1
|
Li Q, Pu L, Cheng S, Tang S, Zhang J, Qing G. Pigment Dispersion Contributes to Ocular Immune Privilege in a DBA/2J Mouse Model of Pigmentary Glaucoma. Invest Ophthalmol Vis Sci 2024; 65:51. [PMID: 39083309 PMCID: PMC11290564 DOI: 10.1167/iovs.65.8.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose To investigate the effects of anterior chamber pigment dispersion on ocular immune privilege and the possible mechanisms involved in a DBA/2J mouse model of pigmentary glaucoma. Methods DBA/2J mice were utilized as a pigment dispersion model, and age-matched C57BL/6J mice were used as the control group in this study. Proteins in the aqueous humor (AH) and serum were quantified using the bicinchoninic acid assay. Immune cells in the AH were detected using hematoxylin and eosin staining and immunocytochemistry. The expression of TGF-β2 in the AH and cytokine levels (IL-10, IFN-γ) in serum were measured using ELISA. Anterior chamber-associated immune deviation (ACAID) was induced in DBA/2J mice by injecting antigens into the anterior chamber. Delayed-type hypersensitivity (DTH) assays were used to assess the induction of ACAID. In DBA/2J mice, before and after pigment dispersion, following anterior chamber injection of pigment particles, and after ACAID modeling, the expression of regulatory T cells (Tregs) was detected using flow cytometry. Results Compared to C57BL/6J mice, the protein concentration, immune cell count, and TGF-β2 levels in the AH were elevated in DBA/2J mice. Protein concentration and IL-10 levels in serum were increased, while IFN-γ levels were decreased in DBA/2J. Additionally, the expression of Treg cells in the spleen of DBA/2J mice was significantly increased after pigment dispersion and anterior chamber injection of pigment particles. At 3 and 6 months, DTH responses in DBA/2J mice were not inhibited, thus preventing ACAID induction. However, the opposite was observed at 9 months in DBA/2J mice. Furthermore, the ACAID group exhibited an augmented expression of Treg cells. Conclusions Dispersion of pigment particles in the anterior chamber of the eye enhances the state of ocular immune privilege by influencing the immunosuppressive microenvironment and inducing more Treg cells to reestablish ACAID.
Collapse
Affiliation(s)
- Qian Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical, University, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing, P. R. China
| | - Liping Pu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical, University, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing, P. R. China
| | - Sijie Cheng
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical, University, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing, P. R. China
| | - Shaoping Tang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical, University, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing, P. R. China
| | - Jingxue Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical, University, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing, P. R. China
| | - Guoping Qing
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical, University, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing, P. R. China
| |
Collapse
|
2
|
Teuwen JTJ, van der Vorst EPC, Maas SL. Navigating the Maze of Kinases: CaMK-like Family Protein Kinases and Their Role in Atherosclerosis. Int J Mol Sci 2024; 25:6213. [PMID: 38892400 PMCID: PMC11172518 DOI: 10.3390/ijms25116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Circulating low-density lipoprotein (LDL) levels are a major risk factor for cardiovascular diseases (CVD), and even though current treatment strategies focusing on lowering lipid levels are effective, CVD remains the primary cause of death worldwide. Atherosclerosis is the major cause of CVD and is a chronic inflammatory condition in which various cell types and protein kinases play a crucial role. However, the underlying mechanisms of atherosclerosis are not entirely understood yet. Notably, protein kinases are highly druggable targets and represent, therefore, a novel way to target atherosclerosis. In this review, the potential role of the calcium/calmodulin-dependent protein kinase-like (CaMKL) family and its role in atherosclerosis will be discussed. This family consists of 12 subfamilies, among which are the well-described and conserved liver kinase B1 (LKB1) and 5' adenosine monophosphate-activated protein kinase (AMPK) subfamilies. Interestingly, LKB1 plays a key role and is considered a master kinase within the CaMKL family. It has been shown that LKB1 signaling leads to atheroprotective effects, while, for example, members of the microtubule affinity-regulating kinase (MARK) subfamily have been described to aggravate atherosclerosis development. These observations highlight the importance of studying kinases and their signaling pathways in atherosclerosis, bringing us a step closer to unraveling the underlying mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Jules T. J. Teuwen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
3
|
Fang X, Zeng Q, Sun B, Wei S, Zou Z, Xia S, Luo P, Zhang A. Ginkgo biloba Extract Attenuates the Disruption of Pro- and Anti-inflammatory Balance of Peripheral Blood in Arsenism Patients by Decreasing Hypermethylation of the Foxp3 Promoter Region. Biol Trace Elem Res 2022; 200:4967-4976. [PMID: 35064870 DOI: 10.1007/s12011-022-03101-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Coal-burning type of arsenism, a chronic arsenism caused by environmental arsenic pollution, found firstly at Guizhou Province of China, manifested as the disruption of pro- and anti-inflammatory T cell balance and multiple organ damage, while no specific treatment for the arsenism patients. The effect of methylation of the forkhead box P3 (Foxp3) promoter region on arsenic-induced disruption of pro- and anti-inflammatory T cell balance was first evaluated in this study, between the control and arsenism groups. The results show that arsenic can induce the hypermethylation of 6 sites in the Foxp3 promoter by upregulating the expression of recombinant DNA Methyltransferase 1 (Dnmt1) mRNA, leading to the downregulation of Foxp3 mRNA, Tregs, and interleukin 10 (IL-10, anti-inflammatory cytokine) levels, and increased the levels of interleukin 17 (IL-17, pro-inflammatory cytokine) in the peripheral blood of patients with arsenic poisoning. Further randomized controlled double-blind experiments (including the placebo control groups and the Ginkgo biloba extract (GBE) intervention groups) showed that compared to the placebo control group or before GBE intervention, the levels of Dnmt1 mRNA, Foxp3 methylation, and IL-17 in the peripheral blood of the GBE intervention group were significantly decreased after intervention (P < 0.05), but the levels of regulatory T cells (Tregs) and IL-10 were significantly increased (P < 0.05). Our study provides some limited evidence that GBE can attenuate the disruption of pro- and anti-inflammatory balance of peripheral blood in arsenism patients by decreasing hypermethylation of the Foxp3 promoter region. This study provides scientific basis for further understanding a possible natural medicinal plant, GBE, as a more effective measure to prevent and control the disruption of pro- and anti-inflammatory balance caused by coal-burning type of arsenism.
