1
|
Tram TTB, Trieu LPT, Nhat LTH, Thu DDA, Quang NL, Bang ND, Chau TTH, Thwaites GE, Walker TM, Ha VTN, Thuong NTT. Targeted sequencing from cerebrospinal fluid for rapid identification of drug-resistant tuberculous meningitis. J Clin Microbiol 2024; 62:e0128723. [PMID: 38466092 PMCID: PMC11005362 DOI: 10.1128/jcm.01287-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/03/2024] [Indexed: 03/12/2024] Open
Abstract
Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.
Collapse
Affiliation(s)
| | | | | | - Do Dang Anh Thu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Le Quang
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Bang
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | | | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy M. Walker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vu Thi Ngoc Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Seid G, Alemu A, Dagne B, Gamtesa DF. Microbiological diagnosis and mortality of tuberculosis meningitis: Systematic review and meta-analysis. PLoS One 2023; 18:e0279203. [PMID: 36795648 PMCID: PMC9934382 DOI: 10.1371/journal.pone.0279203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/01/2022] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) which is caused by Mycobacterium tuberculosis poses a significant public health global treat. Tuberculosis meningitis (TBM) accounts for approximately 1% of all active TB cases. The diagnosis of Tuberculosis meningitis is notably difficult due to its rapid onset, nonspecific symptoms, and the difficulty of detecting Mycobacterium tuberculosis in cerebrospinal fluid (CSF). In 2019, 78,200 adults died of TB meningitis. This study aimed to assess the microbiological diagnosis TB meningitis using CSF and estimated the risk of death from TBM. METHODS Relevant electronic databases and gray literature sources were searched for studies that reported presumed TBM patients. The quality of included studies was assessed using the Joanna Briggs Institute Critical Appraisal tools designed for prevalence studies. Data were summarized using Microsoft excel ver 16. The proportion of culture confirmed TBM, prevalence of drug resistance and risk of death were calculated using the random-effect model. Stata version 16.0 was used perform the statistical analysis. Moreover, subgroup analysis was conducted. RESULTS After systematic searching and quality assessment, 31 studies were included in the final analysis. Ninety percent of the included studies were retrospective studies in design. The overall pooled estimates of CSF culture positive TBM was 29.72% (95% CI; 21.42-38.02). The pooled prevalence of MDR-TB among culture positive TBM cases was 5.19% (95% CI; 3.12-7.25). While, the proportion of INH mono-resistance was 9.37% (95% CI; 7.03-11.71). The pooled estimate of case fatality rate among confirmed TBM cases was 20.42% (95%CI; 14.81-26.03). Based on sub group analysis, the pooled case fatality rate among HIV positive and HIV negative TBM individuals was 53.39% (95%CI; 40.55-66.24) and 21.65% (95%CI;4.27-39.03) respectively. CONCLUSION Definite diagnosis of TBM still remains global treat. Microbiological confirmation of TBM is not always achievable. Early microbiological confirmation of TBM has great importance to reduce mortality. There was high rate of MDR-TB among confirmed TBM patients. All TB meningitis isolates should be cultured and drug susceptibility tested using standard techniques.
Collapse
Affiliation(s)
- Getachew Seid
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ayinalem Alemu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Biniyam Dagne
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
3
|
Chen Z. Mechanisms and Clinical Relevance of Pseudomonas aeruginosa Heteroresistance. Surg Infect (Larchmt) 2023; 24:27-38. [PMID: 36622941 DOI: 10.1089/sur.2022.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract Background: Pseudomonas aeruginosa is an opportunistic pathogen that can cause various life-threatening infections. Several unique characteristics make it the ability of survivability and adaptable and develop resistance to antimicrobial agents through multiple mechanisms. Heteroresistance, which is a subpopulation-mediated resistance, has received increasing attention in recent years. Heteroresistance may lead to unexpected treatment failure if not diagnosed in time and treated properly. Therefore, heteroresistant Pseudomonas aeruginosa infections pose considerable problems for hospital-acquired infections. However, the clinical prevalence and implications of Pseudomonas aeruginosa heteroresistance have not been reviewed. Results: In this work, the aspects of the clinically reported heteroresistance of Pseudomonas aeruginosa to commonly used antibiotic agents are reviewed. The prevalence, mechanisms, and clinical relevance of each reported heteroresistant Pseudomonas aeruginosa are discussed.
