1
|
Srivastava V, Navabharath M, Khan M, Samal M, Parveen R, Singh SV, Ahmad S. A comprehensive review on Phyto-MAP: A novel approach of drug discovery against Mycobacterium avium subspecies paratuberculosis using AYUSH heritage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118482. [PMID: 38908495 DOI: 10.1016/j.jep.2024.118482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indian system of Traditional medicine, AYUSH (Ayurveda, Yoga, Unani, Siddha, and Homeopathy) has great potential with a History of Safe Use (HOSU) of thousands of medicinal plants included in pharmacopoeias. The multi-targeted approach of phytoconstituents present in different traditionally used medicinal plants makes them suitable candidates for research against various infective pathogens. MAP which is a dairy-borne pathogen is associated with the development of Johne's disease in ruminants and Crohn's disease like autoimmune disorders in human beings. There are no reliable treatment alternatives available against MAP, leaving surgical removal of intestines as the sole option. Hence, there exists an urgent need to search for leads against such infection. AIM OF THE STUDY The present review has been conducted to find out the ethnopharmacological evidence about the potential of phytoconstituents against Mycobacterium avium subspecies paratuberculosis (MAP), along with the proposal of a potential phyto-MAP mechanism for the very first time taking anti-inflammatory, immunomodulatory, and anti-microbial traditional claims into consideration. MATERIALS AND METHODS We have analyzed and reviewed different volumes of the two main traditional scriptures of India i.e. Ayurvedic Pharmacopoeia of India (API) and Unani Pharmacopoeia of India (UPI), respectively-for identification of potential anti-MAP plants based on their claims for related disorders. These plants were further investigated systematically for their scientific publications of the last 20 years (2002-2022) available through electronic databases including Google Scholar, Pubmed, and Scopus. The studies conducted in vitro, cell lines, and in vivo levels were taken into consideration along with the associated mechanisms of phytoconstituents. RESULTS A total of 70 potential medicinal plants have been identified. Based on the ethnopharmacology, a potential phyto-paratuberculosis (Phyto-paraTB) mechanism has been proposed and out of 70, seven potential anti-MAP plants have been identified to have a great future as anti-MAP. CONCLUSION A novel and scientifically viable plan has been proposed for addressing anti-MAP plants for stimulating research against MAP and related disorders using mass-trusted AYUSH medicine, which can be used as an alternative remedy in resistance cases otherwise can be advocated as an adjuvant with modern treatments for better management of the disease.
Collapse
Affiliation(s)
- Varsha Srivastava
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Manthena Navabharath
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Monalisha Samal
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Rabea Parveen
- Department of Pharmaceutics, Jamia Hamdard, New Delhi, Delhi, India.
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| |
Collapse
|
2
|
Shao M, Cui N, Tang Y, Chen F, Cui Y, Dang G, Liu S. A candidate subunit vaccine induces protective immunity against Mycobacterium avium subspecies paratuberculosis in mice. NPJ Vaccines 2023; 8:72. [PMID: 37210376 DOI: 10.1038/s41541-023-00675-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes paratuberculosis (PTB), which is a granulomatous enteritis in ruminants that threatens the dairy industry's healthy development and public health safety worldwide. Because the commercial inactivated vaccines are not completely protective and interfere with bovine tuberculosis diagnostics, we tested four fusion proteins, namely 66NC, 66CN, 90NC, and 90CN, which were constructed with MAP3527, Ag85B, and Hsp70 of MAP in different tandem combinations. Notably, 66NC, which encodes a 66 kDa fusion protein that combines in linear order MAP3527N40-232, Ag85B41-330, and MAP3527C231-361, induced a powerful and specific IFN-γ response. Immunization of C57BL/6 mice with the 66NC fusion protein formulated in Montanide ISA 61 VG adjuvant generated robust Th1, Th2, and Th17 type immune responses and strong antibody responses. The 66NC vaccine protected C57BL/6 mice against virulent MAP K-10 infection. This resulted in a reduction of bacterial load and improvement of pathological damage in the liver and intestine, in addition to a reduction of body weight loss; significantly better protection than the reported 74 F vaccine was also induced. Furthermore, vaccine efficacy correlated with the levels of IFN-γ-, TNF-α-, and IL-17A-secreting antigen-specific CD4+ and CD8+ T lymphocytes as well as with serum IFN-γ and TNF-α levels after vaccination. These results demonstrate that recombinant protein 66NC is an efficient candidate for further development into a protective vaccine in terms of inducing specific protection against MAP.
