, Imai R, Hug EB, Fiore MR, Debus J, Fossati P, Yamada S, Orlandi E, Zhang Q, Bao C, Seidensaal K, May BC, Harrell AC, Houdek MT, Vallow LA, Rose PS, Haddock MG, Ashman JB, Goulding KA, Attia S, Krishnan S, Mahajan A, Foote RL, Laack NN, Keole SR, Beltran CJ, Welch EM, Karim M, Ahmed SK. Pragmatic, Prospective Comparative Effectiveness Trial of Carbon Ion Therapy, Surgery, and Proton Therapy for the Management of Pelvic Sarcomas (Soft Tissue/Bone) Involving the Bone: The PROSPER Study Rationale and Design. Cancers (Basel) 2023; 15:1660. [PMID: 36980545 PMCID: PMC10046156 DOI: 10.3390/cancers15061660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023] Open
Abstract
Surgical treatment of pelvic sarcoma involving the bone is the standard of care but is associated with several sequelae and reduced functional quality of life (QOL). Treatment with photon and proton radiotherapy is associated with relapse. Carbon ion radiotherapy (CIRT) may reduce both relapse rates and treatment sequelae. The PROSPER study is a tricontinental, nonrandomized, prospective, three-arm, pragmatic trial evaluating treatments of pelvic sarcoma involving the bone. Patients aged at least 15 years are eligible for inclusion. Participants must have an Eastern Cooperative Oncology Group Performance Status score of two or less, newly diagnosed disease, and histopathologic confirmation of pelvic chordoma, chondrosarcoma, osteosarcoma, Ewing sarcoma with bone involvement, rhabdomyosarcoma (RMS) with bone involvement, or non-RMS soft tissue sarcoma with bone involvement. Treatment arms include (1) CIRT (n = 30) delivered in Europe and Asia, (2) surgical treatment with or without adjuvant radiotherapy (n = 30), and (3) proton therapy (n = 30). Arms two and three will be conducted at Mayo Clinic campuses in Arizona, Florida, and Minnesota. The primary end point is to compare the 1-year change in functional QOL between CIRT and surgical treatment. Additional comparisons among the three arms will be made between treatment sequelae, local control, and other QOL measures.
Collapse
Affiliation(s)
- Bradford S. Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ivy A. Petersen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin K. Wilke
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Todd A. DeWees
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Phoenix, AZ 85054, USA
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Reiko Imai
- Division of Radiation Oncology, QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Eugen B. Hug
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
| | - Maria Rosaria Fiore
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
- Department for Basic and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Shigeru Yamada
- Division of Radiation Oncology, QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201102, China
| | - Cihang Bao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201102, China
| | - Katharina Seidensaal
- Department of Radiation Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Byron C. May
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna C. Harrell
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Matthew T. Houdek
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura A. Vallow
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Peter S. Rose
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Steven Attia
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, University of Texas Health Houston Neurosciences-Texas Medical Center, Houston, TX 77030, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sameer R. Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Eric M. Welch
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mohammed Karim
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Safia K. Ahmed
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
10
|
Hwang E, Gaito S, France A, Crellin AM, Thwaites DI, Ahern V, Indelicato D, Timmermann B, Smith E. Outcomes of Patients Treated in the UK Proton Overseas Programme: Non-central Nervous System Group. Clin Oncol (R Coll Radiol) 2023; 35:292-300. [PMID: 36813694 DOI: 10.1016/j.clon.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
AIMS The UK Proton Overseas Programme (POP) was launched in 2008. The Proton Clinical Outcomes Unit (PCOU) warehouses a centralised registry for collection, curation and analysis of all outcomes data for all National Health Service-funded UK patients referred and treated abroad with proton beam therapy (PBT) via the POP. Outcomes are reported and analysed here for patients diagnosed with non-central nervous system tumours treated from 2008 to September 2020 via the POP. MATERIALS AND METHODS All non-central nervous system tumour files for treatments as of 30 September 2020 were interrogated for follow-up information, and type (following CTCAE v4) and time of onset of any late (>90 days post-PBT completion) grade 3-5 toxicities. RESULTS Four hundred and ninety-five patients were analysed. The median follow-up was 2.1 years (0-9.3 years). The median age was 11 years (0-69 years). 70.3% of patients were paediatric (<16 years). Rhabdomyosarcoma (RMS) and Ewing sarcoma were the most common diagnoses (42.6% and 34.1%). 51.3% of treated patients were for head and neck (H&N) tumours. At last known follow-up, 86.1% of all patients were alive, with a 2-year survival rate of 88.3% and 2-year local control of 90.3%. Mortality and local control were worse for adults (≥25 years) than for the younger groups. The grade 3 toxicity rate was 12.6%, with a median onset of 2.3 years. Most were in the H&N region in paediatric patients with RMS. Cataracts (30.5%) were the most common, then musculoskeletal deformity (10.1%) and premature menopause (10.1%). Three paediatric patients (1-3 years at treatment) experienced secondary malignancy. Seven grade 4 toxicities occurred (1.6%), all in the H&N region and most in paediatric patients with RMS. Six related to eyes (cataracts, retinopathy, scleral disorder) or ears (hearing impairment). CONCLUSIONS This study is the largest to date for RMS and Ewing sarcoma, undergoing multimodality therapy including PBT. It demonstrates good local control, survival and acceptable toxicity rates.
