1
|
Canters R, van der Klugt K, Trier Taasti V, Buijsen J, Ta B, Steenbakkers I, Houben R, Vilches-Freixas G, Berbee M. Robustness of intensity modulated proton treatment of esophageal cancer for anatomical changes and breathing motion. Radiother Oncol 2024; 198:110409. [PMID: 38917884 DOI: 10.1016/j.radonc.2024.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/26/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND PURPOSE In this study, we assessed the robustness of intensity modulated proton therapy (IMPT) in esophageal cancer for anatomical variations during treatment. METHODS The first sixty esophageal cancer patients, treated clinically with chemoradiotherapy were included. The treatment planning strategy was based on an internal target volume (ITV) approach, where the ITV was created from the clinical target volumes (CTVs) delineated on all phases of a 4DCT. For optimization, a 3 mm isotropic margin was added to the ITV, combined with robust optimization using 5 mm setup and 3 % range uncertainty. Each patient received weekly repeat CTs (reCTs). Robust plan re-evaluation on all reCTs, and a robust dose summation was performed. To assess the factors influencing ITV coverage, a multivariate linear regression analysis was performed. Additionally, clinical adaptations were evaluated. RESULTS The target coverage was adequate (ITV V94%>98 % on the robust voxel-wise minimum dose) on most reCTs (91 %), and on the summed dose in 92 % of patients. Significant predictors for ITV coverage in the multivariate analysis were diaphragm baseline shift and water equivalent depth (WED) of the ITV in the beam direction. Underdosage of the ITV mainly occurred in week 1 and 4, leading to treatment adaptation of eight patients, all on the first reCT. CONCLUSION Our IMPT treatment of esophageal cancer is robust for anatomical variations. Adaptation appears to be most effective in the first week of treatment. Diaphragm baseline shifts and WED are predictive factors for ITV underdosage, and should be incorporated in an adaptation protocol.
Collapse
Affiliation(s)
- Richard Canters
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Kim van der Klugt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Vicki Trier Taasti
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands; Aarhus University, Danish Centre for Particle Therapy, Denmark
| | - Jeroen Buijsen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bastiaan Ta
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Inge Steenbakkers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maaike Berbee
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
2
|
Katsuta T, Murakami Y, Kawahara D, Miyoshi S, Imano N, Hirokawa J, Nishibuchi I, Nagata Y. Novel simulation for dosimetry impact of diaphragm respiratory motion in four-dimensional volumetric modulated arc therapy for esophageal cancer. Radiother Oncol 2023; 187:109849. [PMID: 37562552 DOI: 10.1016/j.radonc.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND PURPOSE The diaphragm respiratory motion (RM) could impact the target dose robustness in the lower esophageal cancer (EC). We aimed to develop a framework evaluating the impact of different RM patterns quantitatively in one patient, by creating virtual four-dimensional computed-tomography (v4DCT) images, which could lead to tailored treatment for the breathing pattern. We validated virtual 4D radiotherapy (v4DRT) along with exploring the acceptability of free-breathing volumetric modulated arc therapy (FB-VMAT). METHODS AND MATERIALS We assessed 10 patients with superficial EC through their real 4DCT (r4DCT) scans. v4DCT images were derived from the end-inhalation computed tomography (CT) image (reference CT) and the v4DRT dose was accumulated dose over all phases. r4DRT diaphragm shifts were applied with magnitudes derived from r4DCT scans; clinical target volume (CTV) dose of v4DRT was compared with that of r4DRT to validate v4DRT. CTV dosage modifications and planning organ at risk volume (PRV) margins of the spinal cord were examined with the diaphragm movement. The percentage dose differences (ΔDx) were determined between the v4DRT and the dose calculated on the reference CT image. RESULTS The CTV ΔDx between the r4DRT and v4DRT were within 1% in cases with RM ≦ 15 mm. The average ΔD100% and ΔDmean of the CTV ranging from 5 to 15 mm of diaphragm motion was 0.3% to 1.7% and 0.1% to 0.4%, respectively. All CTV index changes were within 3% and ΔD1cc and ΔD2cc of Cord PRV were within 1%. CONCLUSION We postulate a novel method for evaluating the CTV robustness, comparable to the conventional r4DCT method under the diaphragm RM ≦ 15 mm permitting an impact of within 3% in FB-VMAT for EC on the CTV dose distribution.
