1
|
Pant T, Lin CW, Bedrat A, Jia S, Roethle MF, Truchan NA, Ciecko AE, Chen YG, Hessner MJ. Monocytes in type 1 diabetes families exhibit high cytolytic activity and subset abundances that correlate with clinical progression. SCIENCE ADVANCES 2024; 10:eadn2136. [PMID: 38758799 PMCID: PMC11100571 DOI: 10.1126/sciadv.adn2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic β cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional β cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.
Collapse
Affiliation(s)
- Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amina Bedrat
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark F. Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nathan A. Truchan
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley E. Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J. Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Zhang N, Gao X, Zhang W, Xiong J, Cao X, Fu ZF, Cui M. JEV Infection Induces M-MDSC Differentiation Into CD3 + Macrophages in the Brain. Front Immunol 2022; 13:838990. [PMID: 35529855 PMCID: PMC9068957 DOI: 10.3389/fimmu.2022.838990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Japanese encephalitis virus (JEV) is one of the most important members of the flavivirus family. It is a typical zoonotic pathogen that has caused substantial social and economic losses worldwide. The relation between JEV-induced immunosuppression and inflammatory responses has not been thoroughly investigated. In this study, cells infiltrating the brain tissue of JEV-infected mice were mainly identified as monocytic myeloid-derived suppressor cells (M-MDSCs), which subsequently differentiated into CD3+ macrophages. Co-culture with T cells showed that both splenic M-MDSCs and brain infiltrated M-MDSCs isolated from JEV-infected mice inhibited T cell proliferation through ARG1 and iNOS. The splenectomy model revealed that JEV-induced M-MDSCs were mainly derived from bone marrow and migrated to the spleen and central nervous system (CNS). The results of the transcriptome analysis and IRF7-deficient mice indicated that the ZBP1-IRF7 signaling pathway stimulated by JEV RNA played a central role in the induction of M-MDSCs. M-MDSCs migrated into the CNS through the chemokine CCL2/N-CCL2 derived from astrocytes and brain infiltrated M-MDSCs differentiated into CD3+ macrophages through a mechanism mediated by M-CSF, IL-6 and IFN-γ in the brain microenvironment. These findings provide evidence for the mechanism that JEV regulates the differentiation of M-MDSCs and thereby exacerbates pathogenicity, which represents a potential therapeutic target for Japanese encephalitis (JE).
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiaochen Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Weijia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Junyao Xiong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China,*Correspondence: Min Cui,
| |
Collapse
|
3
|
Ramon-Luing LA, Carranza C, Téllez-Navarrete NA, Medina-Quero K, Gonzalez Y, Torres M, Chavez-Galan L. Mycobacterium tuberculosis H37Rv Strain Increases the Frequency of CD3 +TCR + Macrophages and Affects Their Phenotype, but Not Their Migration Ability. Int J Mol Sci 2021; 23:ijms23010329. [PMID: 35008755 PMCID: PMC8745617 DOI: 10.3390/ijms23010329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
In mycobacterial infections, the number of cells from two newly discovered subpopulations of CD3+ myeloid cells are increased at the infection site; one type expresses the T cell receptor (CD3+TCRαβ+) and the other does not (CD3+TCRαβ−). The role of Mycobacterium tuberculosis (Mtb) virulence in generating these subpopulations and the ability of these cells to migrate remains unclear. In this study, monocyte-derived macrophages (MDMs) infected in vitro with either a virulent (H37Rv) or an avirulent (H37Ra) Mtb strain were phenotypically characterized based on three MDM phenotypes (CD3−, CD3+TCRαβ+, and CD3+TCRαβ−); then, their migration ability upon Mtb infection was evaluated. We found no differences in the frequency of CD3+ MDMs at 24 h of infection with either Mtb strain. However, H37Rv infection increased the frequency of CD3+TCRαβ+ MDMs at a multiplicity of infection of 1 and altered the expression of CD1b, CD1c, and TNF on the surface of cells from both the CD3+ MDM subpopulations; it also modified the expression of CCR2, CXCR1, and CCR7, thus affecting CCL2 and IL-8 levels. Moreover, H37Rv infection decreased the migration ability of the CD3− MDMs, but not CD3+ MDMs. These results confirm that the CD3+ macrophage subpopulations express chemokine receptors that respond to chemoattractants, facilitating cell migration. Together, these data suggest that CD3+ MDMs are a functional subpopulation involved in the immune response against Mtb.
