1
|
Han J, Kim S, Hwang YH, Kim SA, Lee Y, Kim J, Cho S, Woo J, Jeong C, Kwon M, Nam G, Kim I. Novel Personalized Cancer Vaccine Using Tumor Extracellular Vesicles with Attenuated Tumorigenicity and Enhanced Immunogenicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308662. [PMID: 38666427 PMCID: PMC11220679 DOI: 10.1002/advs.202308662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/08/2024] [Indexed: 07/04/2024]
Abstract
Cancer vaccines offer a promising avenue in cancer immunotherapy by inducing systemic, tumor-specific immune responses. Tumor extracellular vesicles (TEVs) are nanoparticles naturally laden with tumor antigens, making them appealing for vaccine development. However, their inherent malignant properties from the original tumor cells limit their direct therapeutic use. This study introduces a novel approach to repurpose TEVs as potent personalized cancer vaccines. The study shows that inhibition of both YAP and autophagy not only diminishes the malignancy-associated traits of TEVs but also enhances their immunogenic attributes by enriching their load of tumor antigens and adjuvants. These revamped TEVs, termed attenuated yet immunogenically potentiated TEVs (AI-TEVs), showcase potential in inhibiting tumor growth, both as a preventive measure and a possible treatment for recurrent cancers. They prompt a tumor-specific and enduring immune memory. In addition, by showing that AI-TEVs can counteract cancer growth in a personalized vaccine approach, a potential strategy is presented for developing postoperative cancer immunotherapy that's enduring and tailored to individual patients.
Collapse
Affiliation(s)
- Jihoon Han
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Chemical and Biomedical Integrative Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Seohyun Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Chemical and Biomedical Integrative Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Research and DevelopmentShiftBioSeoul02751Republic of Korea
| | - Yeong Ha Hwang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Chemical and Biomedical Integrative Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Seong A Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Chemical and Biomedical Integrative Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Yeji Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Chemical and Biomedical Integrative Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jihong Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Chemical and Biomedical Integrative Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Seongeon Cho
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Chemical and Biomedical Integrative Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jiwan Woo
- Research Animal Resource CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Cherlhyun Jeong
- Chemical and Biomedical Integrative Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| | - Minsu Kwon
- Department of OtolaryngologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Gi‐Hoon Nam
- Department of Research and DevelopmentShiftBioSeoul02751Republic of Korea
- Department of Biochemistry and Molecular BiologyKorea University College of MedicineSeoul02841Republic of Korea
| | - In‐San Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Chemical and Biomedical Integrative Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| |
Collapse
|
2
|
Han Y, Tian X, Zhai J, Zhang Z. Clinical application of immunogenic cell death inducers in cancer immunotherapy: turning cold tumors hot. Front Cell Dev Biol 2024; 12:1363121. [PMID: 38774648 PMCID: PMC11106383 DOI: 10.3389/fcell.2024.1363121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Immunotherapy has emerged as a promising cancer treatment option in recent years. In immune "hot" tumors, characterized by abundant immune cell infiltration, immunotherapy can improve patients' prognosis by activating the function of immune cells. By contrast, immune "cold" tumors are often less sensitive to immunotherapy owing to low immunogenicity of tumor cells, an immune inhibitory tumor microenvironment, and a series of immune-escape mechanisms. Immunogenic cell death (ICD) is a promising cellular process to facilitate the transformation of immune "cold" tumors to immune "hot" tumors by eliciting innate and adaptive immune responses through the release of (or exposure to) damage-related molecular patterns. Accumulating evidence suggests that various traditional therapies can induce ICD, including chemotherapy, targeted therapy, radiotherapy, and photodynamic therapy. In this review, we summarize the biological mechanisms and hallmarks of ICD and introduce some newly discovered and technologically innovative inducers that activate the immune system at the molecular level. Furthermore, we also discuss the clinical applications of combing ICD inducers with cancer immunotherapy. This review will provide valuable insights into the future development of ICD-related combination therapeutics and potential management for "cold" tumors.
