1
|
Huang K, Yang X, Zhang C, Liu X, Hong Y, Cai Q, Li M, Lin Z, Yang Y. Research landscape of radiotherapy for nasopharyngeal carcinoma from 1959 to 2022: A bibliometric analysis. Heliyon 2024; 10:e38475. [PMID: 39397984 PMCID: PMC11470525 DOI: 10.1016/j.heliyon.2024.e38475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Background Radiotherapy, as the main treatment method for nasopharyngeal carcinoma (NPC), has evolved over time, but there has been no bibliometric study on NPC radiotherapy to date. In our study, the scientific achievements of NPC radiotherapy around the world were evaluated by bibliometric analyses, and the previous research hotspots and future trends are described. Methods Original articles related to NPC radiotherapy were obtained from the Web of Science Core Collection. To identify research hotspots and future trends, countries/regions, institutions, journals, references, authors, and keywords were evaluated and visualized by Excel, VOSviewer, and CiteSpace. Results From 1959 to 2022, 7139 original articles were collected. The annual publications showed an increasing trend, especially after 2011. China had the most publications (n = 3719, 52.09 %). Sun Yat-sen University has the most publications and citations among institutions. Jun Ma is most productive and SR Baker has the highest co-cited centrality. International Journal of Radiation Oncology-Biology-Physics is the core journal, with most publications, citations and co-citations. Analysis of keywords showed intensity-modulated radiotherapy and chemoradiotherapy were the main keywords, and multicenter showed the strongest burst. Conclusion NPC radiotherapy has attracted increasing attention, and precision and artificial intelligence may be the future trends in this field.
Collapse
Affiliation(s)
- Kaichun Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
| | - Xinqing Yang
- Department of Otolaryngology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Cuidai Zhang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
| | - Xuejia Liu
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yingji Hong
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
| | - Qingxin Cai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
| | - Mei Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhixiong Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
| | - Yizhou Yang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Surucu M, Ashraf MR, Romero IO, Zalavari LT, Pham D, Vitzthum LK, Gensheimer MF, Yang Y, Xing L, Kovalchuk N, Han B. Commissioning of a novel PET-Linac for biology-guided radiotherapy (BgRT). Med Phys 2024; 51:4389-4401. [PMID: 38703397 DOI: 10.1002/mp.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Biology-guided radiotherapy (BgRT) is a novel radiotherapy delivery technique that utilizes the tumor itself to guide dynamic delivery of treatment dose to the tumor. The RefleXion X1 system is the first radiotherapy system developed to deliver SCINTIX® BgRT. The X1 is characterized by its split arc design, employing two 90-degree positron emission tomography (PET) arcs to guide therapeutic radiation beams in real time, currently cleared by FDA to treat bone and lung tumors. PURPOSE This study aims to comprehensively evaluate the capabilities of the SCINTIX radiotherapy delivery system by evaluating its sensitivity to changes in PET contrast, its adaptability in the context of patient motion, and its performance across a spectrum of prescription doses. METHODS A series of experimental scenarios, both static and dynamic, were designed to assess the SCINTIX BgRT system's performance, including an end-to-end test. These experiments involved a range of factors, including changes in PET contrast, motion, and prescription doses. Measurements were performed using a custom-made ArcCHECK insert which included a 2.2 cm spherical target and a c-shape structure that can be filled with a PET tracer with varying concentrations. Sinusoidal and cosine4 motion patterns, simulating patient breathing, was used to test the SCINTIX system's ability to deliver BgRT during motion-induced challenges. Each experiment was evaluated against specific metrics, including Activity Concentration (AC), Normalized Target Signal (NTS), and Biology Tracking Zone (BTZ) bounded dose-volume histogram (bDVH) pass rates. The accuracy of the delivered BgRT doses on ArcCHECK and EBT-XD film were evaluated using gamma 3%/2 mm and 3%/3 mm analysis. RESULTS In static scenarios, the X1 system consistently demonstrated precision and robustness in SCINTIX dose delivery. The end-to-end delivery to the spherical target yielded good results, with AC and NTS values surpassing the critical thresholds of 5 kBq/mL and 2, respectively. Furthermore, bDVH analysis consistently confirmed 100% pass rates. These results were reaffirmed in scenarios involving changes in PET contrast, emphasizing the system's ability to adapt to varying PET avidities. Gamma analysis with 3%/2 mm (10% dose threshold) criteria consistently achieved pass rates > 91.5% for the static tests. In dynamic SCINTIX delivery scenarios, the X1 system exhibited adaptability under conditions of motion. Sinusoidal and cosine4 motion patterns resulted in 3%/3 mm gamma pass rates > 87%. Moreover, the comparison with gated stereotactic body radiotherapy (SBRT) delivery on a conventional c-arm Linac resulted in 93.9% gamma pass rates and used as comparison to evaluate the interplay effect. The 1 cm step shift tests showed low overall gamma pass rates of 60.3% in ArcCHECK measurements, while the doses in the PTV agreed with the plan with 99.9% for 3%/3 mm measured with film. CONCLUSIONS The comprehensive evaluation of the X1 radiotherapy delivery system for SCINTIX BgRT demonstrated good agreement for the static tests. The system consistently achieved critical metrics and delivered the BgRT doses per plan. The motion tests demonstrated its ability to co-localize the dose where the PET signal is and deliver acceptable BgRT dose distributions.
