1
|
Resveratrol Analog 4-Bromo-Resveratrol Inhibits Gastric Cancer Stemness through the SIRT3-c-Jun N-Terminal Kinase Signaling Pathway. Curr Issues Mol Biol 2021; 44:63-72. [PMID: 35723384 PMCID: PMC8929134 DOI: 10.3390/cimb44010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the treatment of choice for gastric cancer, but the currently available therapeutic drugs have limited efficacy. Studies have suggested that gastric cancer stem cells may play a key role in drug resistance in chemotherapy. Therefore, new agents that selectively target gastric cancer stem cells in gastric tumors are urgently required. Sirtuin-3 (SIRT3) is a deacetylase that regulates mitochondrial metabolic homeostasis to maintain stemness in glioma stem cells. Targeting the mitochondrial protein SIRT3 may provide a novel therapeutic option for gastric cancer treatment. However, the mechanism by which stemness is regulated through SIRT3 inhibition in gastric cancer remains unknown. We evaluated the stemness inhibition ability of the SIRT3 inhibitor 4′-bromo-resveratrol (4-BR), an analog of resveratrol in human gastric cancer cells. Our results suggested that 4-BR inhibited gastric cancer cell stemness through the SIRT3-c-Jun N-terminal kinase pathway and may aid in gastric cancer stem-cell–targeted therapy.
Collapse
|
2
|
Nanog, in Cooperation with AP1, Increases the Expression of E6/E7 Oncogenes from HPV Types 16/18. Viruses 2021; 13:v13081482. [PMID: 34452350 PMCID: PMC8402821 DOI: 10.3390/v13081482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Persistent infections with some types of human papillomavirus (HPV) constitute the major etiological factor for cervical cancer development. Nanog, a stem cell transcription factor has been shown to increase during cancer progression. We wanted to determine whether Nanog could modulate transcription of E6 and E7 oncogenes. We used luciferase reporters under the regulation of the long control region (LCR) of HPV types 16 and 18 (HPV16/18) and performed RT-qPCR. We found that Nanog increases activity of both viral regulatory regions and elevates endogenous E6/E7 mRNA levels in cervical cancer-derived cells. We demonstrated by in vitro mutagenesis that changes at Nanog-binding sites found in the HPV18 LCR significantly inhibit transcriptional activation. Chromatin immunoprecipitation (ChIP) assays showed that Nanog binds in vivo to the HPV18 LCR, and its overexpression increases its binding as well as that of c-Jun. Surprisingly, we observed that mutation of AP1-binding sites also affect Nanog's ability to activate transcription, suggesting cooperation between the two factors. We searched for putative Nanog-binding sites in the LCR of several HPVs and surprisingly found them only in those types associated with cancer development. Our study shows, for the first time, a role for Nanog in the regulation of E6/E7 transcription of HPV16/18.
Collapse
|
3
|
Narusaka T, Ohara T, Noma K, Nishiwaki N, Katsura Y, Kato T, Sato H, Tomono Y, Kikuchi S, Tazawa H, Shirakawa Y, Matsukawa A, Fujiwara T. Nanog is a promising chemoresistant stemness marker and therapeutic target by iron chelators for esophageal cancer. Int J Cancer 2021; 149:347-357. [PMID: 33662150 DOI: 10.1002/ijc.33544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
Esophageal cancer is a disease showing poor prognosis. Although combination chemotherapy using cisplatin (CDDP) and 5-fluorouracil is standard for unresectable esophageal cancer, the response rate is 35%. Cancer stem cells (CSCs) and inflammation are reportedly responsible for the poor prognosis of esophageal cancer. However, comprehensive analyses have not been conducted and proposals for progress remain lacking. Iron is known to be a key factor in the stemness of CSCs. Our study focused on the therapeutic potential of iron control using iron chelators for CSCs in esophageal cancer. Among 134 immunohistochemically analyzed cases, Nanog expression was high in 98 cases and low in 36 cases. High Nanog expression correlated with low overall and disease-free survivals. The iron chelators deferasirox (DFX) and SP10 suppressed the proliferation and expression of stemness markers in TE8 and OE33 cells. DFX and SP10 did not induce compensatory interleukin (IL)-6 secretion, although CDDP did result in high induction. Moreover, BBI608 and SSZ, as other CSC-targeting drugs, could not suppress the expression of stemness markers. Overall, Nanog expression appears related to poor prognosis in esophageal cancer patients, and inhibition of stemness and compensatory IL-6 secretion by iron chelators may offer a novel therapeutic strategy for esophageal cancer.