Collapse
Affiliation(s)
| | | | | | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Che PP, Gregori A, Bergonzini C, Ali M, Mantini G, Schmidt T, Finamore F, Rodrigues SMF, Frampton AE, McDonnell LA, Danen EH, Slotman BJ, Sminia P, Giovannetti E. Differential Sensitivity to Ionizing Radiation in Gemcitabine-Resistant and Paclitaxel-Resistant Pancreatic Cancer Cells. Int J Radiat Oncol Biol Phys 2024; 118:1328-1343. [PMID: 37914140 DOI: 10.1016/j.ijrobp.2023.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/15/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE Chemoresistance remains a major challenge in treating pancreatic ductal adenocarcinoma (PDAC). Although chemoradiation has proven effective in other tumor types, such as head and neck squamous cell carcinoma, its role in PDAC and effect on acquired chemoresistance have yet to be fully explored. In this study, we investigated the sensitivity of gemcitabine-resistant (GR) and paclitaxel-resistant (PR) PDAC cells to ionizing radiation (IR) and their underlying mechanisms. METHODS AND MATERIALS GR and PR clones were generated from PANC-1, PATU-T, and SUIT2-007 pancreatic cancer cell lines. Cell survival after radiation was assessed using clonogenic assay, sulforhodamine B assay, apoptosis, and spheroid growth by bioluminescence. Radiation-induced DNA damage was assessed using Western blot, extra-long polymerase chain reaction, reactive oxygen species production, and immunofluorescence. Autophagy and modulation of the Hippo signaling pathway were investigated using proteomics, Western blot, immunofluorescence, and reverse-transcription quantitative polymerase chain reaction. RESULTS In both 2- and 3-dimensional settings, PR cells were more sensitive to IR and showed decreased β-globin amplification, indicating more DNA damage accumulation compared with GR or wild-type cells after 24 hours. Proteomic analysis of PR PATU-T cells revealed that the protein MST4, a kinase involved in autophagy and the Hippo signaling pathway, was highly downregulated. A differential association was found between autophagy and radiation treatment depending on the cell model. Interestingly, increased yes-associated protein nuclear localization and downstream Hippo signaling pathway target gene expression were observed in response to IR. CONCLUSIONS This was the first study investigating the potential of IR in targeting PDAC cells with acquired chemoresistance. Our results demonstrate that PR cells exhibit enhanced sensitivity to IR due to greater accumulation of DNA damage. Additionally, depending on the specific cellular context, radiation-induced modulation of autophagy and the Hippo signaling pathway emerged as potential underlying mechanisms, findings with potential to inform personalized treatment strategies for patients with acquired chemoresistance.
Collapse
Affiliation(s)
- Pei Pei Che
- Department of Radiation Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mahsoem Ali
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Surgery, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Giulia Mantini
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, San Giuliano Terme, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | | | - Stephanie M Fraga Rodrigues
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adam E Frampton
- Department of Clinical and Experimental Medicine, University of Surrey, Surrey, United Kingdom
| | | | - Erik H Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter Sminia
- Department of Radiation Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, San Giuliano Terme, Italy.
| |
Collapse
|
4
|
Gao Y, Gong Y, Lu J, Hao H, Shi X. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: mechanism and strategy. Front Immunol 2024; 15:1377722. [PMID: 38550587 PMCID: PMC10972981 DOI: 10.3389/fimmu.2024.1377722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Liver cancer is the third leading of tumor death, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Immune checkpoint inhibitors (ICIs) are yielding much for sufferers to hope for patients, but only some patients with advanced liver tumor respond. Recent research showed that tumor microenvironment (TME) is critical for the effectiveness of ICIs in advanced liver tumor. Meanwhile, metabolic reprogramming of liver tumor leads to immunosuppression in TME. These suggest that regulating the abnormal metabolism of liver tumor cells and firing up TME to turn "cold tumor" into "hot tumor" are potential strategies to improve the therapeutic effect of ICIs in liver tumor. Previous studies have found that YAP1 is a potential target to improve the efficacy of anti-PD-1 in HCC. Here, we review that YAP1 promotes immunosuppression of TME, mainly due to the overstimulation of cytokines in TME by YAP1. Subsequently, we studied the effects of YAP1 on metabolic reprogramming in liver tumor cells, including glycolysis, gluconeogenesis, lipid metabolism, arachidonic acid metabolism, and amino acid metabolism. Lastly, we summarized the existing drugs targeting YAP1 in the treatment of liver tumor, including some medicines from natural sources, which have the potential to improve the efficacy of ICIs in the treatment of liver tumor. This review contributed to the application of targeted YAP1 for combined therapy with ICIs in liver tumor patients.