Collapse
Affiliation(s)
- Murat Surucu
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | | | - Ignacio Omar Romero
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | | | - Daniel Pham
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Lucas Kas Vitzthum
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | | | - Yong Yang
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Bin Han
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Shi M, Simiele E, Han B, Pham D, Palomares P, Aguirre M, Gensheimer M, Vitzthum L, Le QT, Surucu M, Kovalchuk N. First-Year Experience of Stereotactic Body Radiation Therapy/Intensity Modulated Radiation Therapy Treatment Using a Novel Biology-Guided Radiation Therapy Machine. Adv Radiat Oncol 2024; 9:101300. [PMID: 38260216 PMCID: PMC10801639 DOI: 10.1016/j.adro.2023.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose The aim of this study was to present the first-year experience of treating patients using intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) with a biology-guided radiation therapy machine, the RefleXion X1 system, installed in a clinical setting. Methods and Materials A total of 78 patients were treated on the X1 system using IMRT and SBRT from May 2021 to May 2022. Clinical and technical data including treatment sites, number of pretreatment kilovoltage computed tomography (kVCT) scans, beam-on time, patient setup time, and imaging time were collected and analyzed. Machine quality assurance (QA) results, machine performance, and user satisfactory survey were also collected and reported. Results The most commonly treated site was the head and neck (63%), followed by the pelvis (23%), abdomen (8%), and thorax (6%). Except for 5 patients (6%) who received SBRT treatments for bony metastases in the pelvis, all treatments were conventionally fractionated IMRT. The number of kVCT scans per fraction was 1.2 ± 0.5 (mean ± standard deviation). The beam-on time was 9.2 ± 3.5 minutes. The patient setup time and imaging time per kVCT was 4.8 ± 2.6 minutes and 4.6 ± 1.5 minutes, respectively. The daily machine output deviation was 0.4 ± 1.2% from the baseline. The patient QA had a passing rate of 97.4 ± 2.8% at 3%/2 mm gamma criteria. The machine uptime was 92% of the total treatment time. The daily QA and kVCT image quality received the highest level of satisfaction. The treatment workflow for therapists received the lowest level of satisfaction. Conclusions One year after the installation, 78 patients were successfully treated with the X1 system using IMRT and/or SBRT. With the recent Food and Drug Administration clearance of biology-guided radiation therapy, our department is preparing to treat patients using positron emission tomography-guidance via a new product release, which will address deficiencies in the current image-guided radiation therapy workflow.
Collapse
Affiliation(s)
- Mengying Shi
- Department of Radiation Oncology, Stanford University, Stanford, California
- Department of Radiation Oncology, University of California, Irvine, Orange, California
| | - Eric Simiele
- Department of Radiation Oncology, Stanford University, Stanford, California
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Bin Han
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Daniel Pham
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Paul Palomares
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Michaela Aguirre
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Michael Gensheimer
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Lucas Vitzthum
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, California
| |
Collapse
|