Collapse
Affiliation(s)
- Xiaolin Fang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shiqing Xia
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
4
|
Swatler J, Turos-Korgul L, Brewinska-Olchowik M, De Biasi S, Dudka W, Le BV, Kominek A, Cyranowski S, Pilanc P, Mohammadi E, Cysewski D, Kozlowska E, Grabowska-Pyrzewicz W, Wojda U, Basak G, Mieczkowski J, Skorski T, Cossarizza A, Piwocka K. 4-1BBL-containing leukemic extracellular vesicles promote immunosuppressive effector regulatory T cells. Blood Adv 2022; 6:1879-1894. [PMID: 35130345 PMCID: PMC8941461 DOI: 10.1182/bloodadvances.2021006195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/15/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic and acute myeloid leukemia evade immune system surveillance and induce immunosuppression by expanding proleukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse, and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector proleukemic Tregs. Using mouse model of leukemia-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, and IL21R and included 2 distinct effector Treg (eTreg) subsets: CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive Tregs and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Laura Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Wioleta Dudka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bac Viet Le
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Salwador Cyranowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Paulina Pilanc
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Elyas Mohammadi
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Dominik Cysewski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Ewa Kozlowska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wioleta Grabowska-Pyrzewicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland; and
| | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
5
|
Gorbunova OL, Shirshev SV. Role of Kisspeptin in Regulation of Reproductive and Immune Reactions. BIOCHEMISTRY (MOSCOW) 2021; 85:839-853. [PMID: 33045946 DOI: 10.1134/s0006297920080015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The work is focused on physiological role of the hormone kisspeptin produced by neurons of the hypothalamus anterior zone, which is a key regulator of reproduction processes. Role of the hormone in transmission of information on metabolic activity and induction of the secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus that determines gestation processes involving fertilization, placentation, fetal development, and child birth is considered. The literature data on molecular mechanisms and effects of kisspeptin on reproductive system including puberty initiation are summarized and analyzed. In addition, attention is paid to hormone-mediated changes in the cardiovascular system in pregnant women. For the first time, the review examines the effect of kisspeptin on functional activity of immune system cells presenting molecular mechanisms of the hormone signal transduction on the level of lymphoid cells that lead to the immune tolerance induction. In conclusion, a conceptual model is presented that determines the role of kisspeptin as an integrator of reproductive and immune functions during pregnancy.
Collapse
Affiliation(s)
- O L Gorbunova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| | - S V Shirshev
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia
| |
Collapse
|
6
|
Nekrasova I, Shirshev S. Estriol in regulation of cell-mediated immune reactions in multiple sclerosis. J Neuroimmunol 2020; 349:577421. [PMID: 33032016 DOI: 10.1016/j.jneuroim.2020.577421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
The effect of pregnancy hormone estriol (E3) on innate and adaptive immunity cells functions in patients with multiple sclerosis (MS) in comparison with healthy donors (HD) was studied. E3 inhibited phagocytic activity of neutrophils and enhanced monocytes IDO activity. Treg percentage increased and number of Th17 and iNKT cells decreased under E3 influence. At the same time, E3 stimulated production of IL-10 and inhibited secretion of IL-17. The hormonal effects were realized on the cells of both HD and MS patients. Thus, the MS amelioration during pregnancy may be related to E3 influence.
Collapse
Affiliation(s)
- Irina Nekrasova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, 614081 Perm, Russia.
| | - Sergei Shirshev
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, 614081 Perm, Russia
| |
Collapse
|
7
|
Ma Y, Ye Y, Liu Y, Chen J, Cen Y, Chen W, Yu C, Zeng Q, Zhang A, Yang G. DNMT1-mediated Foxp3 gene promoter hypermethylation involved in immune dysfunction caused by arsenic in human lymphocytes. Toxicol Res (Camb) 2020; 9:519-529. [PMID: 32905139 DOI: 10.1093/toxres/tfaa056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Growing evidence indicates that arsenic can cause long-lasting and irreversible damage to the function of the human immune system. It is known that forkhead box protein 3(Foxp3), which is specifically expressed in regulatory T cells (Tregs), plays a decisive role in immunoregulation and is regulated by DNA methylation. While evidence suggests that epigenetic regulated Foxp3 is involved in the immune disorders caused by arsenic exposure, the specific mechanism remains unclear. In this study, after primary human lymphocytes were treated with different doses of NaAsO2, our results showed that arsenic induced the high expression of DNMT1 and Foxp3 gene promoter methylation level, thereby inhibiting the expression levels of Foxp3, followed by decreasing Tregs and reducing related anti-inflammatory cytokines, such as interleukin 10 (IL-10) and interleukin 10 (IL-35), and increasing the ratio of CD4+/CD8+ T cells in lymphocytes. Treatment with DNA methyltransferase inhibitor 5-Aza-CdR can notably inhibit the expression of DNMT1, effectively restoring the hypermethylation of the Foxp3 promoter region in primary human lymphocytes and upregulating the expression levels of Foxp3, balancing the ratio of CD4+/CD8+ T cells in lymphocytes. It also activates the secretion of anti-inflammatory cytokines and restores the immune regulatory functions of Tregs. In conclusion, our study provides limited evidence that DNMT1-mediated Foxp3 gene promoter hypermethylation is involved in immune dysfunction caused by arsenic in primary human lymphocytes. The study can provide a scientific basis for further understanding the arsenic-induced immune dysfunction in primary human lymphocytes.
Collapse
Affiliation(s)
- Yemei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Ying Ye
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Chun Yu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qibing Zeng
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guanghong Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
8
|
Silva FMDCE, Oliveira EED, Ambrósio MGE, Ayupe MC, Souza VPD, Gameiro J, Reis DRDL, Machado MA, Macedo GC, Mattes J, Ferreira AP. High-fat diet-induced obesity worsens TH2 immune response and immunopathologic characteristics in murine model of eosinophilic oesophagitis. Clin Exp Allergy 2019; 50:244-255. [PMID: 31837231 DOI: 10.1111/cea.13533] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eosinophilic oesophagitis (EoE) is an emergent chronic immune-mediated disease of the oesophagus, which affects both children and adults. It is clinically characterized by dysphagia, food impaction and oesophageal eosinophilia. Epidemiological studies indicate that obesity can worsen allergic symptoms; however, its effect on EoE immunopathological response has not been evaluated yet. This study aimed to assess the effect of obesity on allergic inflammation and T helper-2 profile in an EoE experimental model. METHODS Obesity was induced by high-fat feeding. After 7 weeks of diet, male BALB/c mice were subcutaneously sensitized and orally challenged with OVA. RESULTS Obesity itself induced a significant mast cell and eosinophil accumulation in the oesophagus, trachea, gut and lung. After allergy induction, this number was higher, when compared to lean-allergic mice. Moreover, obese-allergic mice showed higher remodelling area, in the oesophagus, associated with higher IL-5 and TSLP mRNA expression. In contrast, FoxP3 and IL-10 were less expressed in comparison with lean-allergic mice. In addition, the amount of CD11c+ MHCII+ PDL1+ dendritic cells was reduced, while the number of CD11c+ MHCII+ CD80+ DCs and CD3+ CD4+ GATA3 + IL-4+ cells was increased in obese-allergic mice in the spleen and lymph nodes when compared to lean-allergic mice. CONCLUSION Obesity aggravated the immune histopathological characteristics in the EoE experimental model, which was associated with the reduction in the regulatory profile, and the increased inflammatory cells influx, related to the TH 2 profile. Altogether, the data provide new knowledge about obesity as a risk factor, worsening EoE symptoms, and contribute for future treatment strategies for this specific profile.