Collapse
Affiliation(s)
- Mingzhu Shao
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Ning Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Yangyang Tang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Fanruo Chen
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Yingying Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Guanghui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China.
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China.
| |
Collapse
|
3
|
Ruangkiattikul N, Nerlich A, Abdissa K, Lienenklaus S, Suwandi A, Janze N, Laarmann K, Spanier J, Kalinke U, Weiss S, Goethe R. cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 2017; 8:1303-1315. [PMID: 28422568 DOI: 10.1080/21505594.2017.1321191] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Type I interferons (IFN-I), such as IFN-α and IFN-β are important messengers in the host response against bacterial infections. Knowledge about the role of IFN-I in infections by nontuberculous mycobacteria (NTM) is limited. Here we show that macrophages infected with pathogens of the Mycobacterium avium complex produced significantly lower amounts of IFN-β than macrophages infected with the opportunistic pathogen M. smegmatis. To dissect the molecular mechanisms of this phenomenon, we focused on the obligate pathogen Mycobacterium avium ssp paratuberculosis (MAP) and the opportunistic M. smegmatis. Viability of both bacteria was required for induction of IFN-β in macrophages. Both bacteria induced IFN-β via the cGAS-STING-TBK1-IRF3/7-pathway of IFN-β activation. Stronger phosphorylation of TBK1 and higher amounts of extracellular bacterial DNA in the macrophage cytosol were found in M. smegmatis infected macrophages than in MAP infected macrophages. After intraperitoneal infection of mice, a strong Ifnb induction by M. smegmatis correlated with clearance of the bacteria. In contrast, MAP only induced weak Ifnb expression which correlated with bacterial persistence and increased number of granulomas in the liver. In mice lacking the type I interferon receptor we observed improved survival of M. smegmatis while survival of MAP was similar to that in wildtype mice. On the other hand, treatment of MAP infected wildtype mice with the IFN-I inducer poly(I:C) or recombinant IFN-β impaired the survival of MAP. This indicates an essential role of IFN-I in clearing infections by MAP and M. smegmatis. The expression level of IFN-I is decisive for transient versus persistent NTM infection.
Collapse
Affiliation(s)
| | - Andreas Nerlich
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Ketema Abdissa
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany.,b Department of Molecular Immunology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Stefan Lienenklaus
- b Department of Molecular Immunology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Abdulhadi Suwandi
- b Department of Molecular Immunology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Nina Janze
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Kristin Laarmann
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Julia Spanier
- c Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research , a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Ulrich Kalinke
- c Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research , a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Siegfried Weiss
- b Department of Molecular Immunology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,d Institute of Immunology , Hannover Medical School , Hannover , Germany
| | - Ralph Goethe
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany
| |
Collapse
|
4
|
Atreya R, Bülte M, Gerlach GF, Goethe R, Hornef MW, Köhler H, Meens J, Möbius P, Roeb E, Weiss S. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis. Int J Med Microbiol 2014; 304:858-67. [PMID: 25128370 DOI: 10.1016/j.ijmm.2014.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (Johne's disease [JD]), a chronic granulomatous enteritis in ruminants. JD is one of the most widespread bacterial diseases of domestic animals with significant economic impact. The histopathological picture of JD resembles that of Crohn's disease (CD), a human chronic inflammatory bowel disease of still unresolved aetiology. An aetiological relevance of MAP for CD has been proposed. This and the ambiguity of other published epidemiological findings raise the question whether MAP represents a zoonotic agent. In this review, we will discuss evidence that MAP has zoonotic capacity.