Collapse
Affiliation(s)
- E Hwang
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, NSW, Australia; Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia.
| | - S Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - A France
- Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK
| | - A M Crellin
- NHS England National Clinical Lead Proton Beam Therapy, UK
| | - D I Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia; Radiotherapy Research Group, Leeds Institute of Medical Research, St James's Hospital and School of Medicine, Leeds University, Leeds, UK
| | - V Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - D Indelicato
- University of Florida Department of Radiation Oncology, Jacksonville, FL, USA
| | - B Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, West German Cancer Centre, German Cancer Consortium, Essen, Germany
| | - E Smith
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
11
|
Particle Therapy in Adult Patients with Pelvic Ewing Sarcoma-Tumor and Treatment Characteristics and Early Clinical Outcomes. Cancers (Basel) 2022; 14:cancers14246045. [PMID: 36551530 PMCID: PMC9775362 DOI: 10.3390/cancers14246045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To report dosimetric characteristics and early clinical outcomes in patients with pelvic Ewing sarcoma undergoing particle therapy. METHODS Patients ≥ 18 years old with pelvic Ewing sarcoma treated in adjuvant or definitive settings were considered for this retrospective analysis. Proton therapy was carried out with 45-60 Gy (RBE) (1.5-2 Gy (RBE) per fraction) and carbon ion therapy for recurrent disease with 51 Gy (RBE) (3 Gy (RBE) per fraction). Local control (LC), disease control (DC) and overall survival (OS) were calculated using the Kaplan-Meier method. RESULTS For our sample, 21 patients were available, 18 of whom were treated for primary, 3 for locally recurrent and 16 for inoperable disease. The median CTV and PTV were 1215 cm3 and 1630 cm3. Median Dmean values for the PTV, bladder and rectum and median V40 Gy for the bowel for patients undergoing proton therapy were 56 Gy (RBE), 0.6 Gy (RBE), 9 Gy (RBE) and 15 cm3, respectively. At the end of particle therapy, G 1-2 skin reactions (n = 16/21) and fatigue (n = 9/21) were the main reported symptoms. After a median follow-up of 21 months, the 2-year LC, DC and OS were 76%, 56% and 86%, respectively. CONCLUSIONS Particle therapy in adult pelvic Ewing sarcoma is feasible and provides excellent dosimetric results. First clinical outcomes are promising; however, further long-term follow-up is needed.
Collapse
|
12
|
Salerno KE, Hill-Kayser C, Esiashvili N, Ermoian R. In Pediatric Sarcomas, Less is Sometimes More. Int J Radiat Oncol Biol Phys 2022; 113:907-910. [PMID: 35841914 DOI: 10.1016/j.ijrobp.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Kilian E Salerno
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Christine Hill-Kayser
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natia Esiashvili
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington.