Collapse
Affiliation(s)
- Zhao Chen
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, P.R. China
| |
Collapse
|
4
|
Desikan P, Panwalkar N, Punde RP, Khan Z, Pauranik A, Mirza SB, Chourey M, Anand S, Sachdeva K. Heteroresistance to rifampicin & isoniazid in clinical samples of patients with presumptive drug-resistant tuberculosis in Central India. Indian J Med Res 2023; 157:174-182. [PMID: 37202936 PMCID: PMC10319389 DOI: 10.4103/ijmr.ijmr_607_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 04/28/2023] Open
Abstract
Background & objectives A combination of resistant and susceptible Mycobacterium tuberculosis (MTB) isolated from clinical specimens is referred to as heteroresistance. Heteroresistance leads to difficulties in drug resistance testing and may adversely affect treatment outcomes. The present study estimated the proportion of heteroresistance among MTB in clinical samples of presumptive drug-resistant tuberculosis (TB) patients in Central India. Methods A retrospective analysis of data generated from line probe assay (LPA) at a tertiary care hospital in Central India between January 2013 and December 2018 was carried out. A heteroresistant MTB in a sample was indicated by the presence of both wild-type and mutant-type patterns on an LPA strip. Results Data analysis was carried out on interpretable 11,788 LPA results. Heteroresistance in MTB was detected in 637 (5.4%) samples. Of these, heteroresistance in MTB was detected in 413 (64.8%), 163 (25.5%) and 61 (9.5%) samples with respect to rpoB, katG and inhA genes, respectively. Interpretation & conclusions Heteroresistance is considered a preliminary step in the development of drug resistance. Delayed or suboptimal anti-tubercular therapy in patients with heteroresistance of MTB may elicit full clinical resistance and negatively impact the National TB Elimination Programme. Further studies are, however, needed to determine the impact of heteroresistance on treatment outcomes in individual patients.
Collapse
Affiliation(s)
- Prabha Desikan
- ICMR-Bhopal Memorial Hospital & Research Centre, Bhopal, Madhya Pradesh, India
| | | | | | - Zeba Khan
- Department of Microbiology, Bhopal, Madhya Pradesh, India
| | - Ankur Pauranik
- Department of Microbiology, Bhopal, Madhya Pradesh, India
| | | | - Manju Chourey
- Department of Microbiology, Bhopal, Madhya Pradesh, India
| | - Sridhar Anand
- World Health Organization, Ministry of Health & Family Welfare, New Delhi, India
| | - K.S. Sachdeva
- Central TB Division, Ministry of Health & Family Welfare, New Delhi, India
| |
Collapse
|
5
|
Getahun M, Ameni G, Mollalign H, Diriba G, Beyene D. Genotypic and phenotypic drug-resistance detection and prevalence of heteroresistance in patients with isoniazid- and multidrug-resistant tuberculosis in Ethiopia. IJID REGIONS 2022; 2:149-153. [PMID: 35757078 PMCID: PMC9216396 DOI: 10.1016/j.ijregi.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/28/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
Objective To assess the agreement between genotypic and phenotypic methods for detecting drug resistance, and examine the prevalence of heteroresistance among isoniazid (INH)- and multidrug/rifampicin-resistant (MDR/RR) TB. Method In total, 127 Mycobacterium tuberculosis (Mtb) isolates, including 65 MDR/RR and 62 INH resistant, were used. First-line drug susceptibility testing (DST) was performed using the LJ method to determine the percentage of resistant bacteria. All drug-resistant isolates underwent testing with LPA. Heteroresistance was defined as simultaneous detection of wild-type and resistance-conferring mutations using LPA. Result The sensitivity of LPA (compared with LJ DST) was 96% for any INH-resistant TB and 94% for any RR TB. The prevalence of heteroresistance among the 123. Mtb isolates was 9.8%. The percentage of resistant bacteria ranged from 1% to 10% for heteroresistant TB. Rifampicin heteroresistance was detected in 1.6% of MDR TB patients. INH heteroresistance was detected in 1.6% and 16.7% of MDR and INH-resistant TB patients, respectively. The proportion of INH heteroresistance was significantly higher (p = 0.030) in persons living with HIV. Conclusion Some phenotypic drug resistances were not captured by LPA. The prevalence and percentage of resistant bacteria among heteroresistant TB highlight the importance of LPA for early detection of heteroresistant TB.