Collapse
Affiliation(s)
- Lucero A. Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (N.A.T.-N.)
| | - Claudia Carranza
- Laboratory of Tuberculosis Immunobiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (C.C.); (M.T.)
| | - Norma A. Téllez-Navarrete
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (N.A.T.-N.)
| | - Karen Medina-Quero
- Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, Mexico City 11200, Mexico;
| | - Yolanda Gonzalez
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Martha Torres
- Laboratory of Tuberculosis Immunobiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (C.C.); (M.T.)
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (N.A.T.-N.)
- Correspondence: ; Tel.: +52-(55)-54871700 (ext. 5270)
| |
Collapse
|
4
|
Fuchs T, Puellmann K, Wang C, Han J, Beham AW, Neumaier M, Kaminski WE. Trilineage Sequencing Reveals Complex TCRβ Transcriptomes in Neutrophils and Monocytes Alongside T Cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:926-936. [PMID: 33662627 PMCID: PMC9402791 DOI: 10.1016/j.gpb.2019.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 01/07/2019] [Accepted: 03/04/2019] [Indexed: 11/24/2022]
Abstract
Recent findings indicate the presence of T cell receptor (TCR)-based combinatorial immune receptors beyond T cells in neutrophils and monocytes/macrophages. In this study, using a semiquantitative trilineage immune repertoire sequencing approach as well as under rigorous bioinformatic conditions, we identify highly complex TCRβ transcriptomes in human circulating monocytes and neutrophils that separately encode repertoire diversities one and two orders of magnitude smaller than that of T cells. Intraindividual transcriptomic analyses reveal that neutrophils, monocytes, and T cells express distinct TCRβ repertoires with less than 0.1% overall trilineage repertoire sharing. Interindividual comparison shows that in all three leukocyte lineages, the vast majority of the expressed TCRβ variants are private. We also find that differentiation of monocytes into macrophages induces dramatic individual-specific repertoire shifts, revealing a surprising degree of immune repertoire plasticity in the monocyte lineage. These results uncover the remarkable complexity of the two phagocyte-based flexible immune systems which until now has been hidden in the shadow of T cells.
Collapse
Affiliation(s)
- Tina Fuchs
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D- 68167 Mannheim, Germany.
| | | | | | - Jian Han
- iRepertoire inc. Huntsville, AL 35806, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Michael Neumaier
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D- 68167 Mannheim, Germany
| | - Wolfgang E Kaminski
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D- 68167 Mannheim, Germany; Ingenium digital diagnostics, D-87662 Kaltental, Germany.
| |
Collapse
|
5
|
Watkins TS, Miles JJ. The human T-cell receptor repertoire in health and disease and potential for omics integration. Immunol Cell Biol 2020; 99:135-145. [PMID: 32677130 DOI: 10.1111/imcb.12377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022]
Abstract
The adaptive immune system arose 600 million years ago in a cold-blooded fish. Over countless generations, our antecedents tuned the function of the T-cell receptor (TCR). The TCR system is arguably the most complex known to science. The TCR evolved hypervariability to fight the hypervariability of pathogens and cancers that look to consume our resources. This review describes the genetics and architecture of the human TCR and highlights surprising new discoveries over the past years that have disproved very old dogmas. The standardization of TCR sequencing data is discussed in preparation for big data bioinformatics and predictive analysis. We next catalogue new signatures and phenomenon discovered by TCR next generation sequencing (NGS) in health and disease and work that remain to be done in this space. Finally, we discuss how TCR NGS can add to immunodiagnostics and integrate with other omics platforms for both a deeper understanding of TCR biology and its use in the clinical setting.
