1
|
Liu J, Sidiqi B, McComas K, Gogineni E, Andraos T, Crane CH, Chang DT, Goodman KA, Hall WA, Hoffe S, Mahadevan A, Narang AK, Lee P, Williams TM, Chuong MD. SBRT for Pancreatic Cancer: A Radiosurgery Society Case-Based Practical Guidelines to Challenging Cases. Pract Radiat Oncol 2024; 14:555-573. [PMID: 38986901 DOI: 10.1016/j.prro.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
The use of radiation therapy (RT) for pancreatic cancer continues to be controversial, despite recent technical advances. Improvements in systemic control have created an evolving role for RT and the need for improved local tumor control, but currently, no standardized approach exists. Advances in stereotactic body RT, motion management, real-time image guidance, and adaptive therapy have renewed hopes of improved outcomes in this devastating disease with one of the lowest survival rates. This case-based guide provides a practical framework for delivering stereotactic body RT for locally advanced pancreatic cancer. In conjunction with multidisciplinary care, an intradisciplinary approach should guide treatment of the high-risk cases outlined within these guidelines for prospective peer review and treatment safety discussions.
Collapse
Affiliation(s)
- Jason Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California.
| | - Baho Sidiqi
- Department of Radiation Oncology, Northwell Health Cancer Institute, New Hyde Park, New York
| | - Kyra McComas
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennesse
| | - Emile Gogineni
- Department of Radiation Oncology, Ohio State James Cancer Center, Columbus, Ohio
| | - Therese Andraos
- Department of Radiation Oncology, Ohio State James Cancer Center, Columbus, Ohio
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Daniel T Chang
- Department of Radiation Oncology, University of Michigan Health, Ann Arbor, Michigan
| | - Karyn A Goodman
- Department of Radiation Oncology, Mount Sinai Health, New York City, New York
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sarah Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Anand Mahadevan
- Department of Radiation Oncology, NYU Langone Health, New York City, New York
| | - Amol K Narang
- Department of Radiation Oncology, Johns Hopkins University Kimmel Cancer Center, Baltimore, Maryland
| | - Percy Lee
- Department of Radiation Oncology, City of Hope Lennar Cancer Center, Irvine, California
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California
| | - Michael D Chuong
- Department of Radiation Oncology, Baptist Health South Florida, Miami, Florida
| |
Collapse
|
2
|
Jiang L, Ye Y, Feng Z, Liu W, Cao Y, Zhao X, Zhu X, Zhang H. Stereotactic body radiation therapy for the primary tumor and oligometastases versus the primary tumor alone in patients with metastatic pancreatic cancer. Radiat Oncol 2024; 19:111. [PMID: 39160547 PMCID: PMC11334573 DOI: 10.1186/s13014-024-02493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Local therapies may benefit patients with oligometastatic cancer. However, there were limited data about pancreatic cancer. Here, we compared the efficacy and safety of stereotactic body radiation therapy (SBRT) to the primary tumor and all oligometastases with SBRT to the primary tumor alone in patients with metastatic pancreatic cancer. METHODS A retrospective review of patients with synchronous oligometastatic pancreatic cancer (up to 5 lesions) receiving SBRT to all lesions (including all oligometastases and the primary tumor) were performed. Another comparable group of patients with similar baseline characteristics, including metastatic burden, SBRT doses, and chemotherapy regimens, receiving SBRT to the primary tumor alone were identified. The primary endpoint was overall survival (OS). The secondary endpoints were progression frees survival (PFS), polyprogression free survival (PPFS) and adverse events. RESULTS There were 59 and 158 patients receiving SBRT to all lesions and to the primary tumor alone. The median OS of patients with SBRT to all lesions and the primary tumor alone was 10.9 months (95% CI 10.2-11.6 months) and 9.3 months (95% CI 8.8-9.8 months) (P < 0.001). The median PFS of two groups was 6.5 months (95% CI 5.6-7.4 months) and 4.1 months (95% CI 3.8-4.4 months) (P < 0.001). The median PPFS of two groups was 9.8 months (95% CI 8.9-10.7 months) and 7.8 months (95% CI 7.2-8.4 months) (P < 0.001). Additionally, 14 (23.7%) and 32 (20.2%) patients in two groups had grade 3 or 4 treatment-related toxicity. CONCLUSIONS SBRT to all oligometastases and the primary tumor in patients with pancreatic cancer may improve survival, which needs prospective verification.
