1
|
Zheng C, Liu L, Liu C, Chu F, Lang Y, Liu S, Mi Y, Zhu J, Jin T. Alleviation of experimental autoimmune encephalomyelitis by transferring low RelB expression tolerogenic dendritic cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166934. [PMID: 37931715 DOI: 10.1016/j.bbadis.2023.166934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
AIMS Experimental autoimmune encephalomyelitis (EAE) is a widely used mouse model of multiple sclerosis. Rather than inducing immune response, tolerogenic dendritic cells (tDCs) have the ability to induce immune tolerance. In previous studies, we induced tDCs by 1,25-(OH)2D3 and 1,25-(OH)2D3 DCs significantly alleviated EAE symptoms. As downstream targets of 1,25-(OH)2D3, inhibition of RelB and MyD88 expression in DCs might induce tDCs and has therapeutic effect of MS. METHODS Knockdown the expression of RelB and MyD88 with shRNA lentivirus to induce tDCs, adoptive transfer these tDCs to EAE mice, and investigate their therapeutic effects. RESULTS Reduction of RelB expression induced tDCs. After transferring into EAE mice, tDCs with low RelB expression significantly alleviate their symptoms as well as reduce the immune cell infiltration and demyelination in spinal cord. CONCLUSION RelB plays a key role in the antigen presenting function of DCs, and tDCs with low RelB expression is a potential treatment for EAE and MS.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Lingling Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yan Mi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Zhong Q, Lu Y, Xu W, Rong Z, Chang X, Qin L, Chen X, Zhou F. The differentiation of new human CD303 + Plasmacytoid dendritic cell subpopulations expressing CD205 and/or CD103 regulated by Non-Small-Cell lung cancer cells. Int Immunopharmacol 2021; 99:107983. [PMID: 34298400 DOI: 10.1016/j.intimp.2021.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
CD303+ plasmacytoid dendritic cells (pDCs) play an important role in the induction of immune tolerance and antitumor immunity. Here, we focused on the effect of NSCLC cells on the development of CD303+ pDC subsets expressing CD205 and/or CD103. The NSCLC cell line H1299 and primary NSCLC cells were incubated with DCs. The protein expression of costimulatory molecules on CD303+ pDCs, the production of pro-inflammatory and anti-inflammatory cytokines by CD303+ pDCs and the development of CD303+ pDC subsets were detected by using flow cytometry. Coculture with NSCLC cells modulates the protein expression of CD86 and HLA-DR on CD303+ pDCs. Moreover, NSCLC cells suppressed the production of IL-12 and IL-23 but facilitated the secretion of IL-27 and TGF-β by CD303+ pDCs. There were new CD303+ pDC subsets expressing CD205 and/or CD103 in healthy donors and NSCLC patients: CD303+CD205+CD103+, CD303+CD205+CD103-, CD303+CD205-CD103+ and CD303+CD205-CD103- pDCs. NSCLC cells modulated the differentiation of CD303+ pDC subpopulations by regulating the protein expression of CD205 and/or CD103 on CD303+ pDCs. NSCLC cells may regulate the immune functions of CD303+ pDCs by modulating the expression of costimulatory molecules on DCs and the production of pro-inflammatory/anti-inflammatory cytokines by DCs. NSCLC cells also regulate the development of CD303+ pDC subsets expressing CD205 and/or CD103. These outcomes may reveal a new cellular mechanism leading to the NSCLC-induced immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Qifeng Zhong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Yong Lu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Wenlong Xu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Zhien Rong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Xu Chang
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Li Qin
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510820, PR China; State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China; Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China.