| |
Collapse
|
13
|
Management of Unresectable Localized Pelvic Bone Sarcomas: Current Practice and Future Perspectives. Cancers (Basel) 2022; 14:cancers14102546. [PMID: 35626150 PMCID: PMC9139258 DOI: 10.3390/cancers14102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Some locally advanced pelvic bone tumors are deemed unresectable and, as such, not suitable for curative surgery. In this setting, treatment options are generally limited and not unanimous, with decisions being made on an individual basis after multidisciplinary discussion. Ultimately, and notwithstanding the bright prospects raised by novel therapeutic approaches, treatment should be patient-tailored, weighing a panoply of patient- and tumor-related factors. Abstract Bone sarcomas (BS) are rare mesenchymal tumors usually located in the extremities and pelvis. While surgical resection is the cornerstone of curative treatment, some locally advanced tumors are deemed unresectable and hence not suitable for curative intent. This is often true for pelvic sarcoma due to anatomic complexity and proximity to vital structures, making treatment options for these tumors generally limited and not unanimous, with decisions being made on an individual basis after multidisciplinary discussion. Several studies have been published in recent years focusing on innovative treatment options for patients with locally advanced sarcoma not amenable to local surgery. The present article reviews the evidence regarding the treatment of patients with locally advanced and unresectable pelvic BS, with the goal of providing an overview of treatment options for the main BS histologic subtypes involving this anatomic area and exploring future therapeutic perspectives. The management of unresectable localized pelvic BS represents a major challenge and is hampered by the lack of comprehensive and standardized guidelines. As such, the optimal treatment needs to be individually tailored, weighing a panoply of patient- and tumor-related factors. Despite the bright prospects raised by novel therapeutic approaches, the role of each treatment option in the therapeutic armamentarium of these patients requires solid clinical evidence before becoming fully established.
Collapse
|
14
|
Worawongsakul R, Steinmeier T, Lin YL, Bauer S, Hardes J, Hecker-Nolting S, Dirksen U, Timmermann B. Proton Therapy for Primary Bone Malignancy of the Pelvic and Lumbar Region - Data From the Prospective Registries ProReg and KiProReg. Front Oncol 2022; 12:805051. [PMID: 35251976 PMCID: PMC8888414 DOI: 10.3389/fonc.2022.805051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE/OBJECTIVES Multimodality treatments together with local proton therapy (PT) are commonly used in unresectable primary bone malignancies in order to provide better tumor control rate while maintaining good feasibility. The aim of this study is to provide data on outcome of PT for the challenging cohort of pelvic and lumbar bone tumors. METHODS AND MATERIALS This retrospective study includes all patients with primary bone malignancy of the pelvis and lumbar spine receiving PT in our institution between May 2013 and December 2019 enrolled in the prospective registries KiProReg and ProReg collecting information on demographics, treatment, tumor characteristics, toxicities, and outcome. RESULTS Eighty-one patients were enrolled with a median age of 19.7 years (1.3-85.8). The median follow-up time was 27.5 months (1.2-83.2). The majority of patients was male (64.2%), ECOG status of 0-1 (75.2%), underwent only biopsy (50.6%), received chemotherapy (69.1%) and was assigned for definite PT (70.4%). The predominant tumor characteristics were as follows: Ewing's sarcoma histology (58%), negative nodal involvement (97.5%) and no metastasis at diagnosis (81.5%). Median maximal diameter of tumor was 8 cm (1.4-20). LC, EFS and OS rate were 76.5, 60, and 88.1% at two years and 72.9, 45.7, and 68.9% at three years, respectively. Age over 20 years was a significant negative factor for LC, EFS, and OS. Metastatic disease at initial diagnosis affected OS and ECOG status of 2-4 affected EFS only. Regarding 17 relapsed cases (21%), isolated distant relapse was the most common failure (46.9%) followed by local failure (40.6%). Eleven out of 14 evaluable patients relapsed within high-dose region of radiotherapy. Acute grade 3-4 toxicity was found in 41 patients (50.6%) and all toxicities were manageable. Late grade 3 toxicity was reported in 7 patients (10.4%) without any of grade 4. Most common higher grade acute and late side effects concerned hematologic and musculoskeletal toxicity. CONCLUSION Proton therapy resulted in good oncological outcomes when being part of the multimodality treatment for pelvic and lumbar primary bone malignancies. However, distant metastases and local failures within the high-dose region of radiotherapy are still a common issue. Acute and late toxicities of combined therapy were acceptable.