Collapse
Affiliation(s)
- Flávia Márcia de Castro E Silva
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Erick Esteves de Oliveira
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcilene Gomes Evangelista Ambrósio
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marina Caçador Ayupe
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Viviane Passos de Souza
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jacy Gameiro
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Gilson Costa Macedo
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Joerg Mattes
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Ana Paula Ferreira
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
9
|
Starchenka S, Heath MD, Lineberry A, Higenbottam T, Skinner MA. Transcriptome analysis and safety profile of the early-phase clinical response to an adjuvanted grass allergoid immunotherapy. World Allergy Organ J 2019; 12:100087. [PMID: 31768216 PMCID: PMC6872854 DOI: 10.1016/j.waojou.2019.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background Specific immunotherapy is the only type of disease-modifying treatment, which induces rapid desensitization and long-term sustained unresponsiveness in patients with seasonal allergic rhinoconjunctivitis. The safety and tolerability of a new cumulative dose regimen of 35600 SU Grass MATA MPL for subcutaneous immunotherapy were assessed in pre-seasonal, single-blind, placebo controlled Phase I clinical study. Underlying immunological mechanisms were explored using transcriptome analysis of peripheral blood mononuclear cells. Methods Study subjects with a history of moderate to severe seasonal allergic rhinitis and/or conjunctivitis (SAR) due to grass (Pooideae) pollen exposure were randomized on a 1:1 ratio to receive either six 1.0 mL injections of cumulative dose regimen 35600 SU of Grass MATA MPL or placebo. The study consisted of three periods: screening, randomization and treatment and End of Study period. Blood samples were taken for clinical safety laboratory assessments and for the assessment of gene expression analysis during screening visit and End of Study visit. The safety statistics was calculated using Fisher's exact test. Delta Delta Ct method analysis of RT2 Profiler PCR Array gene expression results was used to calculate changes in gene expression level. Genes with the absolute value of log2 fold change greater than ±1.1 and p-value less than 0.05 were identified as differentially expressed and underwent IPA data analysis. Results The results of the study indicated that the higher cumulative dose regimen of the immunotherapy was well-tolerated. Changes in gene expression profile were associated with early immune responses implicating innate and adaptive immune mechanisms. Pathways and mechanistic network analysis via IPA mapped differentially expressed genes onto canonical pathways related to T cell differentiation, cytokine signalling and Th1/Th2 activation pathways. The transcriptome findings of the study could be further verified in large-scale field studies in order to explore their potential as predictive markers of successful immunotherapy. Conclusions The higher dose cumulative regime 35600 SU of Grass MATA MPL vaccine was well tolerated and safe. Molecular markers IL-27, IL-10, IL-4, TNF, IFNγ, TGFβ and TLR4 were the main predicted molecular drivers of the observed gene expression changes following early stages of SIT with Grass MATA MPL immunotherapy.
Collapse
Key Words
- ADRs, adverse drug reactions
- AE, adverse events
- AIT, allergen mmunotherapy
- ARC, adverse reaction complex
- Allergen immunotherapy
- Allergoid
- DC, dendritic cell
- EAACI, European Academy of Allergy and Clinical Immunology
- FEV, forced expiratory volume
- FVC, forced vital capacity
- Grass pollen
- IPA, Ingenuity Pathway Analysis
- MATA, modified allergen tyrosine adsorbate
- MCT, microcrystalline tyrosine
- MPL, monophosphoryl lipid A
- SAEs, serious adverse events
- SAR, seasonal allergic rhinoconjunctivitis
- SD, standard deviation
- SIT, specific immunotherapy
- SU, standardized units
- Safety
- TEAEs, treatment-emergent adverse events
- TLR, toll-like receptor
- TSS, total symptom score
- Transcriptome
- URA, Upstream Regulator Analysis
- mRNA, messenger ribosomal nucleic acid
Collapse
Affiliation(s)
- Sviatlana Starchenka
- Corresponding author. Allergy Therapeutics (UK) Ltd, Worthing, BN14 8SA, United Kingdom.
| | | | | | | | | |
Collapse
|
10
|
Gazi U, Yapar D, Karasartova D, Gureser AS, Akdogan O, Unal O, Baykam N, Taylan Ozkan A. The role of T reg population in pathogenesis of Crimean Congo hemorrhagic fever. Virus Res 2018; 250:1-6. [PMID: 29625147 DOI: 10.1016/j.virusres.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 01/26/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe human infection caused by CCHF virus (CCHFV). Today, although the literature on CCHF pathogenesis is still limited, it is thought to be associated with immunosuppression in the early phase of infection followed by pro-inflammatory immune response that may lead to fatal outcomes. The aim of this study is to investigate the role of regulatory T-cells (Treg cells) in the pathogenesis of CCHFV. Peripheral blood mononuclear cell samples collected from 14 acute CCHF patients with mild disease course and 13 healthy subjects were included in this study. Treg expression and functional levels were analyzed by flow cytometry. Treg cells were identified as CD4+CD25 + CD127dim cells, and their functional levels were compared by measuring their ability to suppress CD69 and CD154 expression by activated T-cells. The flow cytometry analysis revealed that total T-cell and helper T-cell levels did not vary between the two groups. In contrast, CCHF patients displayed higher Treg cell levels but lower Treg suppressive activities when compared with control subjects. This is the first study on the involvement of Treg cells in CCHF pathogenesis. Our results indicate that even though Treg cell levels are elevated during acute phase of CCHF infection, not all generated Treg cells has immunosuppressive capacity, and therefore may not represent 'true' Treg cell population. Future studies on the intrinsic mechanisms responsible for the reduced Treg inhibitory activities are required for further enlightening the CCHF pathogenesis, especially in the acute phase of the disease.
Collapse
Affiliation(s)
- Umut Gazi
- Department of Medical and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Derya Yapar
- Department of Infectious Diseases and Clinical Microbiology, Hitit University, Corum, Turkey
| | | | | | - Ozlem Akdogan
- Department of Infectious Diseases and Clinical Microbiology, Hitit University, Corum, Turkey
| | - Ozgur Unal
- Infectious Diseases and Clinical Microbiology, Hitit University Erol Olcok Corum Training and Research Hospital, Corum, Turkey
| | - Nurcan Baykam
- Department of Infectious Diseases and Clinical Microbiology, Hitit University, Corum, Turkey.
| | - Aysegul Taylan Ozkan
- Department of Medical and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus; Department of Medical Microbiology, Hitit University, Corum, Turkey
| |
Collapse
|
11
|
Akbari Z, Taheri M, Jafari A, Sayad A. FOXP3 gene expression in the blood of Iranian multiple sclerosis patients. Hum Antibodies 2018. [PMID: 29526847 DOI: 10.3233/hab-180334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a heterogeneous disease with an unknown etiology. Both genetic and environmental factors lead to MS disease. Recent studies have revealed the inhibitory role of T regulatory cells in the MS disease. Forkhead box P3 (FOXP3) gene is a transcript of the CD4+CD25+FOXP3 and T regulatory cells that is recently introduced as a factor in determining the lineage of immune cells. Based on these assumptions we investigate the expression of this gene in the peripheral blood of fifty MS patients in comparison to fifty controls. MATERIAL AND METHODS In this case-control study, we investigate the FOXP3 expression in fifty MS patients (30 females (60%) and 20 males (40%), mean age ± SD: 33.3 ± 5.4 years) in comparing to fifty healthy age and sex matched-controls (30 females (60%) and 20 males (40%), mean age ± SD: 34.2 ± 4.8) using real-time quantitative reverse transcription-PCR (qRT-PCR) in order to explore any association between FOXP3 expression level and MS. RESULTS The expression level of FOXP3 gene was not significantly different between MS patients and controls (p: 0.79). In addition the expression level of the gene was not significantly different between male and female (p: 0.8, p: 0.79, respectively). CONCLUSION Although, the FOXP3 gene is one of the most important genes in the regulation of the immune cells, according to no significant results of this study it may concluded that the expression of the gene is not different between MS patients and healthy controls at least at mRNA level. So it seems that investigating the protein level of FOXP3, related LNCs and microRNAs could be useful to investigate the relation between this gene and the disease. However, the clinical relevance of FOXP3 in patients with regard to their therapy needs to be further explored by evaluation of genetic background in relation to immune responses in MS patients.