| | - Fang Zhou
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Lu Y, Xu W, Gu Y, Chang X, Wei G, Rong Z, Qin L, Chen X, Zhou F. Non-small Cell Lung Cancer Cells Modulate the Development of Human CD1c + Conventional Dendritic Cell Subsets Mediated by CD103 and CD205. Front Immunol 2019; 10:2829. [PMID: 31921114 PMCID: PMC6914740 DOI: 10.3389/fimmu.2019.02829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) leads to a high death rate in patients and is a major threat to human health. NSCLC induces an immune suppressive microenvironment and escapes from immune surveillance in vivo. At present, the molecular mechanisms of NSCLC immunopathogenesis and the immune suppressive microenvironment induced by NSCLC have not been fully elucidated. Here, we focus on the effect of NSCLC cells on the development and differentiation of human CD1c+ conventional dendritic cell (DC) subsets mediated by CD205 and CD103. The peripheral blood mononuclear cells (PBMCs) were isolated from NSCLC patients and healthy donors. DCs were induced and cocultured with primary NSCLC cells or tumor cell line H1299. DCs without incubation with tumor cells are control. The protein expression of costimulatory molecules such as CD80 and CD86, HLA-DR, pro-/anti-inflammatory cytokines such as IL-10 and IL-12, and CD205 and CD103 on CD1c+ DCs was detected by flow cytometry. Our data revealed two new subpopulations of human CD1c+ DCs (CD1c+CD205+CD103+ and CD1c+CD205+CD103− DC) in healthy donors and NSCLC patients. NSCLC cells modulate the development of the CD1c+CD205+CD103+ DC and CD1c+CD205+CD103− DC subpopulations in vitro and ex vivo. NSCLC cells also suppress the expression of signal molecules such as CD40, CD80, CD86, and HLA-DR on CD1c+ DCs. In addition, the production of pro-inflammatory cytokines, including IL-12 and IL-23, is downregulated by NSCLC cells; however, the secretion of anti-inflammatory cytokines, such as IL-10 and IL-27, by CD1c+ DCs is upregulated by NSCLC cells. Our results suggest that NSCLC cells may induce immune tolerogenic DCs, which block DC-mediated anti-tumor immunity in NSCLC patients. Our data may be helpful in revealing new cellular mechanisms related to the induction of tolerogenic CD1c+ DCs by NSCLCs and the development of an immune suppressive microenvironment that causes tumor cells to escape immune surveillance. Our results indicate a potential role for CD1c+ DC subsets mediated by CD205 and CD103 in DC-mediated immunotherapy to target NSCLC in the future.
Collapse
Affiliation(s)
- Yong Lu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Wenlong Xu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Yanli Gu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Xu Chang
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Guojian Wei
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Zhien Rong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Li Qin
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China.,Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fang Zhou
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| |
Collapse
|
4
|
Lu H, Dai X, Li X, Sun Y, Gao Y, Zhang C. Gal-1 regulates dendritic cells-induced Treg/Th17 balance though NF-κB/RelB-IL-27 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:628. [PMID: 31930029 DOI: 10.21037/atm.2019.11.02] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background This study aimed to investigate the mechanism of galectin (Gal)-1 of regulating Treg/Th17 in pathogenesis of acute rejection after liver transplantation in rat. Methods Mononuclear cells were induced to immature dendritic cells (imDCs), which were transfected with or without NF-κB/RelB. Western Blot was performed to detect the expression of NF-κB/RelB. the expression of CD11c, CD45RB, CD80 and MHC II were detected by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to detect cytokines IL-27 and TGF-β. Lewis and dark agouti (DA) rats were generally anaesthetized by isoflurane inhalation to establish liver transplant models. Results We demonstrate that Gal-1 disturbs maturation of imDCs by downregulating NF-κB/RelB expression, and Gal-1 negatively controls CD4+ proliferation though IL-27 pathway. Conclusions In aggregate, Gal-1 promotes Treg differentiation in CD4+ T cells though NF-κB/RelB-IL-27 pathway. These findings suggest a new therapeutic target to mediate Treg population.