Collapse
Affiliation(s)
- Raja Atreya
- Medical Clinic 1, University of Erlangen-Nuermberg, Ulmenweg 18, D-91054 Erlangen, Germany
| | - Michael Bülte
- Institute of Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University, Frankfurter Straße 92, 35392 Gießen, Germany
| | | | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | - Mathias W Hornef
- Department of Microbiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Jochen Meens
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Petra Möbius
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Elke Roeb
- Justus-Liebig-University Giessen, Department of Gastroenterology, Klinikstr.33, 35392 Giessen, Germany
| | - Siegfried Weiss
- Helmholtz Centre for Infection Research, Molecular Immunology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | | |
Collapse
|
5
|
Agdestein A, Jones A, Flatberg A, Johansen TB, Heffernan IA, Djønne B, Bosco A, Olsen I. Intracellular growth of Mycobacterium avium subspecies and global transcriptional responses in human macrophages after infection. BMC Genomics 2014; 15:58. [PMID: 24450835 PMCID: PMC3906092 DOI: 10.1186/1471-2164-15-58] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background Mycobacterium avium subsp. avium (Maa) and M. avium subsp. hominissuis (Mah) are environmental mycobacteria and significant opportunistic pathogens. Mycobacterium avium infections in humans and pigs are mainly due to Mah. It is not known whether this is caused by a difference in virulence or difference in exposure to the two subspecies. The aim of the present study was to investigate the ability of the M. avium subspecies to replicate intracellularly and to characterise the gene expression program triggered by infection of human primary macrophages. Results All isolates were able to invade and persist within human macrophages. However, intracellular replication was only evident in cells infected with the two Maa isolates. Transcriptional responses to the isolates were characterized by upregulation of genes involved in apoptosis, immune- and inflammatory response, signal transduction and NF-kB signaling, cell proliferation and T-cell activation. Although similar pathways and networks were perturbed by the different isolates, the response to the Maa subspecies was exaggerated, and there was evidence of increased activation of type I and II interferon signaling pathways. Conclusion Mycobacterium avium isolates of different genetic characteristics invaded monocytes and induced different degree of macrophage activation. Isolates of Maa were able to replicate intracellularly suggesting that differences in exposure, uptake or induction of adaptive immunity are more likely explanations for the difference in prevalence between M. avium subspecies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ingrid Olsen
- Norwegian Veterinary Institute, PO, Box 750 Sentrum, N-0106 Oslo, Norway.
| |
Collapse
|
6
|
Basler T, Brumshagen C, Beineke A, Goethe R, Bäumer W. Mycobacterium avium subspecies impair dendritic cell maturation. Innate Immun 2013; 19:451-61. [DOI: 10.1177/1753425912470291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne’s disease, a chronic, granulomatous enteritis of ruminants. Dendritic cells (DC) of the gut are ideally placed to combat invading mycobacteria; however, little is known about their interaction with MAP. Here, we investigated the interaction of MAP and the closely related M. avium ssp. avium (MAA) with murine DC and the effect of infected macrophages on DC maturation. The infection of DC with MAP or MAA induced DC maturation, which differed to that of LPS as maturation was accompanied by higher production of IL-10 and lower production of IL-12. Treatment of maturing DC with supernatants from mycobacteria-infected macrophages resulted in impaired DC maturation, leading to a semi-mature, tolerogenic DC phenotype expressing low levels of MHCII, CD86 and TNF-α after LPS stimulation. Though the cells were not completely differentiated they responded with an increased IL-10 and a decreased IL-12 production. Using recombinant cytokines we provide evidence that the semi-mature DC phenotype results from a combination of secreted cytokines and released antigenic mycobacterial components of the infected macrophage. Our results indicate that MAP and MAA are able to subvert DC function directly by infecting and indirectly via the milieu created by infected macrophages.
Collapse
Affiliation(s)
- Tina Basler
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Brumshagen
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Bäumer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
MacHugh DE, Taraktsoglou M, Killick KE, Nalpas NC, Browne JA, DE Park S, Hokamp K, Gormley E, Magee DA. Pan-genomic analysis of bovine monocyte-derived macrophage gene expression in response to in vitro infection with Mycobacterium avium subspecies paratuberculosis. Vet Res 2012; 43:25. [PMID: 22455317 PMCID: PMC3411445 DOI: 10.1186/1297-9716-43-25] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/28/2012] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis is the causative agent of Johne's disease, an intestinal disease of ruminants with major economic consequences. Infectious bacilli are phagocytosed by host macrophages upon exposure where they persist, resulting in lengthy subclinical phases of infection that can lead to immunopathology and disease dissemination. Consequently, analysis of the macrophage transcriptome in response to M. avium subsp. paratuberculosis infection can provide valuable insights into the molecular mechanisms that underlie Johne's disease. Here, we investigate pan-genomic gene expression in bovine monocyte-derived macrophages (MDM) purified from seven age-matched females, in response to in vitro infection with M. avium subsp. paratuberculosis (multiplicity of infection 2:1) at intervals of 2 hours, 6 hours and 24 hours post-infection (hpi). Differentially expressed genes were identified by comparing the transcriptomes of the infected MDM to the non-infected control MDM at each time point (adjusted P-value threshold ≤ 0.10). 1050 differentially expressed unique genes were identified 2 hpi, with 974 and 78 differentially expressed unique genes detected 6 and 24 hpi, respectively. Furthermore, in the infected MDM the number of upregulated genes exceeded the number of downregulated genes at each time point, with the fold-change in expression for the upregulated genes markedly higher than that for the downregulated genes. Inspection and systems biology analysis of the differentially expressed genes revealed an enrichment of genes involved in the inflammatory response, cell signalling pathways and apoptosis. The transcriptional changes associated with cellular signalling and the inflammatory response may reflect different immuno-modulatory mechanisms that underlie host-pathogen interactions during infection.
