1
|
Wang JH, Deek MP, Mendes AA, Song Y, Shetty A, Bazyar S, Van der Eecken K, Chen E, Showalter TN, Royce TJ, Todorovic T, Huang HC, Houck SA, Yamashita R, Kiess AP, Song DY, Lotan T, DeWeese T, Marchionni L, Ren L, Sawant A, Simone N, Berlin A, Onal C, Esteva A, Feng FY, Tran PT, Sutera P, Ost P. Validation of an artificial intelligence-based prognostic biomarker in patients with oligometastatic Castration-Sensitive prostate cancer. Radiother Oncol 2025; 202:110618. [PMID: 39510141 DOI: 10.1016/j.radonc.2024.110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND There is a need for clinically actionable prognostic and predictive tools to guide the management of oligometastatic castration-sensitive prostate cancer (omCSPC). METHODS This is a multicenter retrospective study to assess the prognostic and predictive performance of a multimodal artificial intelligence biomarker (MMAI; the ArteraAI Prostate Test) in men with omCSPC (n = 222). The cohort also included 51 patients from the STOMP and ORIOLE phase 2 clinical trials which randomized patients to observation versus metastasis-directed therapy (MDT). MMAI scores were computed from digitized histopathology slides and clinical variables. Overall survival (OS) and time to castration-resistant prostate cancer (TTCRPC) were assessed for the entire cohort from time of diagnosis. Metastasis free survival (MFS) was assessed for the trial cohort from time of randomization. RESULTS In the overall cohort, patients with a high MMAI score had significantly worse OS (HR = 6.46, 95 % CI = 1.44-28.9; p = 0.01) and shorter TTCRPC (HR = 2.07, 95 % CI = 1.15-3.72; p = 0.015). In a multivariable Cox model, MMAI score remained the only variable significantly associated with OS (HR = 6.51, 95 % CI = 1.32-32.2; p = 0.02). In the subset of patients randomized in the STOMP and ORIOLE trials, high MMAI score corresponded to improved MFS with MDT (p = 0.039) compared to patients with a low score, with pinteraction = 0.04. CONCLUSION The ArteraAI MMAI biomarker is prognostic for OS and TTCRPC among patients with omCSPC and may predict for response to MDT. Further work is needed to validate the MMAI biomarker in a broader mCSPC cohort.
Collapse
Affiliation(s)
| | - Matthew P Deek
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Yang Song
- Johns Hopkins University, Baltimore, MD, USA
| | - Amol Shetty
- University of Maryland Medical Center, Baltimore, MD, USA
| | - Soha Bazyar
- University of Maryland Medical Center, Baltimore, MD, USA
| | | | | | - Timothy N Showalter
- Artera Inc., Los Altos, CA, USA; University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | - Ana P Kiess
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | - Lei Ren
- University of Maryland Medical Center, Baltimore, MD, USA
| | - Amit Sawant
- University of Maryland Medical Center, Baltimore, MD, USA
| | | | | | - Cem Onal
- Baskent University, Ankara, Turkey
| | | | - Felix Y Feng
- Artera Inc., Los Altos, CA, USA; University of California San Francisco, San Francisco, CA, USA
| | - Phuoc T Tran
- University of Maryland Medical Center, Baltimore, MD, USA.
| | - Philip Sutera
- University of Rochester Medical Center, Rochester, NY, USA.
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Iridium Network, Antwerp, Belgium.