Collapse
Affiliation(s)
- Hao Lu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xinzheng Dai
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xu Li
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Yu Sun
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Yangjuan Gao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Chuanyong Zhang
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
5
|
Zhou F, Zhang GX, Rostami A. Distinct Role of IL-27 in Immature and LPS-Induced Mature Dendritic Cell-Mediated Development of CD4 + CD127 +3G11 + Regulatory T Cell Subset. Front Immunol 2018; 9:2562. [PMID: 30483251 PMCID: PMC6244609 DOI: 10.3389/fimmu.2018.02562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Interleukin-27 (IL-27) plays an important role in regulation of anti-inflammatory responses and autoimmunity; however, the molecular mechanisms of IL-27 in modulation of immune tolerance and autoimmunity have not been fully elucidated. Dendritic cells (DCs) play a central role in regulating immune responses mediated by innate and adaptive immune systems, but regulatory mechanisms of DCs in CD4+ T cell-mediated immune responses have not yet been elucidated. Here we show that IL-27 treated mature DCs induced by LPS inhibit immune tolerance mediated by LPS-stimulated DCs. IL-27 treatment facilitates development of the CD4+ CD127+3G11+ regulatory T cell subset in vitro and in vivo. By contrast, IL-27 treated immature DCs fail to modulate development of the CD4+CD127+3G11+ regulatory T cell sub-population in vitro and in vivo. Our results suggest that IL-27 may break immune tolerance induced by LPS-stimulated mature DCs through modulating development of a specific CD4+ regulatory T cell subset mediated by 3G11 and CD127. Our data reveal a new cellular regulatory mechanism of IL-27 that targets DC-mediated immune responses in autoimmune diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Zhou F, Zhang GX, Rostami A. LPS-treated bone marrow-derived dendritic cells induce immune tolerance through modulating differentiation of CD4 + regulatory T cell subpopulations mediated by 3G11 and CD127. Immunol Res 2018; 65:630-638. [PMID: 27942984 DOI: 10.1007/s12026-016-8881-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Intravenous transfer of LPS-treated bone marrow-derived dendritic cells blocks development of autoimmunity induced by CD4+ T cells in vivo. However, cellular mechanisms of dendritic cell-mediated immune tolerance have not yet been fully elucidated. Here, we report that there are two new subpopulations of CD4+CD25+FoxP3+GITR+ regulatory T cells (CD127+3G11+ and CD127+3G11- cells). LPS-treated dendritic cells facilitate development of CD4+CD127+3G11- regulatory T cells but inhibit that of CD4+CD127+3G11+ regulatory T cells. LPS-induced tolerogenic dendritic cells may cause immune tolerance through modulating balance of different subsets of CD4+ regulatory T cells mediated by CD127 and 3G11. Our results imply a new potential cellular mechanism of dendritic cell-mediated immune tolerance.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA, 19107, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA, 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
7
|
Ma L, Li D, Yuan C, Zhang X, Ta N, Zhao X, Li Y, Feng X. SjCRT, a recombinant Schistosoma japonicum calreticulin, induces maturation of dendritic cells and a Th1-polarized immune response in mice. Parasit Vectors 2017; 10:570. [PMID: 29132406 PMCID: PMC5683313 DOI: 10.1186/s13071-017-2516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/31/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND It is well known that immunization of radiation-attenuated (RA) schistosoma cercariae or schistosomula can induce high levels of protective immunity against schistosoma cercariae reinfection in many animals. Many studies have shown that the Th1 cellular immune response is crucial for the protective effect elicited by RA schistosomula. However, the molecular mechanism of this strong protective immunity remains unclear. METHODS The expression profiles of Schistosoma japonicum calreticulin (SjCRT) in RA and normal schistosoma-derived cells were investigated by flow cytometry. The effect of recombinant SjCRT (rSjCRT) on mouse dendritic cells (DCs) was determined by FACS, ELISA and RT-PCR analysis. We also analyzed the effects of SjCRT on the activation of spleen cells from mice immunized with rSjCRT by detecting lymphocyte proliferation and the cytokine profiles of splenocytes. RESULTS We found that the expression level of SjCRT in the cells from RA larvae was significantly higher than that in cells from normal schistosomula at early stages of development (day 4). The results of effect of rSjCRT on mouse DCs showed that rSjCRT could induce phenotypic and functional maturation of DCs, and SjCRT bound to the surface of DCs through the CD91 receptor and could be engulfed by DCs. The results of activation of splenocytes from mice immunized with rSjCRT also demonstrate that rSjCRT can effectively stimulate the proliferative response of splenic lymphocytes, elicit splenocytes from immunized mice to secrete high levels of IFN-γ, TNF-α and IL-4, and activate CD4+ T cells to produce high levels of IFN-γ. CONCLUSION SjCRT is one of the immunostimulatory molecules released from RA schistosomula cells, might play a crucial role in conferring a Th1-polarized immune response induced by RA cercariae/schistosomula in mice, and is a candidate molecule responsible for the high levels of protective immunity induced by RA schistosomula.