Collapse
Affiliation(s)
- Toru Narusaka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Katsura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Sato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuko Tomono
- Division of Molecular Cell biology, Shigei Medical Research Institute, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Roudi R, Barodabi M, Madjd Z, Roviello G, Corona SP, Panahei M. Expression patterns and clinical significance of the potential cancer stem cell markers OCT4 and NANOG in colorectal cancer patients. Mol Cell Oncol 2020; 7:1788366. [PMID: 32944642 DOI: 10.1080/23723556.2020.1788366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most important malignancies and causes of cancer-related deaths worldwide. Cancer stem cell markers identification could be helpful to acquire important prognostic information and develop new treatment regimens. This study aimed to evaluate the expression of OCT4 and NANOG in CRC patients and their clinical significance. Totally 359 CRC samples were stained for OCT4 and NANOG expression using tissue microarray. The correlation between their expression and clinical and pathological features was explored. The majority of CRC cases showed low-level expression of OCT4 (80%) and NANOG (75%). Lower expression of OCT4 was more often detected in CRC cases with no vascular involvement (P = .01). Also, a trend found between low level of OCT4 expression and absence of distant metastasis or lymph node involvement (P = .07 and P = .09, respectively). Surprisingly, a significant positive correlation was observed between NANOG expression and cellular differentiation (P = .05). Our combined analysis demonstrated that OCT4 low/NANOG low phenotype has frequently seen in colorectal cancer cases with no vascular invasion (P = .05). Our observations indicated that higher expression of OCT4 and NANOG can confer malignant and aggressive behavior to CRC. Evaluation of the co-expression of these cancer stem cell markers can serve a new diagnostic and prognostic approach in CRC patients. These findings also suggested that simultaneous expression of OCT4 and NANOG can be considered as a therapeutic marker for targeted therapy of CRC, especially in advanced stages.
Collapse
Affiliation(s)
- Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mahboubeh Barodabi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Silvia Paola Corona
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Trieste
| | - Mahshid Panahei
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Hassn Mesrati M, Behrooz AB, Y. Abuhamad A, Syahir A. Understanding Glioblastoma Biomarkers: Knocking a Mountain with a Hammer. Cells 2020; 9:E1236. [PMID: 32429463 PMCID: PMC7291262 DOI: 10.3390/cells9051236] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.H.M.); (A.B.B.); (A.Y.A.)
| |
Collapse
|
6
|
Grubelnik G, Boštjančič E, Pavlič A, Kos M, Zidar N. NANOG expression in human development and cancerogenesis. Exp Biol Med (Maywood) 2020; 245:456-464. [PMID: 32041418 PMCID: PMC7082888 DOI: 10.1177/1535370220905560] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NANOG is an important stem cell transcription factor involved in human development and cancerogenesis. Its expression is complex and regulated on different levels. Moreover, NANOG protein might regulate hundreds of target genes at the same time. NANOG is crucial for preimplantation development phase and progressively decreases during embryonic stem cells differentiation, thus regulating embryonic and fetal development. Postnatally, NANOG is undetectable or expressed in very low amounts in the majority of human tissues. NANOG re-expression can be detected during cancerogenesis, already in precancerous lesions, with increasing levels of NANOG in high grade dysplasia. NANOG is believed to enable cancer cells to obtain stem-cell like properties, which are believed to be the source of expanding growth, tumor maintenance, metastasis formation, and tumor relapse. High NANOG expression in cancer is frequently associated with advanced stage, poor differentiation, worse overall survival, and resistance to treatment, and is therefore a promising prognostic and predictive marker. We summarize the current knowledge on the role of NANOG in cancerogenesis and development, including our own experience. We provide a critical overview of NANOG as a prognostic and diagnostic factor, including problems regarding its regulation and detection.