Collapse
Affiliation(s)
- Rasin Worawongsakul
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, Essen, Germany
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- West German Cancer Centre Network, Essen, Germany
| | - Theresa Steinmeier
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Centre Network, Essen, Germany
| | - Yi-Lan Lin
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Centre Network, Essen, Germany
| | - Sebastian Bauer
- West German Cancer Centre Network, Essen, Germany
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| | - Jendrik Hardes
- West German Cancer Centre Network, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
- Department of Orthopedic Oncology, University Hospital Essen, Essen, Germany
| | - Stefanie Hecker-Nolting
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart Olgahospital, Stuttgart, Germany
| | - Uta Dirksen
- West German Cancer Centre Network, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
- Pediatrics III (Hematology, Oncology, Immunology, Cardiology, Pulmonology), University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, Essen, Germany
- West German Cancer Centre Network, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
15
|
Maier I, Ruegger PM, Deutschmann J, Helbich TH, Pietschmann P, Schiestl RH, Borneman J. Particle Radiation Side-Effects: Intestinal Microbiota Composition Shapes Interferon-γ-Induced Osteo-Immunogenicity. Radiat Res 2022; 197:184-192. [PMID: 35130347 DOI: 10.1667/rade-21-00065.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/09/2021] [Indexed: 07/25/2024]
Abstract
Microbiota can both negatively and positively impact radiation-induced bone loss. Our prior research showed that compared to mice with conventional gut microbiota (CM), mice with restricted gut microbiota (RM) reduced inflammatory tumor necrosis factor (TNF) in bone marrow, interleukin (IL)-17 in blood, and chemokine (C-C motif) ligand 20 (CCL20) in bone marrow under anti-IL-17 treatment. We showed that Muribaculum intestinale was more abundant in intestinal epithelial cells (IECs) from the small intestine of female RM mice and positively associated with augmented skeletal bone structure. Female C57BL/6J pun RM mice, which were injected with anti-IL-17 antibody one day before exposure to 1.5 Gy 28Si ions of 850 MeV/u, showed high trabecular numbers in tibiae at 6 weeks postirradiation. Irradiated CM mice were investigated for lower interferon-γ and IL-17 levels in the small intestine than RM mice. IL-17 blockage resulted in bacterial indicator phylotypes being different between both microbiota groups before and after irradiation. Analysis of the fecal bacteria were performed in relation to bone quality and body weight, showing reduced tibia cortical thickness in irradiated CM mice (-15%) vs. irradiated RM mice (-9.2%). Correlation analyses identified relationships among trabecular bone parameters (TRI-BV/TV, Tb.N, Tb.Th, Tb.Sp) and Bacteroides massiliensis, Muribaculum sp. and Prevotella denticola. Turicibacter sp. was found directly correlated with trabecular separation in anti-IL-17 treated mice, whereas an unidentified Bacteroidetes correlated with trabecular thickness in anti-IL-17 neutralized and radiation-exposed mice. We demonstrated radiation-induced osteolytic damage to correlate with bacterial indicator phylotypes of the intestinal microbiota composition, and these relationships were determined from the previously discovered dose-dependent particle radiation effects on cell proliferation in bone tissue. New translational approaches were designed to investigate dynamic changes of gut microbiota in correlation with conditions of treatment and disease as well as mechanisms of systemic side-effects in radiotherapy.