Collapse
Affiliation(s)
- Lizhen Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241 China
| | - Dandan Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241 China
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 250014 China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009 China
| | - Xiangqian Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241 China
| | - Na Ta
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241 China
| | - Xiaochao Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241 China
| | - Yumei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241 China
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 250014 China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241 China
| |
Collapse
|
8
|
Wang L, Li Z, Ciric B, Safavi F, Zhang GX, Rostami A. Selective depletion of CD11c + CD11b + dendritic cells partially abrogates tolerogenic effects of intravenous MOG in murine EAE. Eur J Immunol 2017; 46:2454-2466. [PMID: 27338697 DOI: 10.1002/eji.201546274] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022]
Abstract
Intravenous (i.v.) injection of a soluble myelin antigen can induce tolerance, which effectively ameliorates experimental autoimmune encephalomyelitis (EAE). We have previously shown that i.v. myelin oligodendrocyte glycoprotein (MOG) induces tolerance in EAE and expands a subpopulation of tolerogenic CD11c+ CD11b+ dendritic cells (DCs) with an immature phenotype having low expression of IA and co-stimulatory molecules CD40, CD86, and CD80. Here, we further investigate the role of tolerogenic DCs in i.v. tolerance by injecting clodronate-loaded liposomes, which selectively deplete CD11c+ CD11b+ and immature DCs, but not CD11c+ CD8+ DCs and mature DCs. I.v. MOG-induced suppression of EAE was partially, yet significantly, blocked by CD11c+ CD11b+ DC depletion. While i.v. MOG inhibited IA, CD40, CD80, CD86 expression and induced TGF-β, IL-27, IL-10 production in CD11c+ CD11b+ DCs, these effects were abrogated after injection of clodronate-loaded liposomes. Depletion of CD11c+ CD11b+ DCs also precluded i.v. autoantigen-induced T-cell tolerance, such as decreased production of IL-2, IFN-γ, IL-17 and numbers of IL-2+ , IFN-γ+ , and IL-17+ CD4+ T cells, as well as an increased proportion of CD4+ CD25+ Foxp3+ regulatory T cells and CD4+ IL-10+ Foxp3- Tr1 cells. CD11c+ CD11b+ DCs, through low expression of IA and costimulatory molecules as well as high expression of TGF-β, IL-27, and IL-10, play an important role in i.v. tolerance-induced EAE suppression.