Collapse
Affiliation(s)
- Tsuyoshi Katsuta
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Daisuke Kawahara
- Section of Radiation Therapy, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shota Miyoshi
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Nobuki Imano
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Junichi Hirokawa
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ikuno Nishibuchi
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
3
|
Solidum JGN, Rojo RD, Wo JY, Dee EC. Proton Beam Therapy for Esophageal Cancer. Cancers (Basel) 2022; 14:cancers14164045. [PMID: 36011037 PMCID: PMC9407004 DOI: 10.3390/cancers14164045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Early-stage esophageal cancer is managed surgically, with the addition of radiotherapy for locally advanced disease. Current photon-based radiotherapy results in a high treatment-related complications, due to proximal organ involvement. The anatomic location of the esophagus raises challenges due to the anatomical changes associated with diaphragmatic motion, weight loss, tumor changes, and set-up variability. These propelled the interest in proton beam therapy (PBT), which theoretically offers a reduction in the radiation exposure to healthy neighboring tissues with improvements in the therapeutic ratio. In this review, we present the role of PBT for esophageal cancer, including treatment planning, early clinical comparisons with photon-based techniques, ongoing trials, current challenges, toxicities, and issues of equity and health services. Abstract Early-stage esophageal cancer is often primarily managed surgically, with the addition of radiotherapy for locally advanced disease. However, current photon-based radiotherapy regimens and surgery results in a high incidence of treatment-related cardiac and pulmonary complications due to the involvement of proximal organs at risk. In addition, the anatomic location of the esophagus raises challenges for radiotherapy due to the anatomical changes associated with diaphragmatic motion, weight loss, tumor changes, and set-up variability. These challenges propelled the interest in proton beam therapy (PBT), which theoretically offers a reduction in the radiation exposure to healthy neighboring tissues with improvements in the therapeutic ratio. Several dosimetric studies support the potential advantages of PBT for esophageal cancer treatment however, translation of these results to improved clinical outcomes remains unclear with limited clinical data, especially in large populations. Studies on the effect on quality of life are likewise lacking. Here, we review the existing and emerging role of PBT for esophageal cancer, including treatment planning, early clinical comparisons of PBT with photon-based techniques, recently concluded and ongoing clinical trials, challenges and toxicities, effects on quality of life, and global inequities in the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Jea Giezl N. Solidum
- College of Medicine, University of the Philippines Manila, Manila 1000, Metro Manila, Philippines
| | - Raniv D. Rojo
- College of Medicine, University of the Philippines Manila, Manila 1000, Metro Manila, Philippines
| | - Jennifer Y. Wo
- Department of Radiation Oncology, Massachusetts General Hospital, 100 Blossom St., Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
4
|
Shamshad M, Møller DS, Mortensen HR, Ehmsen ML, Jensen MF, Hoffmann L. Bone versus soft-tissue setup in proton therapy for patients with oesophageal cancer. Acta Oncol 2022; 61:994-1003. [PMID: 35775236 DOI: 10.1080/0284186x.2022.2091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect of patient positioning based on either bone or soft-tissue matching for PT in oesophageal cancer and its impact on plan adaptation. MATERIALS AND METHODS Two retrospective patient cohorts treated with radiotherapy were included in the study. Cohort A consisted of 26 consecutive patients with a planning 4DCT scan (CT1) and a surveillance 4DCT scan (CT2) at fraction ten. Cohort B consisted of 17 patients selected based on large anatomical changes identified during treatment resulting in a rescan (CT2). Mean dose to the iCTV (sum of the CTVs in all respiratory phases) was 50.4 Gy (RBE) in 28 fractions or 41.4 Gy (RBE) in 23 fractions. A nominal pencil beam scanning plan was created using two posterior beams and robust optimization (5 mm setup, 3.5% range). For each patient, two rigid registrations were made between average (avg) CT1 and CT2: a match on the vertebral column (bone match) and a match on the iCTV (soft-tissue match). Robustness towards setup (5 mm) and range (3.5%) errors was evaluated at CT2. Robustness towards respiration was evaluated by recalculation of the plan on all phases of the CT2 scan. Dose coverage <96% would trigger adaptation. The statistical significance (p-value <0.05) between dose coverage for the two registration methods was assessed using the Wilcoxon signed rank test. RESULTS All plans fulfilled V95%iCTV>99% for the nominal plan and V95%iCTV>97% for all respiratory phases and robustness scenarios at CT1. In two (8%) and three (18%) patients, V95%iCTV<96% on CT2 for Cohort A and B, respectively when bone match was used. For soft-tissue match, V95%iCTV >96% for all patients. V95%iCTV was significantly higher (p-value = 0.0001) for soft-tissue match than bone match. CONCLUSION Anatomical changes during the treatment course led to target dose deterioration and a need for plan adaptation when using a bone match.
Collapse
Affiliation(s)
- Muhammad Shamshad
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ditte Sloth Møller
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | | | | | - Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|