Collapse
Affiliation(s)
- Thomas S Watkins
- The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - John J Miles
- The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
6
|
Busch S, Talamini M, Brenner S, Abdulazim A, Hänggi D, Neumaier M, Seiz-Rosenhagen M, Fuchs T. Circulating monocytes and tumor-associated macrophages express recombined immunoglobulins in glioblastoma patients. Clin Transl Med 2019; 8:18. [PMID: 31155685 PMCID: PMC6545295 DOI: 10.1186/s40169-019-0235-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/17/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common and malignant brain tumor in adults. Glioblastoma is usually fatal 12-15 months after diagnosis and the current possibilities in therapy are mostly only palliative. Therefore, new forms of diagnosis and therapy are urgently needed. Since tumor-associated macrophages are key players in tumor progression and survival there is large potential in investigating their immunological characteristics in glioblastoma patients. Recent evidence shows the expression of variable immunoglobulins and TCRαβ in subpopulations of monocytes, in vitro polarized macrophages and macrophages in the tumor microenvironment. We set out to investigate the immunoglobulin sequences of circulating monocytes and tumor-associated macrophages from glioblastoma patients to evaluate their potential as novel diagnostic or therapeutic targets. RESULTS We routinely find consistent expression of immunoglobulins in tumor-associated macrophages (TAM) and circulating monocytes from all glioblastoma patients analyzed in this study. However, the immunoglobulin repertoires of circulating monocytes and TAM are generally more restricted compared to B cells. Furthermore, the immunoglobulin expression in the macrophage populations negatively correlates with the tumor volume. Interestingly, the comparison of somatic mutations, V-chain usage, CDR3-length and the distribution of used heavy chain genes on the locus of chromosome 14 of the immunoglobulins from myeloid to B cells revealed virtually no differences. CONCLUSIONS The investigation of the immunoglobulin repertoires from TAM and circulating monocytes in glioblastoma-patients revealed a negative correlation to the tumor volume, which could not be detected in the immunoglobulin repertoires of the patients' B lymphocytes. Furthermore, the immunoglobulin repertoires of monocytes were more diverse than the repertoires of the macrophages in the tumor microenvironment from the same patients suggesting a tumor-specific immune response which could be advantageous for the use as diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Svenja Busch
- Institute for Clinical Chemistry, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Marina Talamini
- Institute for Clinical Chemistry, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Steffen Brenner
- Department of Neurosurgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Amr Abdulazim
- Department of Neurosurgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Marcel Seiz-Rosenhagen
- Department of Neurosurgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tina Fuchs
- Institute for Clinical Chemistry, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Fuchs T, Puellmann K, Dreyfus DH, Piehler AP, Reuter B, Schwarzbach C, Willmann O, Yepes D, Costina V, Findeisen P, Mahrt J, Wang C, Han J, Beham AW, Neumaier M, Kaminski WE. Immediate Neutrophil-Variable-T Cell Receptor Host Response in Bacterial Meningitis. Front Neurol 2019; 10:307. [PMID: 31001192 PMCID: PMC6454057 DOI: 10.3389/fneur.2019.00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
Bacterial meningitis is a life-threatening disease that evokes an intense neutrophil-dominated host response to microbes invading the subarachnoid space. Recent evidence indicates the existence of combinatorial V(D)J immune receptors in neutrophils that are based on the T cell receptor (TCR). Here, we investigated expression of the novel neutrophil TCRαβ-based V(D)J receptors in cerebrospinal fluid (CSF) from human patients with acute-phase bacterial meningitis using immunocytochemical, genetic immunoprofiling, cell biological, and mass spectrometric techniques. We find that the human neutrophil combinatorial V(D)J receptors are rapidly induced in CSF neutrophils during the first hours of bacterial meningitis. Immune receptor repertoire diversity is consistently increased in CSF neutrophils relative to circulating neutrophils and phagocytosis of baits directed to the variable immunoreceptor is enhanced in CSF neutrophils during acute-phase meningitis. Our results reveal that a flexible immune response involving neutrophil V(D)J receptors which enhance phagocytosis is immediately initiated at the site of acute bacterial infection.
Collapse
Affiliation(s)
- Tina Fuchs
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - David H Dreyfus
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Armin P Piehler
- Bioscientia Institute for Medical Diagnostics, Karlsfeld, Germany
| | - Björn Reuter
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christopher Schwarzbach
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Olaf Willmann
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego Yepes
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jens Mahrt
- Molecular & Optical Live Cell Imaging, University of Göttingen, Göttingen, Germany
| | | | - Jian Han
- iRepertoire Inc., Huntsville, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | | | - Michael Neumaier
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | |
Collapse
|
8
|
Are rats more human than mice? Immunobiology 2019; 224:172-176. [DOI: 10.1016/j.imbio.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 11/23/2022]
|
9
|
Fuchs T, Hahn M, Ries L, Giesler S, Busch S, Wang C, Han J, Schulze TJ, Puellmann K, Beham AW, Kaminski WE, Neumaier M. Expression of combinatorial immunoglobulins in macrophages in the tumor microenvironment. PLoS One 2018; 13:e0204108. [PMID: 30240437 PMCID: PMC6150476 DOI: 10.1371/journal.pone.0204108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Recent evidence indicates the presence of macrophage subpopulations that express the TCRαβ in chronic inflammatory diseases such as tuberculosis and atherosclerosis and in the tumor microenvironment. Here, we demonstrate that a second subpopulation of macrophages expresses rearranged heavy and light chain immunoglobulins. We identify immunoglobulin expression in human and murine monocytes, in ex vivo differentiated macrophages and macrophages from the tumor microenvironment of five randomly selected distinct human tumor entities. The immunoglobulin heavy and light chains are expressed in a small macrophage subfraction (~3-5%) as combinatorial and individual-specific immune receptors. Using Sanger sequencing and deep sequencing, we routinely find markedly restricted Ig repertoires in monocytes/macrophages compared to normal B cells. Furthermore, we report the complete Ig heavy and light chain sequences of a fully functional immunoglobulin from a single tumor-associated macrophage. These results demonstrate that Ig expression is a defining feature of monocytes and also macrophages in the tumor microenvironment and thus reveal an as yet unrecognized modus operandi of host defense in professional phagocytes.