Collapse
Affiliation(s)
- Limei Wang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zichen Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Farinaz Safavi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
9
|
Molecular Mechanisms of Induction of Tolerant and Tolerogenic Intestinal Dendritic Cells in Mice. J Immunol Res 2016; 2016:1958650. [PMID: 26981546 PMCID: PMC4766351 DOI: 10.1155/2016/1958650] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/06/2016] [Accepted: 01/17/2016] [Indexed: 12/31/2022] Open
Abstract
How does the host manage to tolerate its own intestinal microbiota? A simple question leading to complicated answers. In order to maintain balanced immune responses in the intestine, the host immune system must tolerate commensal bacteria in the gut while it has to simultaneously keep the ability to fight pathogens and to clear infections. If this tender equilibrium is disturbed, severe chronic inflammatory reactions can result. Tolerogenic intestinal dendritic cells fulfil a crucial role in balancing immune responses and therefore creating homeostatic conditions and preventing from uncontrolled inflammation. Although several dendritic cell subsets have already been characterized to play a pivotal role in this process, less is known about definite molecular mechanisms of how intestinal dendritic cells are converted into tolerogenic ones. Here we review how gut commensal bacteria interact with intestinal dendritic cells and why this bacteria-host cell interaction is crucial for induction of dendritic cell tolerance in the intestine. Hereby, different commensal bacteria can have distinct effects on the phenotype of intestinal dendritic cells and these effects are mainly mediated by impacting toll-like receptor signalling in dendritic cells.
Collapse
|
10
|
Zhou F, Zhang GX, Rostami A. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4⁺ effector memory T cells. Immunol Res 2016; 64:73-81. [PMID: 26111522 PMCID: PMC4691443 DOI: 10.1007/s12026-015-8676-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, Thomas Jefferson University, 901 Walnut Street, Philadelphia, PA, 19107, USA
- Laboratory of Liver Cancer Immunotherapy, Greenslopes Private Hospital, School of Medicine, University of Queensland, Greenslopes, Brisbane, QLD, 4120, Australia
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, 901 Walnut Street, Philadelphia, PA, 19107, USA.
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, 901 Walnut Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
11
|
Thewissen K, Broux B, Hendriks JJA, Vanhees M, Stinissen P, Slaets H, Hellings N. Tolerogenic Dendritic Cells Generated by In Vitro Treatment With SAHA Are Not Stable In Vivo. Cell Transplant 2015; 25:1207-18. [PMID: 26688298 DOI: 10.3727/096368915x690305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this study is to examine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can generate dendritic cells (DCs) with a stable tolerogenic phenotype to counteract autoimmune responses in an animal model of multiple sclerosis. We investigated if the tolerogenic potency of DCs could be increased by continuous treatment during in vitro differentiation toward DCs compared to standard 24-h in vitro treatment of already terminally differentiated DCs. We show that in vitro treatment with SAHA reduces the generation of new CD11c(+) DCs out of mouse bone marrow. SAHA-generated DCs show reduced antigen-presenting function as evidenced by a reduction in myelin endocytosis, a decreased MHC II expression, and a failure to upregulate costimulatory molecules upon LPS challenge. In addition, SAHA-generated DCs display a reduction in proinflammatory cytokines and molecules involved in apoptosis induction, inflammatory migration, and TLR signaling, and they are less immunostimulatory compared to untreated DCs. We demonstrated that the underlying mechanism involves a diminished STAT1 phosphorylation and was independent of STAT6 activation. Although in vitro results were promising, SAHA-generated DCs were not able to alleviate the development of experimental autoimmune encephalomyelitis in mice. In vitro washout experiments demonstrated that the tolerogenic phenotype of SAHA-treated DCs is reversible. Taken together, while SAHA potently boosts tolerogenic properties in DCs during the differentiation process in vitro, SAHA-generated DCs were unable to reduce autoimmunity in vivo. Our results imply that caution needs to be taken when developing DC-based therapies to induce tolerance in the context of autoimmune disease.
