1
|
Jiang S, Chen B, Sun ZY. Enhancing therapeutic potential: Human adipose-derived mesenchymal stem cells modified with recombinant adeno-associated virus expressing VEGF165 gene for peripheral nerve injury. Kaohsiung J Med Sci 2024; 40:819-829. [PMID: 39101328 DOI: 10.1002/kjm2.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
This study aimed to investigate the therapeutic potential of human adipose-derived mesenchymal stem cells (hADSCs) modified with recombinant adeno-associated virus (rAAV) carrying the vascular endothelial growth factor 165 (VEGF165) gene in peripheral nerve injury (PNI). The hADSCs were categorized into blank, control (transduced with rAAV control vector), and VEGF165 (transduced with rAAV VEGF165 vector) groups. Subsequently, Schwann cell differentiation was induced, and Schwann cell markers were assessed. The sciatic nerve injury mouse model received injections of phosphate-buffered saline (PBS group), PBS containing hADSCs (hADSCs group), rAAV control vector (control-hADSCs group), or rAAV VEGF165 vector (VEGF165-hADSCs group) into the nerve defect site. Motor function recovery, evaluated through the sciatic function index (SFI), and nerve regeneration, assessed via toluidine blue staining along with scrutiny of Schwann cell markers and neurotrophic factors, were conducted. Modified hADSCs exhibited enhanced Schwann cell differentiation and elevated expression of Schwann cell markers [S100 calcium-binding protein B (S100B), NGF receptor (NGFR), and glial fibrillary acidic protein (GFAP)]. Mice in the VEGF165-hADSCs group demonstrated improved motor function recovery compared to those in the other three groups, accompanied by increased fiber diameter, axon diameter, and myelin thickness, as well as elevated expression of Schwann cell markers (S100B, NGFR, and GFAP) and neurotrophic factors [mature brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF)] in the distal nerve segment. rAAV-VEGF165 modification enhances hADSC potential in PNI, promoting motor recovery and nerve regeneration. Elevated Schwann cell markers and neurotrophic factors underscore therapy benefits, providing insights for nerve injury strategies.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Bo Chen
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Zhen-Yu Sun
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
2
|
Wan T, Zhang FS, Qin MY, Jiang HR, Zhang M, Qu Y, Wang YL, Zhang PX. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - Molecular mechanisms and delivery platforms. Biomed Pharmacother 2024; 170:116024. [PMID: 38113623 DOI: 10.1016/j.biopha.2023.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Ming-Yu Qin
- Suzhou Medical College, Soochow University, Suzhou 215026, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yang Qu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China; Peking University People's Hospital Qingdao Hospital, Qingdao 266000, China.
| |
Collapse
|
3
|
Starks AO, Owen J, Isaacs J. Evaluation of the Induced Membrane for Neurotrophic Factors. J Hand Surg Am 2022; 47:130-136. [PMID: 34865951 DOI: 10.1016/j.jhsa.2021.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/09/2021] [Accepted: 08/24/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Despite gaining popularity as a bridge for small and moderate nerve gaps, an acellular nerve allograft (ANA) lacks many of the neurotrophic characteristics of a nerve autograft. Pseudomembranes induced to form around temporary skeletal spacers are rich in growth factors. Induced membranes may have beneficial neurotrophic factors which could support ANA. METHODS Twenty-two male Sprague-Dawley rats underwent resection of 2 cm of the sciatic nerve. A silicone rod was inset in the defect of 11 experimental rats, and marking sutures only were placed in the nerve stumps of the remaining 11 control rats. After allowing 4 weeks for tissue maturation, tissue samples harvested from the induced membrane (experimental group) and the tissue bed (control group) were analyzed using Luminex multiplex assay to quantify differences in detectable levels of the following neurotrophic factors: nerve growth factor, glial-derived nerve factor, vascular endothelial growth factor, and transforming growth factor ß (TGF-ß) 1, 2, and 3, interleukin-1ß, and monocyte chemoattractant protein 1. RESULTS No difference was detected between the control and experimental groups in levels of vascular endothelial growth factor. Higher levels of TGF-ß1, TGF-ß2, TGF-ß3, glial-derived nerve factor, nerve growth factor, monocyte chemoattractant protein 1, and interleukin-1ß were detected in the experimental group. CONCLUSIONS In the setting of peripheral nerve injury, an induced membrane has higher levels of several neurotrophic factors that may support nerve regeneration compared to wound bed cicatrix. CLINICAL RELEVANCE This investigation provides impetus for further study examining the utility of using a staged induced membrane technique in conjunction with delayed nerve grafting in reconstruction of some peripheral nerve defects.
