1
|
Milgrom SA, Dandapani SV, Wong J, Kalapurakal J, Smith KS, Han C, Simiele E, Hua CH, Fitzgerald TJ, Kry S, Wong K, Symons H, Kovalchuk N, Hiniker SM. Incorporating intensity modulated total body irradiation into a Children's Oncology Group trial: Rationale, techniques, and safeguards. Pediatr Blood Cancer 2024; 71:e31185. [PMID: 39118225 DOI: 10.1002/pbc.31185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/10/2024]
Abstract
Historically, total body irradiation (TBI) has been delivered using static, parallel opposed photon beams (2D-TBI). Recently, centers have increasingly used intensity-modulated radiation therapy (IMRT) techniques for TBI. Relative to 2D-TBI, IMRT can reduce doses to critical organs (i.e., lungs and kidneys) while delivering myeloablative doses to the rest of the body, so it may decrease the risk of toxicity while maintaining oncologic outcomes. Despite these potential benefits, delivering TBI using IMRT introduces new challenges in treatment planning and delivery. We describe the extensive experience with IMRT-based TBI at Stanford University and City of Hope Cancer Center. These groups, and others, have reported favorable clinical outcomes and have developed methods to optimize treatment planning and delivery. A critical next step is to evaluate the broader adoption of this approach. Therefore, IMRT-based TBI will be incorporated into a prospective, multi-institutional Children's Oncology Group study with careful procedures and safeguards in place.
Collapse
Affiliation(s)
- Sarah A Milgrom
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado, USA
| | | | - Jeffrey Wong
- Department of Radiation Oncology, City of Hope, Duarte, California, USA
| | - John Kalapurakal
- Department of Radiation Oncology, Northwestern Medicine, Chicago, Illinois, USA
| | - Koren S Smith
- Department of Radiation Oncology, Imaging and Radiation Oncology Core-Rhode Island, UMass Chan Medical School, Lincoln, Rhode Island, USA
| | - Chunhui Han
- Department of Radiation Oncology, City of Hope, Duarte, California, USA
| | - Eric Simiele
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas J Fitzgerald
- Department of Radiation Oncology, Imaging and Radiation Oncology Core-Rhode Island, UMass Chan Medical School, Lincoln, Rhode Island, USA
| | - Stephen Kry
- Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Wong
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Heather Symons
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| |
Collapse
|
2
|
Walker H, Abbotsford J, Haeusler GM, Yeoh D, Ramachandran S, Ng M, Holzmann J, Shanthikumar S, Weerdenburg H, Hanna D, Neeland MR, Cole T. Pulmonary complications post allogeneic haematopoietic stem cell transplant in children. Clin Transl Immunology 2024; 13:e70003. [PMID: 39290230 PMCID: PMC11407826 DOI: 10.1002/cti2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives Haematopoietic stem cell transplant (HCT) is a cellular therapy that, whilst curative for a child's underlying disease, carries significant risk of mortality, including because of pulmonary complications. The aims of this study were to describe the burden of pulmonary complications post-HCT in a cohort of Australian children and identify risk factors for the development of these complications. Methods Patients were identified from the HCT databases at two paediatric transplant centres in Australia. Medical records were reviewed, and demographics, HCT characteristics and pulmonary complications documented. Relative risk ratio was used to identify risk factors for developing pulmonary complications prior to first transplant episode, and survival analysis performed to determine hazard ratio. Results In total, 243 children underwent transplant during the study period, and pulmonary complications occurred in 48% (117/243) of children. Infectious complications were more common (55%) than non-infective complications (18%) and 26% of patients developed both. Risk factors for the development of pulmonary complications included the following: diagnoses of MPAL (RR 2.16, P = 0.02), matched unrelated donor (RR1.34, P = 0.03), peripheral blood (RR 1.36, P = 0.028) or cord blood (RR 1.73, P = 0.012) as the stem cell source and pre-existing lung disease (RR1.72, P < 0.0001). Children with a post-HCT lung complication had a significantly increased risk of mortality compared with those who did not (HR 3.9, P < 0.0001). Conclusion This study demonstrates pulmonary complications continue to occur frequently in children post-HCT and contribute significantly to mortality. Highlighting the need for improved strategies to identify patients at risk pre-transplant and enhanced treatments for those who develop lung disease.