Collapse
Affiliation(s)
- Kristof Thewissen
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | | | | | | | | | | |
Collapse
|
12
|
Re-wiring regulatory cell networks in immunity by galectin-glycan interactions. FEBS Lett 2015; 589:3407-18. [PMID: 26352298 DOI: 10.1016/j.febslet.2015.08.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/01/2023]
Abstract
Programs that control immune cell homeostasis are orchestrated through the coordinated action of a number of regulatory cell populations, including regulatory T cells, regulatory B cells, myeloid-derived suppressor cells, alternatively-activated macrophages and tolerogenic dendritic cells. These regulatory cell populations can prevent harmful inflammation following completion of protective responses and thwart the development of autoimmune pathology. However, they also have a detrimental role in cancer by favoring escape from immune surveillance. One of the hallmarks of regulatory cells is their remarkable plasticity as they can be positively or negatively modulated by a plethora of cytokines, growth factors and co-stimulatory signals that tailor their differentiation, stability and survival. Here we focus on the emerging roles of galectins, a family of highly conserved glycan-binding proteins in regulating the fate and function of regulatory immune cell populations, both of lymphoid and myeloid origins. Given the broad distribution of circulating and tissue-specific galectins, understanding the relevance of lectin-glycan interactions in shaping regulatory cell compartments will contribute to the design of novel therapeutic strategies aimed at modulating their function in a broad range of immunological disorders.
Collapse
|
13
|
Wang AX, Xu Landén N. New insights into T cells and their signature cytokines in atopic dermatitis. IUBMB Life 2015; 67:601-10. [DOI: 10.1002/iub.1405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/23/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Ao-xue Wang
- Department of Dermatology; The Second Hospital of Dalian Medical University; Dalian China
| | - Ning Xu Landén
- Unit of Dermatology and Venereology, Department of Medicine; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
14
|
Duan MM, Xu RM, Yuan CX, Li YY, Liu Q, Cheng GF, Lin JJ, Feng XG. SjHSP70, a recombinant Schistosoma japonicum heat shock protein 70, is immunostimulatory and induces protective immunity against cercarial challenge in mice. Parasitol Res 2015; 114:3415-29. [PMID: 26091761 DOI: 10.1007/s00436-015-4567-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
High levels of protective immunity can be induced in different animals immunized with radiation-attenuated (RA) Schistosoma cercariae or schistosomula. However, the schistosome-derived molecules responsible for the strong protective effect elicited by RA schistosome larvae have not been identified or characterized. The 70-kDa heat shock proteins of schistosomes are considered major immunogens, and may play an important role in stimulating high levels of innate and adaptive immune responses in an RA schistosome vaccine model. Here, we demonstrate the immunobiological functions of Schistosoma japonicum heat shock protein 70 (SjHSP70) by investigating its expression profile in RA-schistosomula-derived cells, evaluating the protection induced by recombinant SjHSP70 (rSjHSP70) against cercarial challenge, and assaying the humoral and cellular immune responses to rSjHSP70 in BALB/c and C57BL/6 mice. The expression of SjHSP70 on the surfaces of cells from RA or normal schistosomula was determined with flow cytometry. Its expression was significantly higher on early RA schistosomula cells than on the cells from normal parasites. The protection afforded both BALB/c and C57BL/6 mice vaccinated with rSjHSP70 alone, rSj22.6 (a membrane-anchoring protein of S. japonicum) alone, or a combination of rSj22.6 and rSjHSP70 without adjuvant was evaluated. rSjHSP70 alone induced the highest protective effect against S. japonicum cercarial challenge, followed by the rSj22.6 plus rSjHSP70 combination and then rSj22.6 alone, in both mouse strains. Like ISA206 adjuvant, rSjHSP70 enhanced the protective efficacy induced by rSj22.6 in the C57BL/6 mouse strain. Antigen-specific IgG1 and IgG2a responses were detected with enzyme-linked immunosorbent assays in mice immunized with rSjHSP70 alone, rSj22.6 alone, or the rSj22.6 plus rSjHSP70 combination. Immunization with rSjHSP70 or the rSj22.6 plus rSjHSP70 combination induced mixed Th1/Th2-type antibody responses in BALB/c mice and a Th2-type antibody response in C57BL/6 mice. The profiles of cytokine production by splenic lymphocytes in both strains of mice immunized with the antigens described above were detected in vitro using a Cytometric Bead Array. The profiles of the proinflammatory cytokines interferon γ, tumor necrosis factor α, interleukin 6 (IL-6), and IL-17A and the regulatory cytokine IL-10 induced by the rSj22.6 plus rSjHSP70 combination were similar to those induced by rSj22.6 emulsified with the ISA206 adjuvant control. Like the ISA206 adjuvant, rSjHSP70 protein enhanced the proinflammatory and Th2-type or regulatory cytokine production induced by the rSj22.6 antigen. These results indicate that SjHSP70 is exposed on the surfaces of cells from RA schistosomula, and that rSjHSP70 protein is a promising protective antigen with a potential adjuvant function. Thus, SjHSP70 protein might play a key role in the protective immunity elicited by the RA schistosome vaccine.