Collapse
Affiliation(s)
- Zahra Akbari
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical sciences, Tehran, Iran.,Urogenital Stem Cell Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdorreza Jafari
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
12
|
D'Amico F, Fiorito G, Skarmoutsou E, Granata M, Rossi GA, Trovato C, Bellocchi C, Marchini M, Beretta L, Mazzarino MC. FOXP3, ICOS and ICOSL gene polymorphisms in systemic sclerosis: FOXP3 rs2294020 is associated with disease progression in a female Italian population. Immunobiology 2017; 223:112-117. [PMID: 29030005 DOI: 10.1016/j.imbio.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022]
Abstract
Systemic sclerosis (SSc), an autoimmune disorder, is characterized by vasculopathy, inflammation, progressive perivascular and interstitial fibrosis. Its pathogenesis is largely unknown, however strong evidences suggest that genetic predisposition may contribute to SSc development. Several gene polymorphisms involved in regulatory T cell function have been identified in many autoimmune diseases, including SSc. Moreover, dysregulation of co-stimulatory and/or co-inhibitory signals, including ICOS signalling, can lead to autoimmunity. The aim of the present study was to investigate the association of the FOXP3 rs2294020, ICOS rs6726035 and ICOSL rs378299 SNPs with both the susceptibility and the progression to SSc in an Italian case-series of patients. SNP genotyping results were successfully obtained from a total of 350 subjects including 166 individuals with SSc and 184 healthy controls. Although analysis tests did not show any significant associations between the SNPs under study and susceptibility to SSc, the occurrence of FOXP3 rs2294020 in female patients was associated with decreased time to progression from early to definite SSc (allelic model: HR=1.43; CI=1.03-1.99; p=0.03; dominant model: HR=1.54; CI=1.04-2.28; p=0.03). The inclusion of presence of ACA autoantibodies in the model did not significantly change the estimates. No conclusions can be drawn for the susceptibility to the disease or the time to progression in men due to the low statistical power. This study provides evidence of the association of rs2294020 with SSc evolution in female patients, modulating the time of progression from the diagnosis of early SSc to the diagnosis of definite SSc, while no effect on SSc susceptibility per se was found. rs2294020 may be considered a disease-modifying gene-variant rather than a disease-susceptibility SNP in SSc.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Giovanni Fiorito
- Department of Medical Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy; Italian Istitute for Genomic Medicine (IIGM), via Nizza 52, 10126 Turin, Italy
| | - Evangelia Skarmoutsou
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Mariagrazia Granata
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Giulio A Rossi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Chiara Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Chiara Bellocchi
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via Pace 9, I-20122 Milan, Italy
| | - Maurizio Marchini
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via Pace 9, I-20122 Milan, Italy
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via Pace 9, I-20122 Milan, Italy
| | - Maria Clorinda Mazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
13
|
The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part I: Treg properties and functions. Postepy Dermatol Alergol 2017; 34:285-294. [PMID: 28951701 PMCID: PMC5560174 DOI: 10.5114/ada.2017.69305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Treg) can be divided into two types: the natural cells (tTreg), which arise in the thymus, and the induced cells (iTreg), which are produced in peripheral tissues during immune response. The most recently published studies indicate that the supervisory functions of these cells are weakened in the pathogenesis of autoimmune and neoplastic diseases of the skin. This may be a result of the domination of other immune cells in the skin, such as Th1/Th17/Th22 and Tc1 type in psoriasis and Th2 in atopic dermatitis. The excessive activity of Treg cells can lead to immunosuppression and decrease in the number of Th1 cells, which promote the development and progression of skin cancers. In the case of cutaneous T-cell lymphomas, there are suggestions that tumor progression is associated with the acquisition of the suppressor phenotype of malignant cells. There is genetic background of Treg dysfunction in skin disorders. This article describes the types and functions of Treg cells.
Collapse
|
14
|
Aguerri M, Calzada D, Martin E, Florido F, Quiralte J, Delgado J, Miranda A, López-Cacho J, Gallardo S, Lahoz C, Cárdaba B. FOXP3 and TGF-β: Differential Regulatory Molecules between Sensitization and Tolerance to Olive Pollen. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x1201000204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- M. Aguerri
- Immunology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - D. Calzada
- Immunology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - E. Martin
- Immunology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, CIBERES, Spain
| | - F. Florido
- Allergy Department, Hospital Universitario San Cecilio, Granada, Spain
| | - J. Quiralte
- Allergy Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - J. Delgado
- Allergy Department, Policlínico, Sevilla, Spain
| | - A. Miranda
- Allergy Department, Hospital Civil, Málaga, Spain
| | - J.M. López-Cacho
- Immunology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - S. Gallardo
- Immunology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - C. Lahoz
- Immunology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, CIBERES, Spain
| | - B. Cárdaba
- Immunology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, CIBERES, Spain
| |
Collapse
|
15
|
Origgi FC, Benedicenti O, Segner H, Sattler U, Wahli T, Frey J. Aeromonas salmonicida type III secretion system-effectors-mediated immune suppression in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2017; 60:334-345. [PMID: 27923746 DOI: 10.1016/j.fsi.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen in aquaculture. Together with other pathogens, it is characterized by the presence of a type 3 secretion system (T3SS). The T3SS is the main virulence mechanism of A. salmonicida. It is used by the bacterium to secrete and translocate several toxins and effector proteins into the host cell. Some of these factors have a detrimental impact on the integrity of the cell cytoskeleton, likely contributing to impair phagocytosis. Furthermore, it has been suggested that effectors of the T3SS are able to modulate the host's immune response. Here we present the first partial characterization of the immune response in rainbow trout (Oncorhynchus mykiss) infected with distinct strains of A. salmonicida either carrying (i) a fully functional T3SS or (ii) a functionally impaired T3SS or (iii) devoid of T3SS ("cured" strain). Infection with an A. salmonicida strain either carrying a fully functional or a secretion-impaired T3SS was associated with a strong and persistent immune suppression. However, the infection appeared to be fatal only in the presence of a fully functional T3SS. In contrast, the absence of T3SS was neither associated with immune suppression nor fish death. These findings suggest that the T3SS and T3SS-delivered effector molecules and toxins of A. salmonicida do not only impair the host cells' cytoskeleton thus damaging cell physiology and phagocytosis, but also heavily affect the transcription of critical immune mediators including the shut-down of important warning signals to recognize infection and induce immune defense.