Collapse
Affiliation(s)
- Hannah Walker
- Children's Cancer Centre Royal Children's Hospital Parkville VIC Australia
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
| | - Joanne Abbotsford
- Department of Infectious diseases Perth Children's Hospital Nedlands WA Australia
| | - Gabrielle M Haeusler
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
- Infection Diseases Unit, Department of General Medicine Royal Children's Hospital Parkville VIC Australia
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne VIC Australia
- NHMRC National Centre for Infections in Cancer, Sir Peter MacCallum Department of Oncology University of Melbourne Parkville VIC Australia
- The Paediatric Integrated Cancer Service Parkville VIC Australia
| | - Daniel Yeoh
- Murdoch Children's Research Institute Parkville VIC Australia
- Department of Infectious diseases Perth Children's Hospital Nedlands WA Australia
| | - Shanti Ramachandran
- Department of Clinical Haematology, Oncology and Bone Marrow Transplantation Perth Children's Hospital Nedlands WA Australia
- Division of Paediatrics University of Western Australia Medical School Perth WA Australia
| | - Michelle Ng
- Department of Clinical Haematology, Oncology and Bone Marrow Transplantation Perth Children's Hospital Nedlands WA Australia
| | - Jonathan Holzmann
- Department of Clinical Haematology, Oncology and Bone Marrow Transplantation Perth Children's Hospital Nedlands WA Australia
| | - Shivanthan Shanthikumar
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
- Respiratory and Sleep Medicine Royal Children's Hospital Parkville VIC Australia
| | - Heather Weerdenburg
- Children's Cancer Centre Royal Children's Hospital Parkville VIC Australia
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
| | - Diane Hanna
- Children's Cancer Centre Royal Children's Hospital Parkville VIC Australia
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
- The Paediatric Integrated Cancer Service Parkville VIC Australia
| | - Melanie R Neeland
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
| | - Theresa Cole
- Children's Cancer Centre Royal Children's Hospital Parkville VIC Australia
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
- Allergy and Immunology Royal Children's Hospital Parkville VIC Australia
| |
Collapse
|
3
|
Milano MT, Marks LB, Olch AJ, Yorke ED, Jackson A, Bentzen SM, Constine LS. Comparison of Risks of Late Effects From Radiation Therapy in Children Versus Adults: Insights From the QUANTEC, HyTEC, and PENTEC Efforts. Int J Radiat Oncol Biol Phys 2024; 119:387-400. [PMID: 38069917 DOI: 10.1016/j.ijrobp.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 05/19/2024]
Abstract
Pediatric Normal Tissue Effects in the Clinic (PENTEC) seeks to refine quantitative radiation dose-volume relationships for normal-tissue complication probabilities (NTCPs) in survivors of pediatric cancer. This article summarizes the evolution of PENTEC and compares it with similar adult-focused efforts (eg, Quantitative Analysis of Normal Tissue Effects in the Clinic [QUANTEC] and Hypofractionated Treatment Effects in the Clinic [HyTEC]) with respect to content, oversight, support, scope, and methodology of literature review. It then summarizes key organ-specific findings from PENTEC in an attempt to compare NTCP estimates in children versus adults. In brief, select normal-tissue risks within developing organs and tissues (eg, maldevelopment of musculoskeletal tissue, teeth, breasts, and reproductive organs) are primarily relevant only in children. For some organs and tissues, children appear to have similar (eg, brain for necrosis, optic apparatus, parotid gland, liver), greater (eg, brain for neurocognition, cerebrovascular, breast for lactation), less (ovary), or perhaps slightly less (eg, lung) risks of toxicity versus adults. Similarly, even within the broad pediatric age range (including adolescence), for some endpoints, younger children have greater (eg, hearing and brain for neurocognition) or lesser (eg, ovary, thyroid) risks of radiation-associated toxicities. NTCP comparisons in adults versus children are often confounded by marked differences in treatment paradigms that expose normal tissues to radiation (ie, cancer types, prescribed radiation therapy dose and fields, and chemotherapy agents used). To add to the complexity, it is unclear if age is best analyzed as a continuous variable versus with age groupings (eg, infants, young children, adolescents, young adults, middle-aged adults, older adults). Further work is needed to better understand the complex manner in which age and developmental status affect risk.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Arthur J Olch
- Radiation Oncology Program, Children's Hospital Los Angeles/Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ellen D Yorke
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Søren M Bentzen
- Greenebaum Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
4
|
Bentzen SM, Vogelius IR, Hodgson D, Howell R, Jackson A, Hua CH, Olch AJ, Ronckers C, Kremer L, Milano M, Marks LB, Constine LS. Radiation Dose-Volume-Response Relationships for Adverse Events in Childhood Cancer Survivors: Introduction to the Scientific Issues in PENTEC. Int J Radiat Oncol Biol Phys 2024; 119:338-353. [PMID: 38760115 DOI: 10.1016/j.ijrobp.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 05/19/2024]