Collapse
Affiliation(s)
- David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maria Taraktsoglou
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen DE Park
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Trinity College, Belfield, Dublin 2, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Klapproth JMA, Sasaki M. Bacterial induction of proinflammatory cytokines in inflammatory bowel disease. Inflamm Bowel Dis 2010; 16:2173-9. [PMID: 20848533 DOI: 10.1002/ibd.21332] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become increasingly clear that inflammatory bowel disease (IBD) develops on the background of genetic defects in the host, conveying an increased susceptibility to an environmental antigen or antigens. The environmental factor implicated in the pathophysiology of gut inflammation, which is undergoing increased scrutiny, is the intestinal flora. The intestinal flora as a whole and specific bacteria and their products have been found to trigger cytokine expression in various cell types. Consistently, multiple bacterial strains were found to induce tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) in macrophage and epithelial cell systems, respectively, in particular in Crohn's disease. Interestingly, various cell types from patients with IBD display an increased susceptibility to specific bacterial products, including flagellin, pili, and lipopolysaccharides. It remains to be determined whether additional effector proteins regulate cytokine expression and the aberrant mucosal immune response in IBD.
Collapse
|
9
|
Genomic and transcriptomic studies in Mycobacterium avium subspecies paratuberculosis. Vet Immunol Immunopathol 2010; 138:303-11. [PMID: 21047690 DOI: 10.1016/j.vetimm.2010.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microarray technology is an important tool in functional genomic research. It has enabled a deeper analysis of genomic diversity among bacteria belonging to the Mycobacterium avium complex (MAC). In addition, the expression of thousands of genes can be studied simultaneously in a single experiment. With the complete genome sequence of a bovine isolate of M. avium subspecies paratuberculosis, and the independent construction of DNA microarrays in our laboratories, transcriptomic studies for this veterinary pathogen are now possible. Furthermore, the bovine genome sequence project is completed and bovine arrays have been developed to examine host responses to infection with M. avium subsp. paratuberculosis. Collectively, genomic and transcriptomic data has yielded novel insights surrounding the genetic regulation and biology of Johne's disease.
Collapse
|
10
|
Friswell M, Campbell B, Rhodes J. The role of bacteria in the pathogenesis of inflammatory bowel disease. Gut Liver 2010; 4:295-306. [PMID: 20981205 DOI: 10.5009/gnl.2010.4.3.295] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/06/2010] [Indexed: 12/19/2022] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) have features that suggest bacterial involvement, and all genetic models of inflammatory bowel disease (IBD) require the presence of commensal bacteria. CD is associated with innate immune response genes such as NOD2/CARD15 and the autophagy genes ATG16L1 and IRGM. However, IBD responds to immunosuppression, suggesting that any bacteria involved are not acting as conventional pathogens. Molecular techniques are rapidly advancing our knowledge of the gut microbiota. In CD there is reduced diversity, and notably a reduction in the probiotic Faecalibacterium prausnitzii, the presence of which in the terminal ileum is associated with a reduced risk of recurrence following surgery. There is also a consistent increase in mucosa-associated Escherichia coli with an "adherent and invasive" phenotype, which allows them to replicate inside macrophages and induce granulomas. Speculation that CD could be caused by the Mycobacterium avium subspecies paratuberculosis (MAP) continues. The response to antitumor necrosis factor treatments suggests that, if relevant at all, MAP is not acting as a conventional pathogen. However, there is increased colonization by MAP in CD, and there is evidence that it could have an indirect effect mediated by the suppression of macrophage function. UC relapse is frequently associated with infection by pathogens, but there is less evidence for involvement of a specific bacterial species. Poor barrier integrity followed by an inflammatory reaction to bacterial components, with chronicity maintained by an autoimmune process, seems a plausible pathogenic model. Bacterial theories of pathogenesis are now becoming testable by targeted therapeutic interventions.