| |
Collapse
|
2
|
Sutera P, Kim J, Kumar R, Deek RA, Stephenson R, Mayer T, Saraiya B, Ghodoussipour S, Jang T, Golombos D, Packiam V, Ennis R, Hathout L, Jabbour SK, Guler O, Onal C, Tran PT, Deek MP. PIK3/Akt/mTOR pathway alterations in metastatic castration-sensitive prostate cancer. Prostate 2024; 84:1301-1308. [PMID: 39021052 DOI: 10.1002/pros.24765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Alterations in the PIK3/Akt/mTOR pathway are commonly seen in metastatic castration-sensitive prostate cancer (mCSPC), however their role in outcomes is unknown. We aim to evaluate the prognostic significance as well as the genetic landscape of PIK3/Akt/mTOR pathway alteration in mCSPC. METHODS Fourhundred and seventy-two patients with mCSPC were included who underwent next generation sequencing. PIK3/Akt/mTor pathway alterations were defined as mutations in Akt1, mTOR, PIK3CA, PIK3CB, PIK3R1, PTEN, TSC1, and TSC2. Endpoints of interests were radiographic progression-free survival (rPFS), time to development of castration resistant prostate cancer (tdCRPC), and overall survival (OS). Kaplan-Meier analysis was performed and Cox regression hazard ratios (HR) were calculated. RESULTS One hundred and fifty-two (31.9%) patients harbored a PIK3/Akt/mTOR pathway alteration. Median rPFS and tdCRPC were 23.7 and 21.0 months in PIK3/Akt/mTOR altered compared to 32.8 (p = 0.08) and 32.1 months (p = 0.002) in wildtype tumors. On multivariable analysis PIK3/Akt/mTOR pathway alterations were associated with tdCRPC (HR 1.43, 95% CI, 1.05-1.94, p = 0.02), but not rPFS [Hazard ratio (HR) 1.20, 95% confidence interval (CI), 0.90-1.60, p = 0.21]. PIK3/Akt/mTOR pathway alterations were more likely to be associated with concurrent mutations in TP53 (40% vs. 28%, p = 0.01) and TMPRSS2-ERG (37% vs. 26%, p = 0.02) than tumors without PIK3/Akt/mTOR pathway alterations. Concurrent mutations were typically associated with shorter median times to rPFS and tdCRPC. DAVID analysis showed p53 signaling and angiogenesis pathways were enriched in PIK3/Akt/mTOR pathway altered tumors while beta-catenin binding and altered BRCA pathway were enriched in PIK3/Akt/mTOR pathway wildtype tumors. CONCLUSIONS PIK3/Akt/mTOR pathway alterations were common in mCSPC and associated with poorer prognosis. The genetic landscape of PIK3/Akt/mTOR pathway altered tumors differed from wildtype tumors. Additional studies are needed to better understand and target the PIK3/Akt/mTOR pathway in mCSPC.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jongmyung Kim
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Ritesh Kumar
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Rebecca A Deek
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Stephenson
- Rutgers Robert Wood Johnson Medical School, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Tina Mayer
- Rutgers Robert Wood Johnson Medical School, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Biren Saraiya
- Rutgers Robert Wood Johnson Medical School, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Saum Ghodoussipour
- Department of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Thomas Jang
- Department of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - David Golombos
- Department of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Vignesh Packiam
- Department of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronald Ennis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lara Hathout
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Salma K Jabbour
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ozan Guler
- Department of Radiation Oncology, Baskent University, Ankara, Turkey
| | - Cem Onal
- Department of Radiation Oncology, Baskent University, Ankara, Turkey
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew P Deek
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Cao Y, Sutera P, Silva Mendes W, Yousefi B, Hrinivich T, Deek M, Phillips R, Song D, Kiess A, Cem Guler O, Torun N, Reyhan M, Sawant A, Marchionni L, Simone NL, Tran P, Onal C, Ren L. Machine learning predicts conventional imaging metastasis-free survival (MFS) for oligometastatic castration-sensitive prostate cancer (omCSPC) using prostate-specific membrane antigen (PSMA) PET radiomics. Radiother Oncol 2024; 199:110443. [PMID: 39094629 PMCID: PMC11405100 DOI: 10.1016/j.radonc.2024.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE This study investigated imaging biomarkers derived from PSMA-PET acquired pre- and post-metastasis-directed therapy (MDT) to predict 2-year metastasis-free survival (MFS), which provides valuable early response assessment to improve patient outcomes. MATERIALS/METHODS An international cohort of 117 oligometastatic castration-sensitive prostate cancer (omCSPC) patients, comprising 34 from John Hopkins Hospital (JHH) and 83 from Baskent University (BU), were treated with stereotactic ablative radiation therapy (SABR) MDT with both pre- and post-MDT PSMA-PET/CT scans acquired. PET radiomic features were analyzed from a CT-PET fusion defined gross tumor volume ((GTV) or zone 1), and a 5 mm expansion ring area outside the GTV (zone 2). A total of 1748 PET radiomic features were extracted from these zones. The six most significant features selected using the Chi2 method, along with five clinical parameters (age, Gleason score, number of total lesions, untreated lesions, and pre-MDT prostate-specific antigen (PSA)) were extracted as inputs to the models. Various machine learning models, including Random Forest, Decision Tree, Support Vector Machine, and Naïve Bayesian, were employed for 2-year MFS prediction and tested using leave-one-out and cross-institution validation. RESULTS Six radiomic features, including Total Energy, Entropy, and Standard Deviation from pre-PSMA-PET zone 1, Total Energy and Contrast from post-PSMA-PET zone 1, and Entropy from pre-PSMA-PET zone 2, along with five clinical parameters were selected for predicting 2-year MFS. In a leave-one-out test with all the patients, random forest achieved an accuracy of 80 % and an AUC of 0.82 in predicting 2-year MFS. In cross-institution validation, the model correctly predicted 2-year MFS events with an accuracy of 75 % and an AUC of 0.77 for patients from JHH, and an accuracy of 78 % and an AUC of 0.80 for BU patients, respectively. CONCLUSION Our study demonstrated the promise of using pre- and post-MDT PSMA-PET-based imaging biomarkers for MFS prediction for omCSPC patients.