Collapse
Affiliation(s)
- F C Origgi
- Institute of Veterinary Bacteriology, University of Bern, Bern-CH, Switzerland; Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland.
| | - O Benedicenti
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - H Segner
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland
| | - U Sattler
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland
| | - T Wahli
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland
| | - J Frey
- Institute of Veterinary Bacteriology, University of Bern, Bern-CH, Switzerland
| |
Collapse
|
16
|
|
17
|
Paparo L, Nocerino R, Cosenza L, Aitoro R, D'Argenio V, Del Monaco V, Di Scala C, Amoroso A, Di Costanzo M, Salvatore F, Berni Canani R. Epigenetic features of FoxP3 in children with cow's milk allergy. Clin Epigenetics 2016; 8:86. [PMID: 27525046 PMCID: PMC4981981 DOI: 10.1186/s13148-016-0252-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND DNA methylation of the Th1 and Th2 cytokine genes is altered during cow's milk allergy (CMA). Forkhead box transcription factor 3 (FoxP3) is essential for the development and function of regulatory T cells (Tregs) and is involved in oral tolerance acquisition. We assessed whether tolerance acquisition in children with IgE-mediated CMA is associated with DNA demethylation of the Treg-specific demethylated region (TSDR) of FoxP3. RESULTS Forty children (aged 3-18 months) were enrolled: 10 children with active IgE-mediated CMA (group 1), 10 children who outgrew CMA after dietary treatment with an extensively hydrolyzed casein formula containing the probiotic Lactobacillus rhamnosus GG (group 2), 10 children who outgrew CMA after treatment with other formulas (group 3), and 10 healthy controls (group 4). FoxP3 TSDR demethylation and expression were measured in mononuclear cells purified from peripheral blood of the four groups of children. FoxP3 TSDR demethylation was significantly lower in children with active IgE-mediated CMA than in either children who outgrew CMA or in healthy children. Formula selection influenced the FoxP3 TSDR demethylation profile. The FoxP3 TSDR demethylation rate and expression level were correlated. CONCLUSIONS Tolerance acquisition in children with IgE-mediated CMA involves epigenetic regulation of the FoxP3 gene. This feature could be a new target for preventive and therapeutic strategies against CMA.
Collapse
Affiliation(s)
- Lorella Paparo
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini, 5 80131 Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini, 5 80131 Naples, Italy
| | - Linda Cosenza
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini, 5 80131 Naples, Italy
| | - Rosita Aitoro
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini, 5 80131 Naples, Italy
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate s.c.ar.l, Via Gaetano Salvatore 486, 80131 Naples, Italy ; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Valentina Del Monaco
- CEINGE-Biotecnologie Avanzate s.c.ar.l, Via Gaetano Salvatore 486, 80131 Naples, Italy ; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Carmen Di Scala
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini, 5 80131 Naples, Italy
| | - Antonio Amoroso
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini, 5 80131 Naples, Italy
| | - Margherita Di Costanzo
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini, 5 80131 Naples, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate s.c.ar.l, Via Gaetano Salvatore 486, 80131 Naples, Italy ; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy ; IRCCS-Fondazione SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini, 5 80131 Naples, Italy ; CEINGE-Biotecnologie Avanzate s.c.ar.l, Via Gaetano Salvatore 486, 80131 Naples, Italy ; European Laboratory for the Investigation of Food-Induced Diseases, University of Naples "Federico II", Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
18
|
Gorbunova OL, Shirshev SV. Molecular mechanisms of the regulation by kisspeptin of the formation and functional activity of Treg and Th17. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Redecke V, Chaturvedi V, Kuriakose J, Häcker H. SHARPIN controls the development of regulatory T cells. Immunology 2016; 148:216-26. [PMID: 26931177 DOI: 10.1111/imm.12604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/17/2016] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
SHARPIN is an essential component of the linear ubiquitin chain assembly complex (LUBAC) complex that controls signalling pathways of various receptors, including the tumour necrosis factor receptor (TNFR), Toll-like receptor (TLR) and antigen receptor, in part by synthesis of linear, non-degrading ubiquitin chains. Consistent with SHARPIN's function in different receptor pathways, the phenotype of SHARPIN-deficient mice is complex, including the development of inflammatory systemic and skin diseases, the latter of which depend on TNFR signal transduction. Given the established function of SHARPIN in primary and malignant B cells, we hypothesized that SHARPIN might also regulate T-cell receptor (TCR) signalling and thereby control T-cell biology. Here, we focus primarily on the role of SHARPIN in T cells, specifically regulatory T (Treg) cells. We found that SHARPIN-deficient (Sharpin(cpdm/cpdm) ) mice have significantly reduced numbers of FOXP3(+) Treg cells in lymphoid organs and the peripheral blood. Competitive reconstitution of irradiated mice with mixed bone marrow from wild-type and SHARPIN-deficient mice revealed an overall reduced thymus population with SHARPIN-deficient cells with almost complete loss of thymic Treg development. Consistent with this cell-intrinsic function of SHARPIN in Treg development, TCR stimulation of SHARPIN-deficient thymocytes revealed reduced activation of nuclear factor-κB and c-Jun N-terminal kinase, establishing a function of SHARPIN in TCR signalling, which may explain the defective Treg development. In turn, in vitro generation and suppressive activity of mature SHARPIN-deficient Treg cells were comparable to wild-type cells, suggesting that maturation, but not function, of SHARPIN-deficient Treg cells is impaired. Taken together, these findings show that SHARPIN controls TCR signalling and is required for efficient generation of Treg cells in vivo, whereas the inhibitory function of mature Treg cells appears to be independent of SHARPIN.
Collapse
Affiliation(s)
- Vanessa Redecke
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Vandana Chaturvedi
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeeba Kuriakose
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans Häcker
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
20
|
Li X, Meng Y, Plotnikoff NP, Youkilis G, Griffin N, Wang E, Lu C, Shan F. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4+Foxp3+ regulatory T cells (Tregs) in mice. Cancer Biol Ther 2016; 16:450-9. [PMID: 25701137 DOI: 10.1080/15384047.2014.1003006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Methionine enkephalin (MENK), an endogenous neuropeptide, plays an crucial role in both neuroendocrine and immune systems. CD4+Foxp3+ regulatory T cells (Tregs) are identified as a major subpopulation of T lymphocytes in suppressing immune system to keep balanced immunity. The aim of this research work was to elucidate the mechanisms via which MENK interacts with Tregs in cancer situation. The influence of MENK on transforming growth factor-β (TGF-β) mediated conversion from naïve CD4+CD25- T cells to CD4+CD25+ Tregs was determined and the data from flow cytometry (FCM) analysis indicated that MENK effectively inhibited the expression of Foxp3 during the process of TGF-βinduction. Furthermore, this inhibiting process was accompanied by diminishing phosphorylation and nuclear translocation of Smad2/3, confirmed by western blot (WB) analysis and immunofluorescence (IF) at molecular level. We established sarcoma mice model with S180 to investigate whether MENK could modulate Tregs in tumor circumstance. Our findings showed that MENK delayed the development of tumor in S180 tumor bearing mice and down-regulated level of Tregs. Together, these novel findings reached a conclusion that MENK could inhibit Tregs activity directly and retard tumor development through down-regulating Tregs in mice. This work advances the deepening understanding of the influence of MENK on Tregs in cancer situation, and relation of MENK with immune system, supporting the implication of MENK as a new strategy for cancer immunotherapy.