Collapse
Affiliation(s)
- Melissa Friswell
- Gastroenterology Research Unit, University of Liverpool School of Clinical Sciences, Liverpool, UK
| | | | | |
Collapse
|
11
|
Coudevylle N, Geist L, Hötzinger M, Hartl M, Kontaxis G, Bister K, Konrat R. The v-myc-induced Q83 lipocalin is a siderocalin. J Biol Chem 2010; 285:41646-52. [PMID: 20826777 DOI: 10.1074/jbc.m110.123331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Siderocalins are atypical lipocalins able to capture siderophores with high affinity. They contribute to the innate immune response by interfering with bacterial siderophore-mediated iron uptake but are also involved in numerous physiological processes such as inflammation, iron delivery, tissue differentiation, and cancer progression. The Q83 lipocalin was originally identified based on its overexpression in quail embryo fibroblasts transformed by the v-myc oncogene. We show here that Q83 is a siderocalin, binding the siderophore enterobactin with an affinity and mode of binding nearly identical to that of neutrophil gelatinase-associated lipocalin (NGAL), the prototypical siderocalin. This strengthens the role of siderocalins in cancer progression and inflammation. In addition, we also present the solution structure of Q83 in complex with intact enterobactin and a detailed analysis of the Q83 binding mode, including mutagenesis of the critical residues involved in enterobactin binding. These data provide a first insight into the molecular details of siderophore binding and delineate the common molecular properties defining the siderocalin protein family.
Collapse
Affiliation(s)
- Nicolas Coudevylle
- Department of Structural and Computational Biology, Max F Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
12
|
Basler T, Holtmann H, Abel J, Eckstein T, Baumer W, Valentin-Weigand P, Goethe R. Reduced transcript stabilization restricts TNF-alpha expression in RAW264.7 macrophages infected with pathogenic mycobacteria: evidence for an involvement of lipomannan. J Leukoc Biol 2010; 87:173-83. [PMID: 19850884 DOI: 10.1189/jlb.0309207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite the critical role that TNF-alpha plays in the containment of mycobacterial infection, the mechanisms involved in regulation of its expression by mycobacteria are poorly defined. We addressed this question by studying MAP, which causes a chronic enteritis in ruminants and is linked to human Crohn's disease. We found that in MAP infected macrophages, TNF-alpha gene expression was substantially lower than in macrophages infected with nonpathogenic MS or stimulated with LPS. TNF-alpha transcriptional one could not fully explain the differential TNF-alpha mRNA expression, suggesting that there must be a substantial contribution by post-transcriptional mechanisms.Accordingly, we found reduced TNF-alpha mRNA stability in MAP-infected macrophages. Further comparison of MAP- and MS-infected macrophages revealed that lower TNF-alpha mRNA stability combined with lower mRNA and protein expression in MAP-infected macrophages correlated with lower p38 MAPK phosphorylation. These findings were independent of viability of MAP and MS. We demonstrate that the major mycobacterial cell-wall lipoglycan LM of MAP and MS induced TNF-alpha mRNA transcription,but only the MS-LM induced p38 MAPK-dependent transcript stabilization. Overall, our data suggest that pathogenic mycobacteria cause weak p38 and TNF-alpha mRNA stabilization as a result of their structural cell-wall components such as LM and thereby, restrict TNF-alpha expression in macrophages.
Collapse
Affiliation(s)
- Tina Basler
- Institut fur Mikrobiologie, Stiftung Tierarztliche Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Assessment of live candidate vaccines for paratuberculosis in animal models and macrophages. Infect Immun 2009; 78:1383-9. [PMID: 20038535 DOI: 10.1128/iai.01020-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (basonym M. paratuberculosis) is the causative agent of paratuberculosis, a chronic enteritis of ruminants. To control the considerable economic effect that paratuberculosis has on the livestock industry, a vaccine that induces protection with minimal side effects is required. We employed transposon mutagenesis and allelic exchange to develop three potential vaccine candidates, which were then tested for virulence with macrophages, mice, and goats. All three models identified the WAg906 mutant as being the most attenuated, but some differences in the levels of attenuation were evident among the models when testing the other strains. In a preliminary mouse vaccine experiment, limited protection was induced by WAg915, as evidenced by a reduced bacterial load in spleens and livers 12 weeks following intraperitoneal challenge with M. paratuberculosis K10. While we found macrophages and murine models to be rapid and cost-effective alternatives for the initial screening of M. paratuberculosis mutants for attenuation, it appears necessary to do the definitive assessment of attenuation with a ruminant model.