Collapse
Affiliation(s)
- Irene Maier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| | - Julia Deutschmann
- Department for Radiologic Technology, University of Applied Sciences Wiener Neustadt for Business and Engineering Ltd., Lower Austria, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Robert H Schiestl
- Departments of Pathology and Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| |
Collapse
|
16
|
Indelicato DJ, Vega RBM, Viviers E, Morris CG, Bradfield SM, Ranalli NJ, Bradley JA. Modern Therapy for Spinal and Paraspinal Ewing Sarcoma: An Update of the XXX Experience. Int J Radiat Oncol Biol Phys 2022; 113:161-165. [PMID: 35033584 DOI: 10.1016/j.ijrobp.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE In 2010, we published a comprehensive review of our institutional outcomes treating children with spinal and paraspinal Ewing sarcoma using photon therapy. Multimodality therapy was associated with fair disease control but also with serious toxicity, including a 37% rate of Grade ≥3 toxicity. We therefore sought to assess our more recent experience treating children with more modern technology and treatment regimens. METHODS AND MATERIALS Between 2010 and 2021, 32 pediatric patients with nonmetastatic spinal and paraspinal Ewing sarcoma were treated at XXX and enrolled in a retrospective outcome study. Median age at diagnosis was 9.8 (range, 2.1-21.8) years old. Three, 22, and 7 tumors arose within the cervical, thoracic, and lumbar spine regions, respectively. Median maximum tumor diameter was 5 (range, 3-19) cm. At diagnosis, 28/32 patients had motor, bowel, or bladder deficits. Chemotherapy was delivered per contemporary North American and European interval-compressed regimens. Before radiotherapy, 14 patients underwent gross total resection while 18 underwent a biopsy or subtotal resection with cord decompression. All patients were treated with proton therapy; 6 with hardware stabilization also received a component of intensity-modulated photon therapy. Median prescription dose was 50.4 (range, 45-54) GyRBE. Median maximum dose to the spinal cord was 50.2 (range, 0-54.9) GyRBE. RESULTS With a median follow-up of 4.1 (range, 0.7 - 9.4) years, the 5-year local control, progression-free survival, and overall survival rates were 92%, 79%, and 85%, respectively. Ten of 30 living patients have residual motor, bowel, or bladder deficits. Overall, 22% of patients experienced CTCAE grade 3 late toxicity related to multimodality treatment: kyphosis (n=4), esophagitis (n=2) and chronic kidney disease (n=1). No patients developed grade ≥4 toxicity, new neurologic deficits, or second malignancy. CONCLUSION Modern treatment advances may offer an improved therapeutic ratio for pediatric spinal and paraspinal Ewing sarcoma. With appropriate management, most patients can be cured with recovery of long-term neurologic function and modest side-effects.
Collapse
Affiliation(s)
- Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL.
| | - Raymond B Mailhot Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL
| | - Emma Viviers
- University of Florida Health Proton Therapy Institute, Jacksonville, FL
| | - Christopher G Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL
| | - Scott M Bradfield
- Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL
| | - Nathan J Ranalli
- Department of Neurosurgery, University of Florida College of Medicine Jacksonville, Jacksonville, FL
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL
| |
Collapse
|
17
|
COL3A1 and Its Related Molecules as Potential Biomarkers in the Development of Human Ewing’s Sarcoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7453500. [PMID: 35047627 PMCID: PMC8763479 DOI: 10.1155/2021/7453500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
Abstract
Background Ewing's sarcoma (ES) is the most common malignant primary bone tumor in children and adolescents. This study is aimed at developing new prognostic markers and building a microRNA-mRNA network in the development of ES. Method GSE80201 and GSE39262 were downloaded from the Gene Expression Omnibus (GEO) database. Bioinformatics analysis was used to download and process data. The coexpression of differentially expressed microRNAs (DEMs) and genes (DEGs) was selected by using R software. The FunRich database was utilized to perform cellular component (CC), molecular function (MF), and biological process (BP) enrichment analysis. Cytoscape and ClueGO were used to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and construct the mRNA-microRNA network. The Kaplan-Meier Plotter was used to perform prognosis analysis between the expression level of genes we selected and overall survival (OS) of patients with ES. Univariate analysis and multivariate analysis were carried out to research the prognostic value of identified mRNA expression in ES according to TCGA database. Results By using bioinformatics analysis, 10 DEMs and 5 target mRNAs were identified. Based on the KmPlot software, COL1A2, COL3A1, and TGFBI were significantly related to the OS of patients with ES. High COL3A1 mRNA expression was correlated with distant metastasis, margin status, and poor overall survival of ES. Besides, multivariate analysis indicated that COL3A1 was an independent risk factor for ES patients. Conclusions In conclusion, our results suggest that COL3A1 and its related molecules may be a potential diagnostic and prognostic biomarker for patients with ES.
Collapse
|
18
|
Mohammadhoseini P, Razzaghi S, Barazesh M, Jalili S. Ewing's sarcoma of the hip: A case report with no evidence of tumor recurrence and literature review. Bone Rep 2021; 15:101131. [PMID: 34621919 PMCID: PMC8484741 DOI: 10.1016/j.bonr.2021.101131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background Ewing's sarcoma (ES) of the hip and trochanteric region is a rare malignancy. The tumor has a poor prognosis due to the problems in early diagnosis and medical intervention. Case presentation This paper reports a rare case of hip ES presented in a 34y/o female. The clinical, radiological, and histopathological features were all in favor of ES. Following treatment by neoadjuvant/adjuvant chemotherapy, and irradiation the patient is now with complete resolution of the tumor. Conclusion The patient remained free of disease through 4 years of follow-up until now after diagnosis.