Collapse
Affiliation(s)
- Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhiru Feng
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Wenyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
3
|
Zhou H, Li C, Ren Y, Wang WA, Zhuang J, Ren Y, Shen L, Chen Y. Modulation of epithelial-mesenchymal transition by gemcitabine: Targeting ionizing radiation-induced cellular senescence in lung cancer cell. Biochem Pharmacol 2024; 224:116234. [PMID: 38670436 DOI: 10.1016/j.bcp.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Ionizing radiation, a standard therapeutic approach for lung cancer, often leads to cellular senescence and the induction of epithelial-mesenchymal transition (EMT), posing significant challenges in treatment efficacy and cancer progression. Overcoming these obstacles is crucial for enhancing therapeutic outcomes in lung cancer management. This study investigates the effects of ionizing radiation and gemcitabine on lung cancer cells, with a focus on induced senescence, EMT, and apoptosis. Human-derived A549, PC-9, and mouse-derived Lewis lung carcinoma cells exposed to 10 Gy X-ray irradiation exhibited senescence, as indicated by morphological changes, β-galactosidase staining, and cell cycle arrest through the p53-p21 pathway. Ionizing radiation also promoted EMT via TGFβ/SMAD signaling, evidenced by increased TGFβ1 levels, altered EMT marker expressions, and enhanced cell migration. Gemcitabine, a first-line lung cancer treatment, was shown to enhance apoptosis in senescent cells caused by radiation. It inhibited cell proliferation, induced mitochondrial damage, and triggered caspase-mediated apoptosis, thus mitigating EMT in vitro. Furthermore, in vivo studies using a lung cancer mouse model revealed that gemcitabine, combined with radiation, significantly reduced tumor volume and weight, extended survival, and suppressed malignancy indices in irradiated tumors. Collectively, these findings demonstrate that gemcitabine enhances the therapeutic efficacy against radiation-resistant lung cancer cells, both by inducing apoptosis in senescent cells and inhibiting EMT, offering potential improvements in lung cancer treatment strategies.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; School of Public Health, Yangzhou University, Yangzhou, China
| | - Chenghao Li
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou University Medical College, Yangzhou, China.
| | - Yanxian Ren
- School of Public Health, Yangzhou University, Yangzhou, China; The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Wen-An Wang
- School of Public Health, Yangzhou University, Yangzhou, China; The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jiayuan Zhuang
- School of Public Health, Yangzhou University, Yangzhou, China; Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yue Ren
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou University Medical College, Yangzhou, China
| | - Lin Shen
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou University Medical College, Yangzhou, China
| | - Yong Chen
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou University Medical College, Yangzhou, China.
| |
Collapse
|
4
|
Che PP, Gregori A, Bergonzini C, Ali M, Mantini G, Schmidt T, Finamore F, Rodrigues SMF, Frampton AE, McDonnell LA, Danen EH, Slotman BJ, Sminia P, Giovannetti E. Differential Sensitivity to Ionizing Radiation in Gemcitabine-Resistant and Paclitaxel-Resistant Pancreatic Cancer Cells. Int J Radiat Oncol Biol Phys 2024; 118:1328-1343. [PMID: 37914140 DOI: 10.1016/j.ijrobp.2023.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/15/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE Chemoresistance remains a major challenge in treating pancreatic ductal adenocarcinoma (PDAC). Although chemoradiation has proven effective in other tumor types, such as head and neck squamous cell carcinoma, its role in PDAC and effect on acquired chemoresistance have yet to be fully explored. In this study, we investigated the sensitivity of gemcitabine-resistant (GR) and paclitaxel-resistant (PR) PDAC cells to ionizing radiation (IR) and their underlying mechanisms. METHODS AND MATERIALS GR and PR clones were generated from PANC-1, PATU-T, and SUIT2-007 pancreatic cancer cell lines. Cell survival after radiation was assessed using clonogenic assay, sulforhodamine B assay, apoptosis, and spheroid growth by bioluminescence. Radiation-induced DNA damage was assessed using Western blot, extra-long polymerase chain reaction, reactive oxygen species production, and immunofluorescence. Autophagy and modulation of the Hippo signaling pathway were investigated using proteomics, Western blot, immunofluorescence, and reverse-transcription quantitative polymerase chain reaction. RESULTS In both 2- and 3-dimensional settings, PR cells were more sensitive to IR and showed decreased β-globin amplification, indicating more DNA damage accumulation compared with GR or wild-type cells after 24 hours. Proteomic analysis of PR PATU-T cells revealed that the protein MST4, a kinase involved in autophagy and the Hippo signaling pathway, was highly downregulated. A differential association was found between autophagy and radiation treatment depending on the cell model. Interestingly, increased yes-associated protein nuclear localization and downstream Hippo signaling pathway target gene expression were observed in response to IR. CONCLUSIONS This was the first study investigating the potential of IR in targeting PDAC cells with acquired chemoresistance. Our results demonstrate that PR cells exhibit enhanced sensitivity to IR due to greater accumulation of DNA damage. Additionally, depending on the specific cellular context, radiation-induced modulation of autophagy and the Hippo signaling pathway emerged as potential underlying mechanisms, findings with potential to inform personalized treatment strategies for patients with acquired chemoresistance.
