1
|
Alizadeh S, Mahboobi L, Nasiri M, Khosrowpour Z, Khosravimelal S, Asgari F, Gholipour-Malekabadi M, Taghi Razavi-Toosi SM, Singh Chauhan NP, Ghobadi F, Nasiri H, Gholipourmalekabadi M. Decellularized Placental Sponge Seeded with Human Mesenchymal Stem Cells Improves Deep Skin Wound Healing in the Animal Model. ACS APPLIED BIO MATERIALS 2024; 7:2140-2152. [PMID: 38470456 DOI: 10.1021/acsabm.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Skin injuries lead to a large burden of morbidity. Although numerous clinical and scientific strategies have been investigated to repair injured skin, optimal regeneration therapy still poses a considerable obstacle. To address this challenge, decellularized extracellular matrix-based scaffolds recellularized with stem cells offer significant advancements in skin regeneration and wound healing. Herein, a decellularized human placental sponge (DPS) was fabricated using the decellularization and freeze-drying technique and then recellularized with human adipose-derived mesenchymal cells (MSCs). The biological and biomechanical properties and skin full-thickness wound healing capacity of the stem cells-DPS constructs were investigated in vitro and in vivo. The DPS exhibited a uniform 3D microstructure with an interconnected pore network, 89.21% porosity, a low degradation rate, and good mechanical properties. The DPS and MSCs-DPS constructs were implanted in skin full-thickness wound models in mice. An accelerated wound healing was observed in the wounds implanted with the MSCs-DPS construct when compared to DPS and control (wounds with no treatment) during 7 and 21 days postimplantation follow-up. In the MSCs-DPS group, the wound was completely re-epithelialized, the epidermis layer was properly organized, and the dermis and epidermis' bilayer structures were restored after 7 days. Our findings suggest that DPS is an excellent carrier for MSC culture and delivery to skin wounds and now promises to proceed with clinical evaluations.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Leila Mahboobi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Modara Nasiri
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran 19585, Iran
- Research Company Located in Islamic Azad University Science and Technology Park, Araz Fidar Azma, Tehran, 1477893855, Iran
| | - Zahra Khosrowpour
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Sadjad Khosravimelal
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Fatemeh Asgari
- Avicenna Infertility Clinic, Avicenna Research Institute, ACECR, Tehran 1985743413, Iran
| | | | - Seyyed Mohammad Taghi Razavi-Toosi
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, Rajasthan 313001, India
| | - Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Hajar Nasiri
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| |
Collapse
|
2
|
Mehrabi A, Mousazadeh S, Mollafilabi A, Nafissi N, Milan PB. Synthesis and characterization of a silk fibroin/placenta matrix hydrogel for breast reconstruction. Life Sci 2023; 334:122236. [PMID: 37926297 DOI: 10.1016/j.lfs.2023.122236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Reconstructive surgery is a complex and demanding interdisciplinary field. One of the major challenges is the production of sizeable, implantable, inexpensive bioprostheses such as breast implants. In this study, porous hybrid hydrogels were fabricated by a combinatorial method using decellularized human placenta (dHplacenta) and silk fibroin. Histology was used to confirm the acellularity of the dHplacenta. The physio-chemical properties of the hydrogels were evaluated using SEM, FTIR, and rheological assays. The synthesized hydrogels exhibited a uniform 3-D microstructure with an interconnected porous network, and the hybrid hydrogels with a 30/70 ratio had improved mechanical properties compared to the other hydrogels. Hybrid hydrogels were also cultured with adipose-derived mesenchymal stem cells (ADSCs). Liposuction was used to obtain adipose tissue from patients, which was then characterized using flow cytometry and karyotyping. The results showed that CD34 and CD31 were downregulated, whereas CD105 and CD90 were upregulated in ADSCs, indicating a phenotype resembling to that of mesenchymal stem cells from the human bone marrow. Moreover, after re-cellularized hydrogel, the live/dead assay and SEM analysis confirmed that most viability and cellular expansion on the hydrogels contained higher ratios of dHplacenta (30/70) than the other two groups. All these findings recapitulated that the 30/70 dHplacenta/silk fibroin hydrogel can perform as an excellent substrate for breast tissue engineering applications.
Collapse
Affiliation(s)
- Arezou Mehrabi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Mousazadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mollafilabi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Nafissi
- Department of Breast Surgery, Iran University of Medical Sciences, Tehran, Iran.
| | - Peiman Brouki Milan
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Maljaars LP, Bendaoud S, Kastelein AW, Guler Z, Hooijmans CR, Roovers JPWR. Application of amniotic membranes in reconstructive surgery of internal organs-A systematic review and meta-analysis. J Tissue Eng Regen Med 2022; 16:1069-1090. [PMID: 36333859 PMCID: PMC10099938 DOI: 10.1002/term.3357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Amniotic membrane (AM) has great potential as a scaffold for tissue regeneration in reconstructive surgery. To date, no systematic review of the literature has been performed for the applications of AM in wound closure of internal organs. Therefore, in this systematic review and meta-analysis, we summarize the literature on the safety and efficacy of AM for the closure of internal organs. A systematic search was performed in MEDLINE-PubMed database and OVID Embase to retrieve human and controlled animal studies on wound closure of internal organs. The Cochrane Risk of Bias tool for randomized clinical trials and the SYRCLE risk of bias tool for animal studies were used. Meta-analyses (MAs) were conducted for controlled animal studies to assess efficacy of closure, mortality and complications in subjects who underwent surgical wound closure in internal organs with the application of AM. Sixty references containing 26 human experiments and 36 animal experiments were included. The MAs of the controlled animal studies showed comparable results with regard to closure, mortality and complications, and suggested improved mechanical strength and lower inflammation scores after AM application when compared to standard surgical closure techniques. This systematic review and MAs demonstrate that the application of AM to promote wound healing of internal organs appears to be safe, efficacious, and feasible.
Collapse
Affiliation(s)
- Lennart P Maljaars
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Sohayla Bendaoud
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Arnoud W Kastelein
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Zeliha Guler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan-Paul W R Roovers
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Caneparo C, Sorroza-Martinez L, Chabaud S, Fradette J, Bolduc S. Considerations for the clinical use of stem cells in genitourinary regenerative medicine. World J Stem Cells 2021; 13:1480-1512. [PMID: 34786154 PMCID: PMC8567446 DOI: 10.4252/wjsc.v13.i10.1480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.
Collapse
Affiliation(s)
- Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Luis Sorroza-Martinez
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| |
Collapse
|