Collapse
Affiliation(s)
- Tina Fuchs
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Hahn
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lukas Ries
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sophie Giesler
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Svenja Busch
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chunlin Wang
- iRepertoire inc. Huntsville, AL, United States of America
| | - Jian Han
- iRepertoire inc. Huntsville, AL, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Torsten J. Schulze
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | - Wolfgang E. Kaminski
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
10
|
Fuchs T, Hahn M, Riabov V, Yin S, Kzhyshkowska J, Busch S, Püllmann K, Beham AW, Neumaier M, Kaminski WE. A combinatorial αβ T cell receptor expressed by macrophages in the tumor microenvironment. Immunobiology 2015; 222:39-44. [PMID: 26494401 DOI: 10.1016/j.imbio.2015.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 01/22/2023]
Abstract
Recent evidence indicates the presence of macrophage subpopulations that express the TCRαβ in two major inflammatory diseases, tuberculosis and atherosclerosis. Inflammation is also a well-established attribute of cancer progression and macrophages are one of the major immune cells that infiltrate tumors. Here, we demonstrate that the macrophage-TCRαβ is expressed in the tumor microenvironment of human and murine malignancies. We identify TCRαβ+ macrophages in each case of four randomly selected distinct human tumor entities. In human tumor tissues, the TCRαβ expressed by macrophages in the tumor microenvironment is a combinatorial and individual-specific immune receptor. Furthermore, we routinely find TCRαβ+ macrophage subpopulations in experimental tumors (TS/A, mammary adenocarcinoma) which we induced both in normal mice and mice deficient in the macrophage receptor stabilin-1. Expression of the combinatorial murine tumor macrophage TCRαβ is individual-specific and independent of stabilin-1. These results demonstrate that TCRαβ expression is a characteristic feature of macrophages in the tumor microenvironment and identify an as yet unrecognized flexible element in the macrophage-based host response to tumors.
Collapse
Affiliation(s)
- Tina Fuchs
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | - Martin Hahn
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | - Vladimir Riabov
- Institute of Transfusion Medicine and Immunology, University of Heidelberg, Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | - Shuiping Yin
- Institute of Transfusion Medicine and Immunology, University of Heidelberg, Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, University of Heidelberg, Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | - Svenja Busch
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | | | - Alexander W Beham
- Department of Surgery, University of Göttingen, D-37075 Göttingen, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | - Wolfgang E Kaminski
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D-68167 Mannheim, Germany; Bioscientia Institute for Medical Diagnostics, D-55218 Ingelheim, Germany.
| |
Collapse
|
11
|
Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Front Immunol 2015; 6:263. [PMID: 26074923 PMCID: PMC4443739 DOI: 10.3389/fimmu.2015.00263] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Monocytes are considered to be precursor cells of the mononuclear phagocytic system, and macrophages are one of the leading members of this cellular system. Macrophages play highly diverse roles in maintaining an organism's integrity by either directly participating in pathogen elimination or repairing tissue under sterile inflammatory conditions. There are different subpopulations of macrophages and each one has its own characteristics and functions. In this review, we summarize present knowledge on the polarization of macrophages that allows the generation of subpopulations called classically activated macrophages or M1 and alternative activated macrophages or M2. Furthermore, there are macrophages that their origin and characterization still remain unclear but have been involved as main players in some human pathologies. Thus, we also review three other categories of macrophages: tumor-associated macrophages, CD169(+) macrophages, and the recently named TCR(+) macrophages. Based on the literature, we provide information on the molecular characterization of these macrophage subpopulations and their specific involvement in several human pathologies such as cancer, infectious diseases, obesity, and asthma. The refined characterization of the macrophage subpopulations can be useful in designing new strategies, supplementing those already established for the treatment of diseases using macrophages as a therapeutic target.