Collapse
Affiliation(s)
- Ming Ming Duan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Murdock BJ, Bender DE, Segal BM, Feldman EL. The dual roles of immunity in ALS: Injury overrides protection. Neurobiol Dis 2015; 77:1-12. [DOI: 10.1016/j.nbd.2015.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
|
16
|
de Andrade Pereira B, Ackermann M, Chaudhary S, Vogel R, Vogt B, Dresch C, Fraefel C. Tolerance of activated pathogenic CD4+ T cells by transcriptional targeting of dendritic cells. Gene Ther 2015; 22:382-90. [PMID: 25739989 DOI: 10.1038/gt.2015.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/02/2014] [Accepted: 01/15/2015] [Indexed: 01/30/2023]
Abstract
We have recently shown that targeted expression of myelin oligodendrocyte glycoprotein (MOG) to dendritic cells with self-inactivating-lentivirus vectors induces antigen-specific tolerance in naive antigen-specific CD4+ T cells and protects mice from experimental autoimmune encephalomyelitis (EAE). In the present study, we demonstrate that this approach also induces tolerance of activated antigen-specific CD4+ T cells and completely protects mice from passive EAE induction. Tolerance induction did not correlate with the depletion of the preactivated antigen-specific CD4+ T cells. However, upon isolation and in vitro re-stimulation at day 6 after adoptive transfer the MOG-specific CD4+ T cells from the non-tolerized mice produced large amounts of inflammatory cytokines, whereas those from tolerized mice did not. This unresponsiveness correlated with the upregulation of regulatory molecules associated with anergy and regulatory T cells (Tregs). The in vivo depletion of Tregs resulted in EAE susceptibility of the tolerized animals, suggesting that these cells have indeed a role in tolerance induction/maintenance.
Collapse
Affiliation(s)
| | - M Ackermann
- Institute of Virology, University of Zürich, Zürich, Switzerland
| | - S Chaudhary
- Institute of Virology, University of Zürich, Zürich, Switzerland
| | - R Vogel
- Institute of Virology, University of Zürich, Zürich, Switzerland
| | - B Vogt
- Institute of Virology, University of Zürich, Zürich, Switzerland
| | - C Dresch
- Institute of Virology, University of Zürich, Zürich, Switzerland
| | - C Fraefel
- Institute of Virology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis. Mediators Inflamm 2015; 2015:513295. [PMID: 25705093 PMCID: PMC4325219 DOI: 10.1155/2015/513295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/01/2015] [Accepted: 01/01/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder in the central nervous system (CNS) characterized by inflammation and demyelination as well as axonal and neuronal degeneration. So far effective therapies to reverse the disease are still lacking; most therapeutic drugs can only ameliorate the symptoms or reduce the frequency of relapse. Dendritic cells (DCs) are professional antigen presenting cells (APCs) that are key players in both mediating immune responses and inducing immune tolerance. Increasing evidence indicates that DCs contribute to the pathogenesis of MS and might provide an avenue for therapeutic intervention. Here, we summarize the immunogenic and tolerogenic roles of DCs in MS and review medicinal drugs that may affect functions of DCs and have been applied in clinic for MS treatment. We also describe potential therapeutic molecules that can target DCs by inducing anti-inflammatory cytokines and inhibiting proinflammatory cytokines in MS.