Collapse
Affiliation(s)
- Pei Pei Che
- Department of Radiation Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mahsoem Ali
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Surgery, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Giulia Mantini
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, San Giuliano Terme, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | | | - Stephanie M Fraga Rodrigues
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adam E Frampton
- Department of Clinical and Experimental Medicine, University of Surrey, Surrey, United Kingdom
| | | | - Erik H Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter Sminia
- Department of Radiation Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, San Giuliano Terme, Italy.
| |
Collapse
|
5
|
Daamen LA, Parikh PJ, Hall WA. The Use of MR-Guided Radiation Therapy for Pancreatic Cancer. Semin Radiat Oncol 2024; 34:23-35. [PMID: 38105090 DOI: 10.1016/j.semradonc.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The introduction of online adaptive magnetic resonance (MR)-guided radiation therapy (RT) has enabled safe treatment of pancreatic cancer with ablative doses. The aim of this review is to provide a comprehensive overview of the current literature on the use and clinical outcomes of MR-guided RT for treatment of pancreatic cancer. Relevant outcomes included toxicity, tumor response, survival and quality of life. The results of these studies support further investigation of the effectiveness of ablative MR-guided SBRT as a low-toxic, minimally-invasive therapy for localized pancreatic cancer in prospective clinical trials.
Collapse
Affiliation(s)
- Lois A Daamen
- Imaging & Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Parag J Parikh
- Department of Radiation Oncology, Henry Ford Medical Center, Henry Ford Health System, Detroit, MI
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
6
|
Parikh PJ, Lee P, Low DA, Kim J, Mittauer KE, Bassetti MF, Glide-Hurst CK, Raldow AC, Yang Y, Portelance L, Padgett KR, Zaki B, Zhang R, Kim H, Henke LE, Price AT, Mancias JD, Williams CL, Ng J, Pennell R, Pfeffer MR, Levin D, Mueller AC, Mooney KE, Kelly P, Shah AP, Boldrini L, Placidi L, Fuss M, Chuong MD. A Multi-Institutional Phase 2 Trial of Ablative 5-Fraction Stereotactic Magnetic Resonance-Guided On-Table Adaptive Radiation Therapy for Borderline Resectable and Locally Advanced Pancreatic Cancer. Int J Radiat Oncol Biol Phys 2023; 117:799-808. [PMID: 37210048 DOI: 10.1016/j.ijrobp.2023.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE Magnetic resonance (MR) image guidance may facilitate safe ultrahypofractionated radiation dose escalation for inoperable pancreatic ductal adenocarcinoma. We conducted a prospective study evaluating the safety of 5-fraction Stereotactic MR-guided on-table Adaptive Radiation Therapy (SMART) for locally advanced (LAPC) and borderline resectable pancreatic cancer (BRPC). METHODS AND MATERIALS Patients with LAPC or BRPC were eligible for this multi-institutional, single-arm, phase 2 trial after ≥3 months of systemic therapy without evidence of distant progression. Fifty gray in 5 fractions was prescribed on a 0.35T MR-guided radiation delivery system. The primary endpoint was acute grade ≥3 gastrointestinal (GI) toxicity definitely attributed to SMART. RESULTS One hundred thirty-six patients (LAPC 56.6%, BRPC 43.4%) were enrolled between January 2019 and January 2022. Mean age was 65.7 (36-85) years. Head of pancreas lesions were most common (66.9%). Induction chemotherapy mostly consisted of (modified)FOLFIRINOX (65.4%) or gemcitabine/nab-paclitaxel (16.9%). Mean CA19-9 after induction chemotherapy and before SMART was 71.7 U/mL (0-468). On-table adaptive replanning was performed for 93.1% of all delivered fractions. Median follow-up from diagnosis and SMART was 16.4 and 8.8 months, respectively. The incidence of acute grade ≥3 GI toxicity possibly or probably attributed to SMART was 8.8%, including 2 postoperative deaths that were possibly related to SMART in patients who had surgery. There was no acute grade ≥3 GI toxicity definitely related to SMART. One-year overall survival from SMART was 65.0%. CONCLUSIONS The primary endpoint of this study was met with no acute grade ≥3 GI toxicity definitely attributed to ablative 5-fraction SMART. Although it is unclear whether SMART contributed to postoperative toxicity, we recommend caution when pursuing surgery, especially with vascular resection after SMART. Additional follow-up is ongoing to evaluate late toxicity, quality of life, and long-term efficacy.