Collapse
Affiliation(s)
- Gašper Grubelnik
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ana Pavlič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marina Kos
- Clinical Hospital Center Sestre Milosrdnice and University of Zagreb Medical School, Zagreb 10 000, Croatia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
7
|
Huang G, Zhang J, Wang X, Chen Y, Liu D, Guo S. Clinicopathological and prognostic significance of Nanog expression in non-small cell lung cancer: a meta-analysis. Onco Targets Ther 2019; 12:3609-3617. [PMID: 31190863 PMCID: PMC6526194 DOI: 10.2147/ott.s202081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Nanog has been found to be overexpressed in various cancers. However, the association between Nanog expression and prognosis or clinicopathological features is still controversial. Therefore, this meta-analysis was conducted to identify whether Nanog expression was associated with prognosis or clinicopathological characteristics in non-small cell lung cancer (NSCLC). Methods: We searched Embase, PubMed, Web of Science, the Cochrane Library, the Chinese National Knowledge Infrastructure database (CNKI), and the Wanfang database for articles. Pooled hazard ratios (HR), odds ratios (OR), and corresponding 95% confidence intervals (CI) were utilized to evaluate the relationship between Nanog expression and prognosis or clinicopathological characteristics in NSCLC. Results: The results showed that high expression of Nanog was significantly associated with poor overall survival (OS) (HR=1.95, 95% CI: 1.38-2.75, P=0.000). Additionally, high Nanog expression was significantly correlated with tumor differentiation (OR=3.18, 95% CI: 1.69-5.98, P=0.000) and TNM stage (OR=1.78, 95% CI: 1.28-2.47, P=0.001). However, no significant relationship was observed between Nanog expression and other clinicopathological features, including gender (OR=0.95, 95% CI: 0.69-1.33, P=0.783), age (OR=0.78, 95% CI: 0.57-1.07, P=0.119), tumor size (OR=0.87, 95% CI: 0.26-2.95, P=0.824), and lymph node metastasis (OR=1.29, 95% CI: 0.94-1.77, P=0.121). Conclusion: High Nanog expression was associated with poor prognosis in patients with NSCLC, and Nanog may serve as a prognostic predictor in NSCLC.
Collapse
Affiliation(s)
- Guichuan Huang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Daishun Liu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Cheng W, Wang H, Yuan J, Cheng Z, Xing D, Zhang M. The Prognostic Value of Nanog Overexpression in Lung Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3429261. [PMID: 30627549 PMCID: PMC6304555 DOI: 10.1155/2018/3429261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recent several studies have showed that the nanog overexpression leads to poor prognosis in some kinds of cancer including hepatocellular carcinoma and gastrointestinal luminal cancer. However, the correlations between prognosis and clinic-pathological features and nanog overexpression in lung cancer are still not well-known. Thus, we performed a meta-analysis to evaluate the role of nanog in lung cancer. METHODS An electronic retrieval for related studies was conducted in PubMed, Cochrane Library, Web of Science, EMBASE databases, Chinese CNKI, and the Chinese Wan Fang database up to May 2018. The relationships between nanog overexpression and overall survival (OS) and disease-free survival (DFS) as well as clinic-pathological features in lung cancer were investigated. Pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated by STATA12. RESULTS 11 studies containing 1422 patients were identified in our meta-analysis. The overexpression of nanog showed decreased OS (HR = 1.83, 95% CI = 1.49-2.25, P ≤ 0.001) and DFS (HR = 1.86, 95% CI = 1.2-2.9, P = 0.006). Moreover, overexpression of nanog was significantly related to differentiation (OR = 4.17, 95% CI = 2.17-6.43, P ≤ 0.001), lymph node metastasis (OR = 1.76, 95% CI = 1.06-2.91, P = 0.028) and tumor size (OR = 1.93, 95% CI = 1.17-3.20, P = 0.010), and no correlation with T stage, TNM, stage, and gender. CONCLUSIONS Our results suggested that nanog overexpression, a hazard factor of differentiation, lymph node metastasis, and tumor size, may predicate decreased OS and DFS for lung cancer.