Abstract
At its very core, radiation oncology involves a trade-off between the benefits and risks of exposing tumors and normal tissue to relatively high doses of ionizing radiation. This trade-off is particularly critical in childhood cancer survivors (CCS), in whom both benefits and risks can be hugely consequential due to the long life expectancy if the primary cancer is controlled. Estimating the normal tissue-related risks of a specific radiation therapy plan in an individual patient relies on predictive mathematical modeling of empirical data on adverse events. The Pediatric Normal-Tissue Effects in the Clinic (PENTEC) collaborative network was formed to summarize and, when possible, to synthesize dose-volume-response relationships for a range of adverse events incident in CCS based on the literature. Normal-tissue clinical radiation biology in children is particularly challenging for many reasons: (1) Childhood malignancies are relatively uncommon-constituting approximately 1% of new incident cancers in the United States-and biologically heterogeneous, leading to many small series in the literature and large variability within and between series. This creates challenges in synthesizing data across series. (2) CCS are at an elevated risk for a range of adverse health events that are not specific to radiation therapy. Thus, excess relative or absolute risk compared with a reference population becomes the appropriate metric. (3) Various study designs and quantities to express risk are found in the literature, and these are summarized. (4) Adverse effects in CCS often occur 30, 50, or more years after therapy. This limits the information content of series with even very extended follow-up, and lifetime risk estimates are typically extrapolations that become dependent on the mathematical model used. (5) The long latent period means that retrospective dosimetry is required, as individual computed tomography-based radiation therapy plans gradually became available after 1980. (6) Many individual patient-level factors affect outcomes, including age at exposure, attained age, lifestyle exposures, health behaviors, other treatment modalities, dose, fractionation, and dose distribution. (7) Prospective databases with individual patient-level data and radiation dosimetry are being built and will facilitate advances in dose-volume-response modeling. We discuss these challenges and attempts to overcome them in the setting of PENTEC.
Collapse
Affiliation(s)
- Søren M Bentzen
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Ivan R Vogelius
- Department of Oncology, Rigshospitalet, University of Copenhagen, Denmark
| | - David Hodgson
- Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca Howell
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chia-Ho Hua
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Arthur J Olch
- Department of Radiation Oncology, University of Southern California Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, California
| | - Cecile Ronckers
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Leontien Kremer
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Michael Milano
- Department of Radiation Oncology, James P. Wilmot Cancer Institute, University of Rochester, Rochester, New York
| | - Lawrence B Marks
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Louis S Constine
- Department of Radiation Oncology, James P. Wilmot Cancer Institute, University of Rochester, Rochester, New York
| |
Collapse
|
5
|
Hua CH, Bentzen SM, Li Y, Milano MT, Rancati T, Marks LB, Constine LS, Yorke ED, Jackson A. Improving Pediatric Normal Tissue Radiation Dose-Response Modeling in Children With Cancer: A PENTEC Initiative. Int J Radiat Oncol Biol Phys 2024; 119:369-386. [PMID: 38276939 DOI: 10.1016/j.ijrobp.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024]
Abstract
The development of normal tissue radiation dose-response models for children with cancer has been challenged by many factors, including small sample sizes; the long length of follow-up needed to observe some toxicities; the continuing occurrence of events beyond the time of assessment; the often complex relationship between age at treatment, normal tissue developmental dynamics, and age at assessment; and the need to use retrospective dosimetry. Meta-analyses of published pediatric outcome studies face additional obstacles of incomplete reporting of critical dosimetric, clinical, and statistical information. This report describes general methods used to address some of the pediatric modeling issues. It highlights previous single- and multi-institutional pediatric dose-response studies and summarizes how each PENTEC taskforce addressed the challenges and limitations of the reviewed publications in constructing, when possible, organ-specific dose-effect models.
Collapse
Affiliation(s)
- Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yimei Li
- Department of Biostatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|