Collapse
Affiliation(s)
- Yufeng Cao
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Silva Mendes
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bardia Yousefi
- Fischell Department of Bioengineering, University of Maryland School of Medicine, College Park, MD, USA
| | - Tom Hrinivich
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Ryan Phillips
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Danny Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ana Kiess
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ozan Cem Guler
- Baskent University Faculty of Medicine, Adana Dr Turgut Noyan Research and Treatment Center, Department of Radiation Oncology, Adana, Turkey
| | - Nese Torun
- Baskent University Faculty of Medicine, Adana Dr Turgut Noyan Research and Treatment Center, Department of Nuclear Medicine, Ankara, Turkey
| | - Mehmet Reyhan
- Baskent University Faculty of Medicine, Adana Dr Turgut Noyan Research and Treatment Center, Department of Nuclear Medicine, Ankara, Turkey
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nicole L Simone
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Phuoc Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Cem Onal
- Baskent University Faculty of Medicine, Adana Dr Turgut Noyan Research and Treatment Center, Department of Radiation Oncology, Adana, Turkey; Baskent University Faculty of Medicine, Department of Radiation Oncology, Ankara, Turkey.
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Corres-Mendizabal J, Zacchi F, Martín-Martín N, Mateo J, Carracedo A. Metastatic hormone-naïve prostate cancer: a distinct biological entity. Trends Cancer 2024; 10:825-841. [PMID: 39048488 PMCID: PMC11397905 DOI: 10.1016/j.trecan.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Metastatic hormone-naïve prostate cancer (mHNPC) is often the initial form of presentation for metastatic prostate cancer and encompasses a heterogeneous patient population with high inter-patient heterogeneity in prognosis and response to therapy. A more precise treatment of mHNPC, guided by evidence-based biomarkers, remains an unmet medical need. In addition, the limited number of representative laboratory models of mHNPC hampers the translation of basic research into clinical applications. We provide a comprehensive overview of the clinical and biological features that characterize mHNPC, highlight molecular data that could explain the unique prognostic characteristics of mHNPC, and identify key open questions.
Collapse
Affiliation(s)
- Jon Corres-Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Francesca Zacchi
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy; Vall Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Joaquin Mateo
- Vall Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
5
|
Sutera P, Song Y, Shetty AC, English K, Van der Eecken K, Guler OC, Wang J, Cao Y, Bazyar S, Verbeke S, Van Dorpe J, Fonteyne V, De Laere B, Mishra M, Rana Z, Molitoris J, Ferris M, Kiess A, Song DY, DeWeese T, Pienta KJ, Barbieri C, Marchionni L, Ren L, Sawant A, Simone N, Berlin A, Onal C, Tran PT, Ost P, Deek MP. Genomic Determinants Associated with Modes of Progression and Patterns of Failure in Metachronous Oligometastatic Castration-sensitive Prostate Cancer. Eur Urol Oncol 2024:S2588-9311(24)00142-1. [PMID: 38862340 DOI: 10.1016/j.euo.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/24/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Oligometastatic castration-sensitive prostate cancer (omCSPC) represents an early state in the progression of metastatic disease for which patients experience better outcomes in comparison to those with higher disease burden. Despite the generally more indolent nature, there is still much heterogeneity, with some patients experiencing a more aggressive clinical course unexplained by clinical features alone. Our aim was to investigate correlation of tumor genomics with the mode of progression (MOP) and pattern of failure (POF) following first treatment (metastasis-directed and/or systemic therapy) for omCSPC. METHODS We performed an international multi-institutional retrospective study of men treated for metachronous omCSPC who underwent tumor next-generation sequencing with at least 1 yr of follow-up after their first treatment. Descriptive MOP and POF results are reported with respect to the presence of genomic alterations in pathways of interest. MOP was defined as class I, long-term control (LTC; no radiographic progression at last follow-up), class II, oligoprogression (1-3 lesions), or class III, polyprogression (≥4 lesions). POF included the location of lesions at first failure. Genomic pathways of interest included TP53, ATM, RB1, BRCA1/2, SPOP, and WNT (APC, CTNNB1, RNF43). Genomic associations with MOP/POF were compared using χ2 tests. Exploratory analyses revealed that the COSMIC mutational signature and differential gene expression were also correlated with MOP/POF. Overall survival (OS) was calculated via the Kaplan-Meier method from the time of first failure. KEY FINDINGS AND CLINICAL IMPLICATIONS We included 267 patients in our analysis; the majority had either one (47%) or two (30%) metastatic lesions at oligometastasis. The 