Collapse
Affiliation(s)
- Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
- Basic Laboratory of Integrated Traditional Chinese and Western, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
5
|
Wang X, Wang Y, Zhang Y, Shi H, Liu K, Wang F, Wang Y, Chen H, Shi Y, Wang R. Immune modulatory roles of radioimmunotherapy: biological principles and clinical prospects. Front Immunol 2024; 15:1357101. [PMID: 38449871 PMCID: PMC10915027 DOI: 10.3389/fimmu.2024.1357101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Radiation therapy (RT) not only can directly kill tumor cells by causing DNA double-strand break, but also exerts anti-tumor effects through modulating local and systemic immune responses. The immunomodulatory effects of RT are generally considered as a double-edged sword. On the one hand, RT effectively enhances the immunogenicity of tumor cells, triggers type I interferon response, induces immunogenic cell death to activate immune cell function, increases the release of proinflammatory factors, and reshapes the tumor immune microenvironment, thereby positively promoting anti-tumor immune responses. On the other hand, RT stimulates tumor cells to express immunosuppressive cytokines, upregulates the function of inhibitory immune cells, leads to lymphocytopenia and depletion of immune effector cells, and thus negatively suppresses immune responses. Nonetheless, it is notable that RT has promising abscopal effects and may achieve potent synergistic effects, especially when combined with immunotherapy in the daily clinical practice. This systematic review will provide a comprehensive profile of the latest research progress with respect to the immunomodulatory effects of RT, as well as the abscopal effect of radioimmunotherapy combinations, from the perspective of biological basis and clinical practice.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonggang Zhang
- Department of Head and Neck Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Hongyun Shi
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Kuan Liu
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fang Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yue Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Huijing Chen
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ruiyao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
6
|
Xi Y, Chen L, Tang J, Yu B, Shen W, Niu X. Amplifying "eat me signal" by immunogenic cell death for potentiating cancer immunotherapy. Immunol Rev 2024; 321:94-114. [PMID: 37550950 DOI: 10.1111/imr.13251] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 08/09/2023]
Abstract
Immunogenic cell death (ICD) is a unique mode of cell death, which can release immunogenic damage-associated molecular patterns (DAMPs) and tumor-associated antigens to trigger long-term protective antitumor immune responses. Thus, amplifying "eat me signal" during tumor ICD cascade is critical for cancer immunotherapy. Some therapies (radiotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), etc.) and inducers (chemotherapeutic agents, etc.) have enabled to initiate and/or facilitate ICD and activate antitumor immune responses. Recently, nanostructure-based drug delivery systems have been synthesized for inducing ICD through combining treatment of chemotherapeutic agents, photosensitizers for PDT, photothermal transformation agents for PTT, radiosensitizers for radiotherapy, etc., which can release loaded agents at an appropriate dosage in the designated place at the appropriate time, contributing to higher efficiency and lower toxicity. Also, immunotherapeutic agents in combination with nanostructure-based drug delivery systems can produce synergetic antitumor effects, thus potentiating immunotherapy. Overall, our review outlines the emerging ICD inducers, and nanostructure drug delivery systems loading diverse agents to evoke ICD through chemoradiotherapy, PDT, and PTT or combining immunotherapeutic agents. Moreover, we discuss the prospects and challenges of harnessing ICD induction-based immunotherapy, and highlight the significance of multidisciplinary and interprofessional collaboration to promote the optimal translation of this treatment strategy.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijie Chen
- School of Medicine, Xiamen University, Xiamen, China
- China Medical University, Shenyang, China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xing Niu
- China Medical University, Shenyang, China
| |
Collapse
|