Collapse
|
14
|
Abstract
The relation between Crohn disease (CD) and mycobacterial infection is complex and intriguing. The 2 conditions share common immunopathogenic features, and the hypothesis that Mycobacterium avium subspecies paratuberculosis may cause CD is still under debate. Moreover, differential diagnosis between CD and intestinal tuberculosis (TB) may be challenging, especially in the growing proportion of children immigrating from countries with a high prevalence of TB. Thus, in Western countries, paediatricians who are involved in the diagnosis and management of children with CD are expected to face intestinal TB more frequently than in the past and should always consider the differential diagnosis between these 2 conditions. In addition, the use of biological agents in the treatment of CD, which may reactivate latent TB, requires the development of targeted diagnostic algorithms. Children with CD who are candidates for treatment with antitumour necrosis factor-alpha agents should be screened for latent or active TB and closely followed over time, also considering possible failure of antitubercular prophylaxis and the frequent uncharacteristic presentation of TB in children receiving antitumour necrosis factor-alpha agents. In the present review, the most recent literature findings on these topics are reported, focusing particularly on the paediatric age group.
Collapse
|
15
|
Johnston C, Coffey A, O' Mahony J, Sleator RD. Development of a novel oral vaccine against Mycobacterium avium paratuberculosis and Johne disease: a patho-biotechnological approach. Bioeng Bugs 2009; 1:155-63. [PMID: 21326921 DOI: 10.4161/bbug.1.3.10408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/07/2009] [Accepted: 10/23/2009] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne disease, a granulomatous enteritis of cattle and other domesticated and wild ruminant species. Johne disease is prevalent worldwide and has a significant impact on the global agricultural economy. Current vaccines against Johne are insufficient in stemming its spread, and associated side-effects prevent their widespread use in control programs. Effective and safe vaccine strategies are needed. The main purpose of this paper is to propose and evaluate the development of a novel oral subunit-vaccine using a patho-biotechnological approach. This novel strategy, which harnesses patho-genetic elements from the intracellular pathogen Listeria monocytogenes, may provide a realistic route towards developing an effective next generation subunit vaccine against Johne disease and paratuberculosis.
Collapse
Affiliation(s)
- C Johnston
- Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | |
Collapse
|
16
|
Pott J, Basler T, Duerr CU, Rohde M, Goethe R, Hornef MW. Internalization-dependent recognition of Mycobacterium avium ssp. paratuberculosis by intestinal epithelial cells. Cell Microbiol 2009; 11:1802-15. [PMID: 19681906 DOI: 10.1111/j.1462-5822.2009.01372.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of Johne's disease, a highly prevalent chronic intestinal infection in domestic and wildlife ruminants. The microbial pathogenesis of MAP infection has attracted additional attention due to an association with the human enteric inflammatory Crohn's disease. MAP is acquired by the faecal-oral route prompting us to study the interaction with differentiated intestinal epithelial cells. MAP was rapidly internalized and accumulated in a late endosomal compartment. In contrast to other opportunistic mycobacteria or M. bovis, MAP induced significant epithelial activation as indicated by a NF-kappaB-independent but Erk-dependent chemokine secretion. Surprisingly, MAP-induced chemokine production was completely internalization-dependent as inhibition of Rac-dependent bacterial uptake abolished epithelial activation. In accordance, innate immune recognition of MAP by differentiated intestinal epithelial cells occurred through the intracellularly localized pattern recognition receptors toll-like receptor 9 and NOD1 with signal transduction via the adaptor molecules MyD88 and RIP2. The internalization-dependent innate immune activation of intestinal epithelial cells is in contrast to the stimulation of professional phagocytes by extracellular bacterial constituents and might significantly contribute to the histopathological changes observed during enteric MAP infection.
Collapse
Affiliation(s)
- Johanna Pott
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|