3-yr OS rate was significantly associated with MOP (71% for polyprogression vs 91% for oligoprogression; p = 0.005). TP53 mutation was associated with a significantly lower LTC rate (27.6% vs 42.3%; p = 0.04) and RB1 mutation was associated with a high rate of polyprogression (50% vs 19.9%; p = 0.022). Regarding POF, bone failure was significantly more common with tumors harboring TP53 mutations (44.8% vs25.9%; p = 0.005) and less common with SPOP mutations (7.1% vs 31.4%; p = 0.007). Visceral failure was more common with tumors harboring either WNT pathway mutations (17.2% vs 6.8%, p = 0.05) or SPOP mutations (17.9% vs 6.3%; p = 0.04). Finally, visceral and bone failures were associated with distinct gene-expression profiles. CONCLUSIONS AND CLINICAL IMPLICATIONS Tumor genomics provides novel insight into MOP and POF following treatment for metachronous omCSPC. Patients with TP53 and RB1 mutations have a higher likelihood of progression, and TP53, SPOP, and WNT pathway mutations may have a role in metastatic organotropism. PATIENT SUMMARY We evaluated cancer progression after a first treatment for metastatic prostate cancer with up to five metastases. We found that mutations in certain genes were associated with the location and extent of further metastasis in these patients.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keara English
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kim Van der Eecken
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Ozan Cem Guler
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana Dr. Turgut Noyan Research and Treatment Center, Adana, Turkey
| | - Jarey Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufeng Cao
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Soha Bazyar
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sofie Verbeke
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Valérie Fonteyne
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Bram De Laere
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium; Department of Radiation Oncology, Iridium Network, Antwerp, Belgium
| | - Mark Mishra
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Zaker Rana
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Jason Molitoris
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Matthew Ferris
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Ana Kiess
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christopher Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Cem Onal
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana Dr. Turgut Noyan Research and Treatment Center, Adana, Turkey
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Piet Ost
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium.
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Hoang T, Sutera P, Nguyen T, Chang J, Jagtap S, Song Y, Shetty AC, Chowdhury DD, Chan A, Carrieri FA, Hathout L, Ennis R, Jabbour SK, Parikh R, Molitoris J, Song DY, DeWeese T, Marchionni L, Ren L, Sawant A, Simone N, Lafargue A, Van Der Eecken K, Bunz F, Ost P, Tran PT, Deek MP. TP53 structure-function relationships in metastatic castrate-sensitive prostate cancer and the impact of APR-246 treatment. Prostate 2024; 84:87-99. [PMID: 37812042 DOI: 10.1002/pros.24629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Despite well-informed work in several malignancies, the phenotypic effects of TP53 mutations in metastatic castration-sensitive prostate cancer (mCSPC) progression and metastasis are not clear. We characterized the structure-function and clinical impact of TP53 mutations in mCSPC. PATIENTS AND METHODS We performed an international retrospective review of men with mCSPC who underwent next-generation sequencing and were stratified according to TP53 mutational status and metastatic burden. Clinical outcomes included radiographic progression-free survival (rPFS) and overall survival (OS) evaluated with Kaplan-Meier and multivariable Cox regression. We also utilized isogenic cancer cell lines to assess the effect of TP53 mutations and APR-246 treatment on migration, invasion, colony formation in vitro, and tumor growth in vivo. Preclinical experimental observations were compared using t-tests and ANOVA. RESULTS Dominant-negative (DN) TP53 mutations were enriched in patients with synchronous (vs. metachronous) (20.7% vs. 6.3%, p < 0.01) and polymetastatic (vs. oligometastatic) (14.4% vs. 7.9%, p < 0.01) disease. On multivariable analysis, DN mutations were associated with worse rPFS (hazards ratio [HR] = 1.97, 95% confidence interval [CI]: 1.31-2.98) and overall survival [OS] (HR = 2.05, 95% CI: 1.14-3.68) compared to TP53 wild type (WT). In vitro, 22Rv1 TP53 R175H cells possessed stronger migration, invasion, colony formation ability, and cellular movement pathway enrichment in RNA sequencing analysis compared to 22Rv1 TP53 WT cells. Treatment with APR-246 reversed the effects of TP53 mutations in vitro and inhibited 22Rv1 TP53 R175H tumor growth in vivo in a dosage-dependent manner. CONCLUSIONS DN TP53 mutations correlated with worse prognosis in prostate cancer patients and higher metastatic potential, which could be counteracted by APR-246 treatment suggesting a potential future therapeutic avenue.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Triet Nguyen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Jinhee Chang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Shreya Jagtap