Collapse
Affiliation(s)
- Wei Cheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hongzhi Wang
- Cancer Hospital, Chinese Academy of Sciences, Hefei, Hefei, Anhui 230011, China
| | - Juanjuan Yuan
- Hefei Hospital Affiliated to Anhui Medical University/The Second People's Hospital of Hefei, Hefei, Anhui 230011, China
| | - Ziwei Cheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Dongwei Xing
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Minguang Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|
9
|
Wollenzien H, Voigt E, Kareta MS. Somatic Pluripotent Genes in Tissue Repair, Developmental Disease, and Cancer. SPG BIOMED 2018; 1. [PMID: 31172135 DOI: 10.32392/biomed.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryonic stem cells possess the ability to differentiate into all cell types of the body. This pliable developmental state is achieved by the function of a series of pluripotency factors, classically identified as OCT4, SOX2, and NANOG. These pluripotency factors are responsible for activating the larger pluripotency networks and the self-renewal programs which give ES cells their unique characteristics. However, during differentiation pluripotency networks become downregulated as cells achieve greater lineage specification and exit the cell cycle. Typically the repression of pluripotency is viewed as a positive factor to ensure the fidelity of cellular identity by restricting cellular pliancy. Consistent with this view, the expression of pluripotency factors is greatly restricted in somatic cells. However, there are examples whereby cells either maintain or reactivate pluripotency factors to preserve the increased potential for the healing of wounds or tissue homeostasis. Additionally there are many examples where these pluripotency factors become reactivated in a variety of human pathologies, particularly cancer. In this review, we will summarize the somatic repression of pluripotency factors, their role in tissue homeostasis and wound repair, and the human diseases that are associated with pluripotency factor misregulation with an emphasis on their role in the etiology of multiple cancers.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Ellen Voigt
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA.,Department of Pediatrics, Sanford School of Medicine, 1400 W. 22nd St., Sioux Falls, SD 57105, USA.,Department of Chemistry and Biochemistry, South Dakota State University, 1175 Medary Ave, Brookings, SD 57006, USA
| |
Collapse
|
10
|
Song X, Yao H, Liu J, Wang Q. The prognostic value of long noncoding RNA Sox2ot expression in various cancers: A systematic review and meta-analysis. Clin Chim Acta 2018; 484:52-59. [PMID: 29787741 DOI: 10.1016/j.cca.2018.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Several investigations have explored the prognostic value of long noncoding RNA Sox2 overlapping transcript (lncRNA Sox2ot) expression in human cancers, however, with inconsistent results. The aim of this study was to evaluate the prognostic role of lncRNA Sox2ot expression in various cancers. METHODS PubMed, Web of Science, Embase, and Cochrane Library were comprehensively searched to retrieve relevant studies. The relationships between lncRNA Sox2ot expression and prognostic parameters were detected, including overall survival (OS), tumor differentiation, clinical stage, distant metastasis, lymph node metastasis and so on. RESULTS A total of 10 studies involving 943 cancer patients were finally included into the study. High lncRNA Sox2ot expression was significantly related to shorter OS in cancers (HR = 2.06, 95%CI = 1.67-2.55, P < 0.01). The cancer patients with high lncRNA Sox2ot expression tended to have worse tumor differentiation (P = 0.04), advanced clinical stage (P < 0.01), earlier distant metastasis (P < 0.01), and earlier lymph node metastasis (P = 0.01) compared to those with low lncRNA Sox2ot expression. However, there was no distinct correlation between lncRNA Sox2ot expression and age (P = 0.87), gender (P = 0.48), tumor size (P = 0.08), or vascular invasion (P = 0.07). CONCLUSION High lncRNA Sox2ot expression was significantly associated with worse OS, advanced clinical stage, worse tumor differentiation, earlier distant metastasis, and earlier lymph node metastasis in various cancers. LncRNA Sox2ot expression might a promising prognostic factor in various cancers.
Collapse
Affiliation(s)
- Xiaoyang Song
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Hongyan Yao
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China
| | - Jinlin Liu
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qiang Wang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|