Collapse
Affiliation(s)
- Muluwork Getahun
- Ethiopian Public Health Institute
- Addis Ababa University, Department of Microbial, Cellular, and Molecular Biology
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates University
| | | | | | - Dereje Beyene
- Addis Ababa University, Department of Microbial, Cellular, and Molecular Biology
| |
Collapse
|
6
|
Ye M, Yuan W, Molaeipour L, Azizian K, Ahmadi A, Kouhsari E. Antibiotic heteroresistance in Mycobacterium tuberculosis isolates: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2021; 20:73. [PMID: 34645463 PMCID: PMC8513340 DOI: 10.1186/s12941-021-00478-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (MTB) is responsible for tuberculosis; that continues to be a public health threat across the globe. Furthermore, increasing heteroresistance (HR)-the presence of resistant and susceptible isolates among MTB strains- has been reported from around the world. This phenomenon can lead to full resistance development and treatment failure. METHODS We systematically searched the relevant studies in PubMed, Scopus, and Embase (Until October 21, 2020). The study outcomes revealed the weighted pooled prevalence of antibiotic HR in MTB isolates with subgroup analysis by year, quality of study, and heteroresistance detection method. RESULTS A total of 38 studies which had investigated MTB isolates were included in the meta-analysis. Geographically, the highest number of studies were reported from Asia (n = 24), followed by Africa (n = 5). Nineteen studies reported HR to isoniazid, with a weighted pooled prevalence of 5% (95% CI 0-12) among 11,761 MTB isolates. Also, there is no important trend for the subgroup analysis by the study period (2001-2014 vs 2015-2017 vs 2018-2020). HR to rifampin was reported in 17 studies, with a weighted pooled prevalence of 7% (95% CI 2-14) among 3782 MTB isolates. HR to fluoroquinolone and ethambutol were reported in 12 and 4 studies, respectively, with weighted pooled prevalence of 10% and 1% among 2153 and 1509 MTB isolates, correspondingly. CONCLUSION Based on our analysis, HR in MTB isolates with different frequency rate is present worldwide. Thus, the selection of appropriate and reliable methods for HR detection is crucial for TB eradication.
Collapse
Affiliation(s)
- Mao Ye
- Department of Pharmacy, Clinical Pharmaceutics Room, Sichuan Science City Hospital, Mianyang, 621000, China
| | - Wen Yuan
- Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, China
| | - Leila Molaeipour
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Khalil Azizian
- Department of Clinical Microbiology, Sirjan School of Medical Sciences, P.O. Box 78169-16338, Sirjan, Iran.
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Laboratory Sciences Research Center, Faculty of Paramedical Sciences, Golestan University of Medical Sciences, Negative Floor 1, Gorgan-Sari Road, P.O. Box: 4918936316, Gorgan, Golestan Province, Iran.
| |
Collapse
|
7
|
Sharma K, Sharma M, Modi M, Goyal M, Sharma A, Ray P. A decade of drug-resistant tuberculous meningitis: A wake-up call for patient-centric therapy. Indian J Med Microbiol 2021; 39:370-372. [PMID: 34090744 DOI: 10.1016/j.ijmmb.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
On analyzing the drug susceptibility profile of 151 clinical isolates collected from patients of tuberculous meningitis (TBM) over 10 years, we reflect on few lessons learnt from the trend of susceptibility profile - drug resistance was not uncommon, fluoroquinolone resistance was observed even among otherwise susceptible isolates and hetero-resistance was observed against rifampicin, isoniazid and also fluoroquinolones. In the midst of widening gap between incidence of drug resistant TBM and availability of effective drugs, our data suggests that universal testing for drug resistance, careful choice of drugs having optimal penetration and individualized therapy should form important pillars of TBM management.