Collapse
Affiliation(s)
| | - Percy Lee
- City of Hope National Medical Center, Los Angeles, California
| | - Daniel A Low
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Joshua Kim
- Henry Ford Health - Cancer, Detroit, Michigan
| | | | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carri K Glide-Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ann C Raldow
- Department of Radiation Oncology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Yingli Yang
- Department of Radiation Oncology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Lorraine Portelance
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, Florida
| | - Kyle R Padgett
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, Florida
| | - Bassem Zaki
- Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Rongxiao Zhang
- Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Hyun Kim
- Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Lauren E Henke
- Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Alex T Price
- Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Joseph D Mancias
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Christopher L Williams
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - John Ng
- Weill Cornell Medicine Sandra and Edward Meyer Cancer Center, New York, New York
| | - Ryan Pennell
- Weill Cornell Medicine Sandra and Edward Meyer Cancer Center, New York, New York
| | | | | | - Adam C Mueller
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Mooney
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Amish P Shah
- Orlando Health Cancer Institute, Orlando, Florida
| | - Luca Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Lorenzo Placidi
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - Michael D Chuong
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| |
Collapse
|
7
|
Chuong MD, Palm RF, Tjong MC, Hyer DE, Kishan AU. Advances in MRI-Guided Radiation Therapy. Surg Oncol Clin N Am 2023; 32:599-615. [PMID: 37182995 DOI: 10.1016/j.soc.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Image guidance for radiation therapy (RT) has evolved over the last few decades and now is routinely performed using cone-beam computerized tomography (CBCT). Conventional linear accelerators (LINACs) that use CBCT have limited soft tissue contrast, are not able to image the patient's internal anatomy during treatment delivery, and most are not capable of online adaptive replanning. RT delivery systems that use MRI have become available within the last several years and address many of the imaging limitations of conventional LINACs. Herein, the authors review the technical characteristics and advantages of MRI-guided RT as well as emerging clinical outcomes.
Collapse
Affiliation(s)
- Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, 8900 North Kendall Drive, Miami, FL 33176, USA.
| | - Russell F Palm
- Department of Radiation Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Michael C Tjong
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, 1338 S Hope Street, Los Angeles, CA 90015, USA
| |
Collapse
|
8
|
Advances in Radiation Oncology for Pancreatic Cancer: An Updated Review. Cancers (Basel) 2022; 14:cancers14235725. [PMID: 36497207 PMCID: PMC9736314 DOI: 10.3390/cancers14235725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
This review aims to summarize the recent advances in radiation oncology for pancreatic cancer. A systematic search of the MEDLINE/PubMed database and Clinicaltrials.gov was performed, focusing on studies published within the last 10 years. Our search queried "locally advanced pancreatic cancer [AND] stereotactic body radiation therapy (SBRT) [OR] hypofractionation [OR] magnetic resonance guidance radiation therapy (MRgRT) [OR] proton" and "borderline resectable pancreatic cancer [AND] neoadjuvant radiation" and was limited only to prospective and retrospective studies and metanalyses. For locally advanced pancreatic cancers (LAPC), retrospective evidence supports the notion of radiation dose escalation to improve overall survival (OS). Novel methods for increasing the dose to high risk areas while avoiding dose to organs at risk (OARs) include SBRT or ablative hypofractionation using a simultaneous integrated boost (SIB) technique, MRgRT, or charged particle therapy. The use of molecularly targeted agents with radiation to improve radiosensitization has also shown promise in several prospective studies. For resectable and borderline resectable pancreatic cancers (RPC and BRPC), several randomized trials are currently underway to study whether current neoadjuvant regimens using radiation may be improved with the use of the multi-drug regimen FOLFIRINOX or immune checkpoint inhibitors.
Collapse
|