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Yang Song
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amol C Shetty
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dipanwita D Chowdhury
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Aaron Chan
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Francesca A Carrieri
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lara Hathout
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronald Ennis
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Rahul Parikh
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Jason Molitoris
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Lei Ren
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Amit Sawant
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Nicole Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Audrey Lafargue
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Kim Van Der Eecken
- Department of Pathology, Ghent University Hospital, Cancer Research Institute (CRIG), Ghent, Belgium
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Zapatero A, Conde Moreno AJ, Barrado Los Arcos M, Aldave D. Node Oligorecurrence in Prostate Cancer: A Challenge. Cancers (Basel) 2023; 15:4159. [PMID: 37627187 PMCID: PMC10453311 DOI: 10.3390/cancers15164159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Within the oligometastatic state, oligorecurrent lymph node disease in prostate cancer represents an interesting clinical entity characterized by a relatively indolent biology that makes it unique: it can be treated radically, and its treatment is usually associated with a long period of control and excellent survival. Additionally, it is an emergent situation that we are facing more frequently mainly due to (a) the incorporation into clinical practice of the PSMA-PET that provides strikingly increased superior images in comparison to conventional imaging, with higher sensitivity and specificity; (b) the higher detection rates of bone and node disease with extremely low levels of PSA; and (c) the availability of high-precision technology in radiotherapy treatments with the incorporation of stereotaxic body radiotherapy (SBRT) or stereotaxic ablative radiotherapy (SABR) technology that allows the safe administration of high doses of radiation in a very limited number of fractions with low toxicity and excellent tolerance. This approach of new image-guided patient management is compelling for doctors and patients since it can potentially contribute to improving the clinical outcome. In this work, we discuss the available evidence, areas of debate, and potential future directions concerning the utilization of new imaging-guided SBRT for the treatment of nodal recurrence in prostate cancer.
Collapse
Affiliation(s)
- Almudena Zapatero
- Health Research Institute, University Hospital La Princesa, 28006 Madrid, Spain
| | | | | | - Diego Aldave
- University Clinical Hospital of Valladolid, 47003 Valladolid, Spain;
| |
Collapse
|
8
|
Herberts C, Wyatt AW, Nguyen PL, Cheng HH. Genetic and Genomic Testing for Prostate Cancer: Beyond DNA Repair. Am Soc Clin Oncol Educ Book 2023; 43:e390384. [PMID: 37207301 DOI: 10.1200/edbk_390384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant progress has been made in genetic and genomic testing for prostate cancer across the disease spectrum. Molecular profiling is increasingly relevant for routine clinical management, fueled in part by advancements in testing technology and integration of biomarkers into clinical trials. In metastatic prostate cancer, defects in DNA damage response genes are now established predictors of benefit to US Food and Drug Administration-approved poly (ADP-ribose) polymerase inhibitors and immune checkpoint inhibitors, and trials are actively investigating these and other targeted treatment strategies in earlier disease states. Excitingly, opportunities for molecularly informed management beyond DNA damage response genes are also maturing. Germline genetic variants (eg, BRCA2 or MSH2/6) and polygenic germline risk scores are being investigated to inform cancer screening and active surveillance in at-risk carriers. RNA expression tests have recently gained traction in localized prostate cancer, enabling patient risk stratification and tailored treatment intensification via radiotherapy and/or androgen deprivation therapy for localized or salvage treatment. Finally, emerging minimally invasive circulating tumor DNA technology promises to enhance biomarker testing in advanced disease pending additional methodological and clinical validation. Collectively, genetic and genomic tests are rapidly becoming indispensable tools for informing the optimal clinical management of prostate cancer.
Collapse
Affiliation(s)
- Cameron Herberts
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul L Nguyen
- Harvard Medical School, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| | - Heather H Cheng
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|