Collapse
Key Words
- CCR4, CC chemokine receptor 4
- CTLA-4, cytotoxic T Lymphocyte Antigen-4
- FCM, flow cytometry
- FasL, Fas ligand
- Foxp3, forkhead box P3 transcription factor
- GITR, glucocorticoid-induced TNFR
- IF, immunofluorescence
- IL-2, interleukin-2
- MENK, methionine enkephalin
- MFI, median fluorescence intensity
- MTS, 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt
- Smad2/3 protein
- TGF-β,transforming growth factor-β
- Tregs, regulatory T cells
- WB, protein gel blot
- cancer immunoregulation
- forkhead box P3 transcription factor
- methionine enkephalin
- real-time PCR, real-time polymerase chain reaction
- regulatory T cell reprogramming
- regulatory T cells
- transforming growth factor-β
Collapse
Affiliation(s)
- Xuan Li
- a Department of Immunology, School of Basic Medical Science , China Medical University , Shenyang , PR, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
The Attenuated Live Yellow Fever Virus 17D Infects the Thymus and Induces Thymic Transcriptional Modifications of Immunomodulatory Genes in C57BL/6 and BALB/C Mice. Autoimmune Dis 2015; 2015:503087. [PMID: 26457200 PMCID: PMC4589579 DOI: 10.1155/2015/503087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 12/28/2022] Open
Abstract
Thymus is involved in induction of self-tolerance in T lymphocytes, particularly due to Aire activity. In peripheral tissues, Treg cells and immunomodulatory molecules, like the major histocompatibility complex (MHC) class Ib molecules, are essential for maintenance of autotolerance during immune responses. Viral infections can trigger autoimmunity and modify thymic function, and YFV17D immunization has been associated with the onset of autoimmunity, being contraindicated in patients with thymic disorders. Aiming to study the influence of YFV17D immunization on the transcriptional profiles of immunomodulatory genes in thymus, we evaluated the gene expression of AIRE, FOXP3, H2-Q7 (Qa-2/HLA-G), H2-T23 (Qa-1/HLA-E), H2-Q10, and H2-K1 following immunization with 10,000 LD50 of YFV17D in C57BL/6 and BALB/c mice. The YFV17D virus replicated in thymus and induced the expression of H2-Q7 (Qa-2/HLA-G) and H2-T23 (Qa-1/HLA-E) transcripts and repressed the expression of AIRE and FOXP3. Transcriptional expression varied according to tissue and mouse strain analyzed. Expression of H2-T23 (Qa-1/HLA-E) and FOXP3 was induced in thymus and liver of C57BL/6 mice, which exhibited defective control of viral load, suggesting a higher susceptibility to YFV17D infection. Since the immunization with YFV17D modulated thymus gene expression in genetically predisposed individuals, the vaccine may be related to the onset of autoimmunity disorders.
Collapse
|
22
|
Abstract
BACKGROUND Bronchial asthma is one of the most common chronic diseases in childhood, with a current prevalence of 6% to 9%, but a prevalence that is increasing at an alarming rate. Asthma is a complex genetic disorder with strong environmental influence. It imposes a growing burden on our society in terms of morbidity, quality of life, and healthcare costs. Despite large-scale efforts, only a few asthma genes have been confirmed, suggesting that the genetic underpinning of asthma is highly complex. METHODS A review of the literature was performed regarding atopic and nonatopic asthma risk factors, including environmental risk factors and genetic studies in adults and children. RESULTS Several environmental risk factors have been identified to increase the risk of developing asthma such as exposure to air pollution and tobaccos smoke as well as occupational risk factors. In addition atopy, stress, and obesity all can increases the risk for asthma in genetically susceptible persons. CONCLUSION Asthma represents a dysfunctional interaction with our genes and the environment to which they are exposed, especially in fetal and early infant life. The increasing prevalence of asthma in all age groups indicate that our living environment and immunity are in imbalance with each other reacting with airway inflammation to the environmental exposures and often non-harmful proteins, such as allergens causing the current "asthma and allergy epidemic." Because of the close relationship between asthma and chronic rhinosinusitis, it is important that otolaryngologists have a good understanding of asthma, the etiologic factors associated with disease, and its evaluation and management.
Collapse
Affiliation(s)
- Elina Toskala
- Department of Otorhinolaryngology–Head and Neck SurgeryTemple UniversityPhiladelphiaPA
| | - David W. Kennedy
- Department of Otorhinolaryngology–Head and Neck SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| |
Collapse
|
23
|
Shirshev SV. Molecular mechanisms of hormonal and hormonal-cytokine control of immune tolerance in pregnancy. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747814050079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bégin P, Nadeau KC. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol 2014; 10:27. [PMID: 24932182 PMCID: PMC4057652 DOI: 10.1186/1710-1492-10-27] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/18/2014] [Indexed: 01/18/2023] Open
Abstract
Epigenetics of asthma and allergic disease is a field that has expanded greatly in the last decade. Previously thought only in terms of cell differentiation, it is now evident the epigenetics regulate many processes. With T cell activation, commitment toward an allergic phenotype is tightly regulated by DNA methylation and histone modifications at the Th2 locus control region. When normal epigenetic control is disturbed, either experimentally or by environmental exposures, Th1/Th2 balance can be affected. Epigenetic marks are not only transferred to daughter cells with cell replication but they can also be inherited through generations. In animal models, with constant environmental pressure, epigenetically determined phenotypes are amplified through generations and can last up to 2 generations after the environment is back to normal. In this review on the epigenetic regulation of asthma and allergic diseases we review basic epigenetic mechanisms and discuss the epigenetic control of Th2 cells. We then cover the transgenerational inheritance model of epigenetic traits and discuss how this could relate the amplification of asthma and allergic disease prevalence and severity through the last decades. Finally, we discuss recent epigenetic association studies for allergic phenotypes and related environmental risk factors as well as potential underlying mechanisms for these associations.
Collapse
Affiliation(s)
- Philippe Bégin
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| | - Kari C Nadeau
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| |
Collapse
|
25
|
He H, Ni B, Tian Y, Tian Z, Chen Y, Liu Z, Yang X, Lv Y, Zhang Y. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions. Immunology 2014; 141:362-76. [PMID: 24152290 DOI: 10.1111/imm.12198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 01/10/2023] Open
Abstract
CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events.
Collapse
Affiliation(s)
- Haiqi He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bossowski A, Borysewicz-Sańczyk H, Wawrusiewicz-Kurylonek N, Zasim A, Szalecki M, Wikiera B, Barg E, Myśliwiec M, Kucharska A, Bossowska A, Gościk J, Ziora K, Górska M, Krętowski A. Analysis of chosen polymorphisms inFoxP3gene in children and adolescents with autoimmune thyroid diseases. Autoimmunity 2014; 47:395-400. [DOI: 10.3109/08916934.2014.910767] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Stumpf M, Zhou X, Chikuma S, Bluestone JA. Tyrosine 201 of the cytoplasmic tail of CTLA-4 critically affects T regulatory cell suppressive function. Eur J Immunol 2014; 44:1737-46. [PMID: 24648182 DOI: 10.1002/eji.201343891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/14/2014] [Accepted: 03/14/2014] [Indexed: 01/01/2023]
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a major negative regulatory molecule for T-cell activation with a complex biology and function. CTLA-4 is known to regulate homeostatic lymphoproliferation as well as tolerance induction and has been proposed to be an important effector molecule by which Treg cells suppress immunity. The immunoregulatory properties of CTLA-4 are primarily mediated by competition with the costimulator CD28 for ligand binding but also by delivering negative signals to T cells through its cytoplasmic tail. In this study, we addressed the effect of directly mutating the amino acid residue, Tyrosine 201 (Tyr201), of the intracellular domain of CTLA-4 in situ and its implications in T-cell function in the context of autoimmunity. Therefore, a novel CTLA-4 knock-in mouse (Y201V KI) was generated, in which Tyr201 was replaced by a valine that could not be phosphorylated. Mice expressing the CTLA-4 mutant molecule were generally healthy and did not show signs of disruption of T-cell homeostasis under steady-state conditions seen in CTLA-4 deficient mice. However, T cells isolated from Y201V KI mice expressed higher levels of CTLA-4 on the cell surface and displayed a Th2-biased phenotype following TCR stimulation. Furthermore, Y201V KI mice developed exacerbated disease as compared to wild-type upon antigen-specific T-cell activation in an in vivo model of EAE. Importantly, the Y201V mutation resulted in impaired suppressive activity of Treg cells while T effector function remained intact. These data suggest that effects associated with and mediated through Tyr201 of CTLA-4s intracellular domain are critical for Treg-cell function.