Collapse
Affiliation(s)
- Kusum Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Megha Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; Department of Microbiology, AIIMS, Bilaspur, Himachal Pradesh, India
| | - Manish Modi
- Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Goyal
- Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
de Almeida SM, Kussen GMB, Cogo L, Carvalho JH, Nogueira K. Diagnostic characteristics of Xpert MTB/RIF assay for the diagnosis of tuberculous meningitis and rifampicin resistance in Southern Brazil. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:700-707. [PMID: 33331464 DOI: 10.1590/0004-282x20200067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The timely diagnosis of tuberculous meningitis (TBM) is challenging. Molecular diagnostic tools are necessary for TBM, particularly in low- and middle-income countries. OBJECTIVES We aimed to calculate the diagnostics characteristics of Xpert MTB/RIF for the detection of Mycobacterium tuberculosis in the cerebrospinal fluid (CSF) and the frequency of rifampicin (RIF)-resistance in the CSF samples. METHODS A total of 313 consecutive CSF samples were studied and categorized into TBM definite, probable, possible, or not TBM cases based on the clinical, laboratory, and imaging data. RESULTS For the definite TBM cases (n=7), the sensitivity, specificity, efficiency, and positive likelihood ratio were 100, 97, 97, and 38%, respectively. However, for the TBM definite associated with the probable cases (n=24), the sensitivity decreased to 46%. All CSF samples that were Xpert MTB/RIF-positive were RIF susceptible. CONCLUSION Xpert MTB/RIF showed high discriminating value among the microbiology-proven TBM cases, although the values for the probable and possible TBM cases were reduced. Xpert MTB/RIF contributes significantly to the diagnosis of TBM, mainly when coupled with the conventional microbiological tests and clinical algorithms.
Collapse
Affiliation(s)
- Sergio Monteiro de Almeida
- Universidade Federal do Paraná, Hospital de Clínicas, Ambulatório de Neuroinfecção Curitiba PR, Brazil.,Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de virologia, Curitiba PR, Brazil
| | | | - Laura Cogo
- Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Bacteriologia, Curitiba PR, Brazil
| | - José Henrique Carvalho
- Universidade Federal do Paraná, Hospital de Clínicas, Ambulatório de Neuroinfecção Curitiba PR, Brazil
| | - Keite Nogueira
- Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Bacteriologia, Curitiba PR, Brazil
| |
Collapse
|
9
|
Marimani M, Ahmad A, Stacey S, Duse A. Examining the levels of acetylation, DNA methylation and phosphorylation in HIV-1 positive and multidrug-resistant TB-HIV patients. J Glob Antimicrob Resist 2020; 23:232-242. [PMID: 33045438 DOI: 10.1016/j.jgar.2020.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/30/2020] [Accepted: 09/27/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES In this study, we examined the impact of epigenetic modifications on host gene functioning by assessing the expression of seven candidate genes in three separate groups including healthy, multidrug-resistant (MDR) TB-HIV co-infected and HIV-1 positive individuals. METHODS Ten patients with MDR TB and HIV-1 co-infection on TB and HIV therapy and a cohort comprised of 10 newly diagnosed individuals with HIV-1 infection were recruited from the TB and HIV clinics at the Charlotte Maxeke Johannesburg Academic Hospital. Notably, the HIV-1 positive individuals were not placed on antiretroviral therapy (ART) at the time of recruitment and blood collection. A third group consisting of 10 healthy participants without MDR TB or HIV infection was recruited from the University of the Witwatersrand. Blood samples collected from all three cohorts were employed for extraction of plasma, total RNA and genomic DNA. RESULTS Our data indicated that the expression of DNA methyltransferase 1 (DNMT1) and Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) genes was significantly increased in HIV-1 positive patients and was lowest in MDR TB-HIV co-infected patients. By contrast, histone acetyltransferase (HAT), histone deacetylase (HDAC), protein tyrosine kinase (PtkA) and protein tyrosine phosphatase (PtpA) mRNA expression levels were substantially enhanced in HIV-1 infected and were lowest in healthy individuals. Conversely, Dicer expression levels were comparable among all three study groups. CONCLUSION Promising preliminary data emanating from this investigation may potentially be used for generation of novel vaccines and therapeutic compounds capable of neutralising MDR TB-HIV and HIV-1 infection.
Collapse
Affiliation(s)
- Musa Marimani
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa.
| | - Sarah Stacey
- Division of Pulmonology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Adriano Duse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|