Collapse
Affiliation(s)
- Payam Mohammadhoseini
- Orthopaedics Department, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Samira Razzaghi
- Department of Radiotherapy, School of Medicine, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Science, Gerash, Iran
| | - Sajad Jalili
- Orthopaedics Department, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
- Corresponding author.
| |
Collapse
|
19
|
Mizumoto M, Fuji H, Miyachi M, Soejima T, Yamamoto T, Aibe N, Demizu Y, Iwata H, Hashimoto T, Motegi A, Kawamura A, Terashima K, Fukushima T, Nakao T, Takada A, Sumi M, Oshima J, Moriwaki K, Nozaki M, Ishida Y, Kosaka Y, Ae K, Hosono A, Harada H, Ogo E, Akimoto T, Saito T, Fukushima H, Suzuki R, Takahashi M, Matsuo T, Matsumura A, Masaki H, Hosoi H, Shigematsu N, Sakurai H. Proton beam therapy for children and adolescents and young adults (AYAs): JASTRO and JSPHO Guidelines. Cancer Treat Rev 2021; 98:102209. [PMID: 33984606 DOI: 10.1016/j.ctrv.2021.102209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022]
Abstract
Children and adolescents and young adults (AYAs) with cancer are often treated with a multidisciplinary approach. This includes use of radiotherapy, which is important for local control, but may also cause adverse events in the long term, including second cancer. The risks for limited growth and development, endocrine dysfunction, reduced fertility and second cancer in children and AYAs are reduced by proton beam therapy (PBT), which has a dose distribution that decreases irradiation of normal organs while still targeting the tumor. To define the outcomes and characteristics of PBT in cancer treatment in pediatric and AYA patients, this document was developed by the Japanese Society for Radiation Oncology (JASTRO) and the Japanese Society of Pediatric Hematology/Oncology (JSPHO).
Collapse
Affiliation(s)
- Masashi Mizumoto
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Fuji
- Department of Radiology and National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toshinori Soejima
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Norihiro Aibe
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Demizu
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Aichi, Japan
| | - Takayuki Hashimoto
- Department of Radiation Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Motegi
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Atsufumi Kawamura
- Department of Neurosurgery, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Keita Terashima
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Fukushima
- Department of Pediatric Hematology and Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Tomohei Nakao
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Akinori Takada
- Department of Radiology, Mie University Hospital, Tsu-shi, Mie, Japan
| | - Minako Sumi
- Department of Radiation Oncology and Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Radiation Oncology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | | | - Kensuke Moriwaki
- Department of Medical Statistics, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Miwako Nozaki
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Yuji Ishida
- Department of Pediatrics, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Keisuke Ae
- Department of Orthopaedic Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ako Hosono
- Department of Pediatric Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hideyuki Harada
- Division of Radiation Therapy, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Etsuyo Ogo
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Takashi Saito
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryoko Suzuki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mitsuru Takahashi
- Department of Orthopaedic Oncology, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Medicine, Nagasaki, Japan
| | - Akira Matsumura
- Departments of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hidekazu Masaki
- Proton Therapy Center, Aizawa Hospital, Matsumoto, Nagano, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Naoyuki Shigematsu
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Sakurai
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
20
|
Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, Hardes J, Hartmann W, Kovar H, Metzler M, Shulman DS, Streitbürger A, Timmermann B, Toretsky JA, Uhlenbruch Y, Vieth V, Grünewald TGP, Dirksen U. Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med 2021; 10:1685. [PMID: 33919988 PMCID: PMC8071040 DOI: 10.3390/jcm10081685] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ewing sarcoma, a highly aggressive bone and soft-tissue cancer, is considered a prime example of the paradigms of a translocation-positive sarcoma: a genetically rather simple disease with a specific and neomorphic-potential therapeutic target, whose oncogenic role was irrefutably defined decades ago. This is a disease that by definition has micrometastatic disease at diagnosis and a dismal prognosis for patients with macrometastatic or recurrent disease. International collaborations have defined the current standard of care in prospective studies, delivering multiple cycles of systemic therapy combined with local treatment; both are associated with significant morbidity that may result in strong psychological and physical burden for survivors. Nevertheless, the combination of non-directed chemotherapeutics and ever-evolving local modalities nowadays achieve a realistic chance of cure for the majority of patients with Ewing sarcoma. In this review, we focus on the current standard of diagnosis and treatment while attempting to answer some of the most pressing questions in clinical practice. In addition, this review provides scientific answers to clinical phenomena and occasionally defines the resulting translational studies needed to overcome the hurdle of treatment-associated morbidities and, most importantly, non-survival.