Collapse
Affiliation(s)
- Alexandria O Starks
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA.
| | - John Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA
| | - Jonathan Isaacs
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
4
|
Wang Y, Li WY, Jia H, Zhai FG, Qu WR, Cheng YX, Liu YC, Deng LX, Guo SF, Jin ZS. KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration. Neuroscience 2016; 340:319-332. [PMID: 27826105 DOI: 10.1016/j.neuroscience.2016.10.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 11/16/2022]
Abstract
Our former study demonstrated that Krüppel-like Factor 7 (KLF7) is a transcription factor that stimulates axonal regeneration after peripheral nerve injury. Currently, we used a gene therapy approach to overexpress KLF7 in Schwann cells (SCs) and assessed whether KLF7-transfected SCs graft could promote sciatic nerve regeneration. SCs were transfected by adeno-associated virus 2 (AAV2)-KLF7 in vitro. Mice were allografted by an acellular nerve (ANA) with either an injection of DMEM (ANA group), SCs (ANA+SCs group) or AAV2-KLF7-transfected SCs (ANA+KLF7-SCs group) to assess repair of a sciatic nerve gap. The results indicate that KLF7 overexpression promoted the proliferation of both transfected SCs and native SCs. The neurite length of the dorsal root ganglia (DRG) explants was enhanced. Several beneficial effects were detected in the ANA+KLF7-SCs group including an increase in the compound action potential amplitude, sciatic function index score, enhanced expression of PKH26-labeling transplant SCs, peripheral myelin protein 0, neurofilaments, S-100, and myelinated regeneration nerve. Additionally, HRP-labeled motoneurons in the spinal cord, CTB-labeled sensory neurons in the DRG, motor endplate density and the weight ratios of target muscles were increased by the treatment while thermal hyperalgesia was diminished. Finally, expression of KLF7, NGF, GAP43, TrkA and TrkB were enhanced in the grafted SCs, which may indicate that several signal pathways may be involved in conferring the beneficial effects from KLF7 overexpression. We concluded that KLF7-overexpressing SCs promoted axonal regeneration of the peripheral nerve and enhanced myelination, which collectively proved KLF-SCs as a novel therapeutic strategy for injured nerves.
Collapse
Affiliation(s)
- Ying Wang
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Wen-Yuan Li
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China.
| | - Hua Jia
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Feng-Guo Zhai
- Department of Pharmacology, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Wen-Rui Qu
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun 130041, China
| | - Yong-Xia Cheng
- Department of Pathology, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Yan-Cui Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Su-Fen Guo
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun 130041, China
| | - Zai-Shun Jin
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
5
|
Lin YC, Kao CH, Chen CC, Ke CJ, Yao CH, Chen YS. Time-course effect of electrical stimulation on nerve regeneration of diabetic rats. PLoS One 2015; 10:e0116711. [PMID: 25689049 PMCID: PMC4331087 DOI: 10.1371/journal.pone.0116711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/13/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Electrical stimulation (ES) has been shown to promote nerve regeneration in rats with experimental diabetes induced using streptozotocin (STZ). However, the time-course effect of ES on nerve regeneration of diabetic animals has not been reported in previous studies. The present study attempted to examine the effect of different timing of ES after peripheral nerve transection in diabetic rats. METHODOLOGY/FINDINGS Fifty Sprague-Dawley rats were used in the study. They were classified into five groups. STZ-induced diabetes was created in groups A to D. Normal animals in group E were used as the non-diabetic controls. The sciatic nerve was transected and repaired using a silicone rubber conduit across a 10-mm gap in all groups. Groups A to C received ES for 15 minutes every other day for 2 weeks. Stimulation was initiated on day 1 following the nerve repair for group A, day 8 for group B, and day 15 for group C. The diabetic control group D and the normal control group E received no ES. At 30 days after surgery in group A, histological evaluations showed a higher success percentage of regeneration across the 10-mm nerve gap, and the electrophysiological results showed significantly larger mean values of evoked muscle action potential area and amplitude of the reinnervated gastrocnemius muscle compared with group D. CONCLUSIONS/SIGNIFICANCE It is concluded that an immediate onset of ES may improve the functional recovery of large nerve defect in diabetic animals.
Collapse
Affiliation(s)
- Yu-Ching Lin
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hong Kao
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chung-Chia Chen
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Linsen (Chinese Medicine) Branch, Taipei City Hospital, Taipei, Taiwan
| | - Cherng-Jyh Ke
- Department of Orthopedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsu Yao
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Wufeng District, Taichung, Taiwan
- Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Effect of local administration of fibroblastic growth factor with chitosan conduit on peripheral nerve regeneration: a rat sciatic nerve transection model. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-1976-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|