Collapse
Affiliation(s)
- Melanie Stumpf
- Diabetes Center and the Department of Medicine, University of California, San Francisco, CA, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | |
Collapse
|
28
|
Schreiber L, Pietzsch B, Floess S, Farah C, Jänsch L, Schmitz I, Huehn J. The Treg-specific demethylated region stabilizes Foxp3 expression independently of NF-κB signaling. PLoS One 2014; 9:e88318. [PMID: 24505473 PMCID: PMC3914969 DOI: 10.1371/journal.pone.0088318] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/07/2014] [Indexed: 01/01/2023] Open
Abstract
Regulatory T cells (Tregs) obtain immunosuppressive capacity by the upregulation of forkhead box protein 3 (Foxp3), and persistent expression of this transcription factor is required to maintain their immune regulatory function and ensure immune homeostasis. Stable Foxp3 expression is achieved through epigenetic modification of the Treg-specific demethylated region (TSDR), an evolutionarily conserved non-coding element within the Foxp3 gene locus. Here, we present molecular data suggesting that TSDR enhancer activity is restricted to T cells and cannot be induced in other immune cells such as macrophages or B cells. Since NF-κB signaling has been reported to be instrumental to induce Foxp3 expression during Treg development, we analyzed how NF-κB factors are involved in the molecular regulation of the TSDR. Unexpectedly, we neither observed transcriptional activity of a previously postulated NF-κB binding site within the TSDR nor did the entire TSDR show any transcriptional responsiveness to NF-κB activation at all. Finally, the NF-κB subunit c-Rel revealed to be dispensable for epigenetic imprinting of sustained Foxp3 expression by TSDR demethylation. In conclusion, we show that NF-κB signaling is not substantially involved in TSDR-mediated stabilization of Foxp3 expression in Tregs.
Collapse
Affiliation(s)
- Lisa Schreiber
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Beate Pietzsch
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carla Farah
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Research Group Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Schmitz
- Research Group Systems-oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
29
|
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1703-1718. [PMID: 24036335 DOI: 10.1016/j.fsi.2013.08.030] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 05/28/2023]
Abstract
Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
30
|
Liu W, Li H, Zhang X, Wen D, Yu F, Yang S, Jia X, Cong B, Ma C. Prostaglandin I2-IP signalling regulates human Th17 and Treg cell differentiation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:335-44. [PMID: 24035274 DOI: 10.1016/j.plefa.2013.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 02/04/2023]
Abstract
Prostaglandin I2 (PGI2) is an important immunoregulatory lipid mediator. In this study, we analysed the effects of the PGI2 analogue (Iloprost) on the differentiation of Th17 cells and Tregs from human naïve CD4(+) T cells. PGI2 receptors (IP) are expressed on human naïve CD4(+) T cells. Via IP binding, the PGI2 analogue decreased the proportion of Tregs and Foxp3 mRNA expression but increased the percentage of Th17 cells, RORC mRNA and IL-17A production. The regulatory effects of Iloprost correlated with elevated intracellular cAMP levels. The effects were mimicked by a cAMP agonist (db-cAMP) but attenuated by a protein kinase A inhibitor (H-89). STAT3 and STAT5 signalling play direct and crucial roles in the development of Th17 and Tregs, respectively. The PGI2 analogue enhanced the activation of STAT3 in response to IL-6, whereas it decreased STAT5 activation in response to IL-2. Moreover, db-cAMP imitated the above effects of Iloprost, which were weakened by H-89. These results demonstrate that the PGI2-IP interaction promoted the phosphorylation of STAT3 and reduced the phosphorylation of STAT5, likely via the upregulation of cAMP-PKA signalling, thus facilitated Th17 differentiation and suppressed Treg differentiation. Together with previous results, these data suggest that prostanoids play an important role in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis.
Collapse
MESH Headings
- Bucladesine/pharmacology
- Cell Differentiation
- Cyclic AMP/antagonists & inhibitors
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases
- Epoprostenol/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Humans
- Iloprost/pharmacology
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Isoquinolines/pharmacology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Phosphorylation/drug effects
- Platelet Aggregation Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction
- Sulfonamides/pharmacology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/cytology
- Th17 Cells/drug effects
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Wenxuan Liu
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chan PL, Zheng J, Liu Y, Lam KT, Xiang Z, Mao H, Liu Y, Qin G, Lau YL, Tu W. TLR5 signaling enhances the proliferation of human allogeneic CD40-activated B cell induced CD4hiCD25+ regulatory T cells. PLoS One 2013; 8:e67969. [PMID: 23844139 PMCID: PMC3700901 DOI: 10.1371/journal.pone.0067969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/23/2013] [Indexed: 01/07/2023] Open
Abstract
Although diverse functions of different toll-like receptors (TLR) on human natural regulatory T cells have been demonstrated recently, the role of TLR-related signals on human induced regulatory T cells remain elusive. Previously our group developed an ex vivo high-efficient system in generating human alloantigen-specific CD4hiCD25+ regulatory T cells from naïve CD4+CD25− T cells using allogeneic CD40-activated B cells as stimulators. In this study, we investigated the role of TLR5-related signals on the generation and function of these novel CD4hiCD25+ regulatory T cells. It was found that induced CD4hiCD25+ regulatory T cells expressed an up-regulated level of TLR5 compared to their precursors. The blockade of TLR5 using anti-TLR5 antibodies during the co-culture decreased CD4hiCD25+ regulatory T cells proliferation by induction of S phase arrest. The S phase arrest was associated with reduced ERK1/2 phosphorylation. However, TLR5 blockade did not decrease the CTLA-4, GITR and FOXP3 expressions, and the suppressive function of CD4hiCD25+ regulatory T cells. In conclusion, we discovered a novel function of TLR5-related signaling in enhancing the proliferation of CD4hiCD25+ regulatory T cells by promoting S phase progress but not involved in the suppressive function of human CD40-activated B cell-induced CD4hiCD25+ regulatory T cells, suggesting a novel role of TLR5-related signals in the generation of induced regulatory T cells.
Collapse
Affiliation(s)
- Ping-Lung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Jian Zheng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Kwok-Tai Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Huawei Mao
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Yuan Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Gang Qin
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
32
|
Kornete M, Mason ES, Piccirillo CA. Immune Regulation in T1D and T2D: Prospective Role of Foxp3+ Treg Cells in Disease Pathogenesis and Treatment. Front Endocrinol (Lausanne) 2013; 4:76. [PMID: 23805128 PMCID: PMC3691561 DOI: 10.3389/fendo.2013.00076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/08/2013] [Indexed: 12/18/2022] Open
Abstract
There is increasing evidence that dysregulated immune responses play key roles in the pathogenesis and complications of type 1 but also type 2 diabetes. Indeed, chronic inflammation and autoimmunity, which are salient features of type 1 diabetes, are now believed to actively contribute to the pathogenesis of type 2 diabetes. The accumulation of activated innate and adaptive immune cells in various metabolic tissues results in the release of inflammatory mediators, which promote insulin resistance and β-cell damage. Moreover, these dysregulated immune responses can also mutually influence the prevalence of both type 1 and 2 diabetes. In this review article, we discuss the central role of immune responses in the patho-physiology and complications of type 1 and 2 diabetes, and provide evidence that regulation of these responses, particularly through the action of regulatory T cells, may be a possible therapeutic avenue for the treatment of these disease and their respective complications.