Collapse
Affiliation(s)
- Stefan K. Zöllner
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| | - James F. Amatruda
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| | - Sebastian Bauer
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, Sarcoma Center, University Hospital Essen, 45147 Essen, Germany
| | - Stéphane Collaud
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Thoracic Surgery, Ruhrlandklinik, University of Essen-Duisburg, 45239 Essen, Germany
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IbiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Jendrik Hardes
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany;
- West German Cancer Center (WTZ), Network Partner Site, University Hospital Münster, 48149 Münster, Germany
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute and Medical University Vienna, 1090 Vienna, Austria;
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Arne Streitbürger
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Beate Timmermann
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre, 45147 Essen, Germany
| | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA;
| | - Yasmin Uhlenbruch
- St. Josefs Hospital Bochum, University Hospital, 44791 Bochum, Germany;
| | - Volker Vieth
- Department of Radiology, Klinikum Ibbenbüren, 49477 Ibbenbühren, Germany;
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, 69120 Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
21
|
Meazza C, Luksch R, Luzzati A. Managing axial bone sarcomas in childhood. Expert Rev Anticancer Ther 2021; 21:747-764. [PMID: 33593222 DOI: 10.1080/14737140.2021.1891886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Axial osteosarcoma and Ewing sarcoma are rare, aggressive neoplasms with a worse prognosis than with tumors involving the extremities because they are more likely to be associated with larger tumor volumes, older age, primary metastases, and a poor histological response to chemotherapy. The 5-year OS rates are reportedly in the range of 18-41% for axial osteosarcoma, and 46-64% for Ewing sarcoma.Area covered: The treatment of axial bone tumors is the same as for extremity bone tumors, and includes chemotherapy, surgery and/or radiotherapy.Expert opinion: Local treatment of axial tumors is particularly difficult due to their proximity to neurological and vascular structures, which often makes extensive and en bloc resections impossible without causing significant morbidity. The incidence of local relapse is consequently high, and this is the main issue in the treatment of these tumors. Radiotherapy is an option in the case of surgical resections with close or positive margins, as well as for inoperable tumors. Delivering high doses of RT to the spinal cord can be dangerous. Given the complexity and rarity of these tumors, it is essential for this subset of patients to be treated at selected reference institutions with specific expertise and multidisciplinary skills.
Collapse
Affiliation(s)
- Cristina Meazza
- Pediatric Oncology Unit, Medical Oncology and Emathology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milano, Italy
| | - Roberto Luksch
- Pediatric Oncology Unit, Medical Oncology and Emathology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milano, Italy
| | - Alessandro Luzzati
- Orthopedic Oncology and Spinal Reconstruction Surgery, Orthopedic Oncology Department, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
22
|
Gerrand C, Bate J, Seddon B, Dirksen U, Randall RL, van de Sande M, O’Donnell P, Tuckett J, Peake D, Jeys L, Saifuddin A, Grainger M, Whelan J. Seeking international consensus on approaches to primary tumour treatment in Ewing sarcoma. Clin Sarcoma Res 2020; 10:21. [PMID: 33292535 PMCID: PMC7672819 DOI: 10.1186/s13569-020-00144-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The local treatment of Ewing sarcoma of bone involves surgery, radiotherapy or both. The selection of treatment depends on the anatomical extent of the tumour, the effectiveness of the proposed treatment, its morbidity, and the expectation of cure. However, not only are there variations in the approach to local treatment between individual patients, but also between treatment centres and countries. Our aim was to explore variation in practice and develop consensus statements about local treatment. METHODS A three stage modified Delphi technique was used with international collaborators. This involved an expert panel to identify areas of controversy, an online survey of international collaborators and a consensus meeting in London, UK in June 2017. In the consensus meeting, teams of clinicians discussed the local management of selected cases and their responses were collected with electronic voting. RESULTS Areas of greater or less consensus were identified. The lack of evidence underpinning different approaches was noted and areas for collaborative research became apparent. CONCLUSION This has demonstrated that there is an international consensus around many aspects of the local treatment of Ewing sarcoma of bone, including the use of specialist MultiDisciplinary Team (MDT) meetings with access to all appropriate treatments. However, considerable variation remains including the use of different staging investigations, decision making, definitions of response, and radiotherapy doses and timing. Further collaborative work should be undertaken to determine the impact of these variations in order to define best practice.