Collapse
Affiliation(s)
- Leslie Chávez-Galán
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City, Mexico
| | - Maria L. Olleros
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Dominique Vesin
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Irene Garcia
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Fuchs T, Puellmann K, Emmert A, Fleig J, Oniga S, Laird R, Heida NM, Schäfer K, Neumaier M, Beham AW, Kaminski WE. The macrophage-TCRαβ is a cholesterol-responsive combinatorial immune receptor and implicated in atherosclerosis. Biochem Biophys Res Commun 2014; 456:59-65. [PMID: 25446098 DOI: 10.1016/j.bbrc.2014.11.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/15/2014] [Indexed: 02/06/2023]
Abstract
Recent evidence indicates constitutive expression of a recombinatorial TCRαβ immune receptor in mammalian monocytes and macrophages. Here, we demonstrate in vitro that macrophage-TCRβ repertoires are modulated by atherogenic low density cholesterol (LDL) and high-density cholesterol (HDL). In vivo, analysis of freshly obtained artery specimens from patients with severe carotid atherosclerosis reveals massive abundance of TCRαβ(+) macrophages within the atherosclerotic lesions. Experimental atherosclerosis in mouse carotids induces accumulation of TCR bearing macrophages in the vascular wall and TCR deficient rag(-/-) mice have an altered macrophage-dependent inflammatory response. We find that the majority of TCRαβ bearing macrophages are localized in the hot spot regions of the atherosclerotic lesions. Advanced carotid artery lesions express highly restricted TCRαβ repertoires that are characterized by a striking usage of the Vβ22 and Vβ16 chains. This together with a significant degree of interindividual lesion repertoire sharing suggests the existence of atherosclerosis-associated TCRαβ signatures. Our results implicate the macrophage-TCRαβ combinatorial immunoreceptor in atherosclerosis and thus identify an as yet unknown adaptive component in the innate response-to-injury process that underlies this macrophage-driven disease.
Collapse
Affiliation(s)
- Tina Fuchs
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | | | - Alexander Emmert
- Department of Thoracic and Vascular Surgery, Georg August University of Göttingen, D-37075 Göttingen, Germany
| | - Julian Fleig
- Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
| | - Septimia Oniga
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | - Rebecca Laird
- Department of Surgery, Georg August University of Göttingen, D-37075 Göttingen, Germany
| | - Nana Maria Heida
- Department of Cardiology and Pulmonary Medicine, Georg August University of Göttingen, D-37075 Göttingen, Germany
| | - Katrin Schäfer
- Department of Cardiology and Pulmonary Medicine, Georg August University of Göttingen, D-37075 Göttingen, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, D-68167 Mannheim, Germany
| | - Alexander W Beham
- Department of Surgery, Georg August University of Göttingen, D-37075 Göttingen, Germany.
| | | |
Collapse
|
13
|
Cossu D, Masala S, Frau J, Mameli G, Marrosu MG, Cocco E, Sechi LA. Antigenic epitopes of MAP2694 homologous to T-cell receptor gamma-chain are highly recognized in multiple sclerosis Sardinian patients. Mol Immunol 2013; 57:138-40. [PMID: 24091296 DOI: 10.1016/j.molimm.2013.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/30/2022]
Abstract
Mycobacterium avium ss. paratuberculosis (MAP) is an intracellular pathogen recently associated with multiple sclerosis (MS). Aiming to identify immunodominant epitopes belonging to MS related protein MAP2694 (UniProt accession no. Q73WG6), we investigated the binding activity of selected peptides against MS Sardinian sera. An overlapping 9-mers peptide library was synthesized spanning the entire aminoacidic sequence of the protein. Peripheral blood was collected from 47 MS patients and 42 sex and age matched healthy volunteers and subjected to enzyme-linked immunosorbent assay (ELISA) in order to investigate the reaction against the linear peptides generated. Two out of 58 synthetic 9-mers were strongly recognized by MS patients' antibodies compared to controls. A competitive inhibition assay demonstrated that these two epitopes are immunodominant antibody targets within MAP2694 protein, as sera pre-adsorbed with these peptides were able to significantly block the antibody reaction to the MAP2694 protein, even if at a lesser extent than MAP2694 protein itself.
Collapse
Affiliation(s)
- Davide Cossu
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Italy
| | | | | | | | | | | | | |
Collapse
|