Collapse
Affiliation(s)
- Mara Kornete
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- FOCIS Center of Excellence, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Edward S. Mason
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- FOCIS Center of Excellence, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- FOCIS Center of Excellence, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Ciriaco A. Piccirillo, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Room L11.132, Montreal, QC H3G 1A4, Canada e-mail:
| |
Collapse
|
33
|
Chen Y, Qiu LM, Yao XS, Zhuang QJ, Lv H. Effect of antiviral treatment with nucleoside and nucleotide analogues on cellular immune function in patients with chronic hepatitis B. Shijie Huaren Xiaohua Zazhi 2012; 20:3521-3528. [DOI: 10.11569/wcjd.v20.i35.3521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
China is a country where hepatitis B virus (HBV) infection is highly endemic, and a large sample survey shows that chronic HBV infection affects as many as 120 million people in China. Since immune response dysregulation caused by persistent HBV infection and replication is the underlying cause of disease progression in patients with chronic hepatitis B (CHB), effective antiviral therapy should be given to halt the progression of the disease. Nucleoside and nucleotide analogues have been generally accepted as effective anti-HBV drugs and widely used in the clinical setting. They exert antiviral effects against HBV mainly by inhibition of DNA polymerase-mediated DNA replication. In addition, nucleoside and nucleotide analogues also have an impact on the body's immune function. In this article we review recent progress in understanding the effect of antiviral treatment with nucleoside and nucleotide analogues on cellular immune function in CHB patients.
Collapse
|
34
|
Maeda Y, Ohtsuka H, Tomioka M, Oikawa M. Effect of progesterone on Th1/Th2/Th17 and regulatory T cell-related genes in peripheral blood mononuclear cells during pregnancy in cows. Vet Res Commun 2012. [PMID: 23203561 DOI: 10.1007/s11259-012-9545-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T helper (Th) cells play a central role in immune responses and new Th1/Th2/Th17 and regulatory T (Treg)-cell paradigm in pregnancy has developed. Progesterone (P(4)) is essential for the maintenance of pregnancy; however the effect of P(4) on Th1/Th2/Th17 and Treg paradigm is unclear in cows. We evaluated the effect of P(4) on the expression of Th1/Th2/Th17 and Treg-related cytokines, transcription factors, and P(4) receptors in the peripheral blood mononuclear cells (PBMCs) from 8 pregnant (163.1 ± 16.9 days of gestation) and 8 non-pregnant luteal phase cows. PBMCs were stimulated with P(4) at 0, 0.1, 1 or 10 μg/ml, and the mRNA expression of Th1, Th2, Th17 and Treg-related cytokines (IFN-γ, IL-4, IL-17 and TGF-β), transcription factors (T-bet, GATA-3, RORC and Foxp3) and P(4) receptors (PGR, PGRMC1 and PGRMC2) were analyzed by real time RT-PCR. In both pregnant and non-pregnant cows, P(4) significantly inhibited the expression of IFN-γ and IL-17 dose-dependently, whereas P(4) did not affect the expression of TGF-β and Foxp3. In addition, P(4) significantly decreased the expression of T-bet and RORC, and enhanced the expression of IL-4 in the pregnant cows, but this reaction was not found in the non-pregnant cows. P(4) tended to increase PGRMC1 in the pregnant cows but not in the non-pregnant cows, indicating that PGRMC1 may be involved in the regulation of the effect of P(4) during bovine pregnancy. These results indicate that P(4) is an important regulator of Th1/Th2/Th17 and Treg immunity, and higher Th2 immunity is characteristic in the pregnant cows.
Collapse
Affiliation(s)
- Yousuke Maeda
- Laboratory of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 bancho, Towada, Aomori, 034-8628, Japan
| | | | | | | |
Collapse
|
35
|
Zhuang QJ, Qiu LM, Yao XS, Chen Y, Lv H. CD4 + CD25 + regulatory T cells and hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2012; 20:2248-2253. [DOI: 10.11569/wcjd.v20.i24.2248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD4+ CD25+ regulatory T cells are a recently discovered subset of CD4+ T cell populations that mediate immune suppression. Their unique mode of action and characteristics make them play an important role in autoimmune diseases, transplantation immunology, tumor immunity and anti-infection immunity. Recent studies suggest that regulatory T cells are closely associated with the pathogenesis and outcome of hepatitis B. Here we review recent advances in understanding the relationship between CD4+ CD25+ regulatory T cells and hepatitis B virus infection.
Collapse
|
36
|
Moorman JP, Wang JM, Zhang Y, Ji XJ, Ma CJ, Wu XY, Jia ZS, Wang KS, Yao ZQ. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:755-66. [PMID: 22706088 PMCID: PMC3392408 DOI: 10.4049/jimmunol.1200162] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) is remarkable at disrupting human immunity to establish chronic infection. Upregulation of inhibitory signaling pathways (such as T cell Ig and mucin domain protein-3 [Tim-3]) and accumulation of regulatory T cells (Tregs) play pivotal roles in suppressing antiviral effector T cell (Teff) responses that are essential for viral clearance. Although the Tim-3 pathway has been shown to negatively regulate Teffs, its role in regulating Foxp3(+) Tregs is poorly explored. In this study, we investigated whether and how the Tim-3 pathway alters Foxp3(+) Treg development and function in patients with chronic HCV infection. We found that Tim-3 was upregulated, not only on IL-2-producing CD4(+)CD25(+)Foxp3(-) Teffs, but also on CD4(+)CD25(+)Foxp3(+) Tregs, which accumulate in the peripheral blood of chronically HCV-infected individuals when compared with healthy subjects. Tim-3 expression on Foxp3(+) Tregs positively correlated with expression of the proliferation marker Ki67 on Tregs, but it was inversely associated with proliferation of IL-2-producing Teffs. Moreover, Foxp3(+) Tregs were found to be more resistant to, and Foxp3(-) Teffs more sensitive to, TCR activation-induced cell apoptosis, which was reversible by blocking Tim-3 signaling. Consistent with its role in T cell proliferation and apoptosis, blockade of Tim-3 on CD4(+)CD25(+) T cells promoted expansion of Teffs more substantially than Tregs through improving STAT-5 signaling, thus correcting the imbalance of Foxp3(+) Tregs/Foxp3(-) Teffs that was induced by HCV infection. Taken together, the Tim-3 pathway appears to control Treg and Teff balance through altering cell proliferation and apoptosis during HCV infection.
Collapse
Affiliation(s)
- Jonathan P. Moorman
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United State of America
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
| | - Jia M. Wang
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
- Department of Biochemistry and Molecular Biology, Soochow University School of Medicine, Suzhou, China
| | - Ying Zhang
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiao J. Ji
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
- Department of Critical Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cheng J. Ma
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
| | - Xiao Y. Wu
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
| | - Zhan S. Jia
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ke S. Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, Tennessee, United State of America
| | - Zhi Q. Yao
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United State of America
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
| |
Collapse
|