Collapse
Affiliation(s)
- Craig Gerrand
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP Middlesex UK
| | - Jessica Bate
- Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Beatrice Seddon
- University College Hospital, 250 Euston Road, London, NW1 2PG UK
| | - Uta Dirksen
- Pediatrics III, Sarcoma Centre, West German Cancer Centre, German Cancer Consortium (DKTK), Center Essen, University Hospital Essen, University Duisburg, Hufelandstr. 55, 45122 Essen, Germany
| | - R. Lor Randall
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817 USA
| | | | - Paul O’Donnell
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP Middlesex UK
| | - John Tuckett
- Freeman Hospital, Newcastle-upon-Tyne, NE7 7DN UK
| | - David Peake
- Oncology-University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH UK
| | - Lee Jeys
- Royal Orthopaedic Hospital, Bristol Road South, Birmingham, B31 2AP UK
| | - Asif Saifuddin
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP Middlesex UK
| | - Mel Grainger
- University Hospital Birmingham, Edgbaston, Birmingham, B15 2GW UK
| | - Jeremy Whelan
- University College Hospital, 250 Euston Road, London, NW1 2PG UK
| |
Collapse
|
23
|
Guder WK, Hardes J, Nottrott M, Steffen AJ, Dirksen U, Streitbürger A. Pelvic Ewing sarcoma: a retrospective outcome analysis of 104 patients who underwent pelvic tumor resection at a single supra-regional center. J Orthop Surg Res 2020; 15:534. [PMID: 33198775 PMCID: PMC7667797 DOI: 10.1186/s13018-020-02028-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Local treatment in pelvic Ewing sarcoma (ES) consists of operation, radiation therapy, or a combination of both. Reported outcomes vary depending on the treatment modality performed. It is the objective of this study to analyze surgical outcome and complications as well as oncological outcome and complications of chemo- and radiation therapy in this patient cohort and evaluate prognostic factors. METHODS Retrospective review of 104 patients who underwent tumor resection for pelvic ES from 1988 to 2014. RESULTS All patients underwent pelvic resection and radiation therapy was administered in 77.9%. Margins were clear in 94.2%. The response to chemotherapy was good in 78.8%. Local recurrence occurred in 7.7%. The presence of distant metastases at the time of operation was the most important negative predictor for overall survival (p = 0.003). The cumulative 5- and 10-year survival rates were 82.7% and 80.1% for non-metastasized and 61.4% and 41.6% for metastasized pelvic ES at operation. In the presence of a single-distant metastatic site at operation compared to multiple metastatic sites, the cumulative survival rates were 64.3% versus 50% at five and 50.7% versus 16.7% at 10 years. CONCLUSIONS A combined treatment approach of tumor resection and radiation therapy leads to a local control and overall survival rates comparable with those of extremity locations in this study's patient cohort with localized pelvic ES. Therefore, surgical tumor resection (combined with (neo-)adjuvant radiation therapy) in non-metastatic pelvic ES seems feasible. In metastatic patients, however, the significance of tumor resection as a part of local treatment remains less certain and improved outcomes of combined local treatment approaches need to be weighed against these patients' prognosis and quality of life.
Collapse
Affiliation(s)
- Wiebke K Guder
- Department of Orthopedics and Tumor Orthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany. .,Department of Orthopedic Oncology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Jendrik Hardes
- Department of Orthopedics and Tumor Orthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany.,Department of Orthopedic Oncology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Markus Nottrott
- Department of Orthopedics and Tumor Orthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany.,Department of Orthopedic Oncology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Anne Juliane Steffen
- Department of Orthopedics and Tumor Orthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology (III), University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Arne Streitbürger
- Department of Orthopedics and Tumor Orthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany.,Department of Orthopedic Oncology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| |
Collapse
|