Collapse
|
18
|
Zhou F, Ciric B, Zhang GX, Rostami A. Immunotherapy using lipopolysaccharide-stimulated bone marrow-derived dendritic cells to treat experimental autoimmune encephalomyelitis. Clin Exp Immunol 2015; 178:447-58. [PMID: 25138204 DOI: 10.1111/cei.12440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2014] [Indexed: 01/09/2023] Open
Abstract
Lipopolysaccharide (LPS) produced by Gram-negative bacteria induces tolerance and suppresses inflammatory responses in vivo; however, the mechanisms are poorly understood. In this study we show that LPS induces apoptosis of bone marrow-derived dendritic cells (DCs) and modulates phenotypes of DCs. LPS treatment up-regulates expression of tolerance-associated molecules such as CD205 and galectin-1, but down-regulates expression of Gr-1 and B220 on CD11c(+) DCs. Moreover, LPS treatment regulates the numbers of CD11c(+) CD8(+) , CD11c(+) CD11b(low) and CD11c(+) CD11b(hi) DCs, which perform different immune functions in vivo. Our data also demonstrated that intravenous transfer of LPS-treated DCs blocks experimental autoimmune encephalomyelitis (EAE) development and down-regulates expression of retinoic acid-related orphan receptor gamma t (ROR-γt), interleukin (IL)-17A, IL-17F, IL-21, IL-22 and interferon (IFN)-γ in myelin oligodendrocyte glycoprotein (MOG)-primed CD4(+) T cells in the peripheral environment. These results suggest that LPS-induced apoptotic DCs may lead to generation of tolerogenic DCs and suppress the activity of MOG-stimulated effector CD4(+) T cells, thus inhibiting the development of EAE in vivo. Our results imply a potential mechanism of LPS-induced tolerance mediated by DCs and the possible use of LPS-induced apoptotic DCs to treat autoimmune diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- F Zhou
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
19
|
Liu C, Chen H, Jia J, Hong T, Wang C. DCs sensitized with mPD-L1-Ig fusion protein improve the effect of heart transplantation in mice by promoting the generation of T-reg cells. Cell Immunol 2014; 290:169-77. [PMID: 24997656 DOI: 10.1016/j.cellimm.2014.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/20/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE To detect the effects of DCs sensitized by mPD-L1-Ig fusion protein in heart transplantation in mice as well as its mechanisms. METHOD The mPD-L1-IgG1 construct was used to build a yeast expression system, and the fusion protein was expressed by secretion after the transfection of the GS115 yeast strain, purified by affinity chromatography and ion exchange chromatography, and assayed by SDS-PAGE and Western blot. The ability of the fusion protein to bind to the acceptor PD-1 was tested by ELISA, and the ability of the fusion protein to inhibit the function of T cells was tested by mixed lymphocyte reaction (MLR). RESULTS We used the new PD-L1-IgG1 fusion protein to sensitize imDCs and maintained the immature state of DCs, so as to induce stable and effective immune tolerance to heart transplantation. After the treatment of DCs by mPD-L1-Ig in vitro, the levels of CD80, CD40 and I-Ab expression on DCs are relatively weaker, the ability of DCs to stimulates the proliferation of allogeneic spleen T cells was significantly decreased (P<0.01), and the levels of Th1 (IL-2, IFN-γ) and Th2 (IL-4, IL-10) secreted by induced allogeneic T cells were significantly decreased (P<0.01). An in vivo experiment also revealed that DCs sensitized by mPD-L1-IgG1 could prolong the survival time of a transplanted heart to 17.8±1.12days, and alleviate the pathological change of the cardiac allografts compared with other three groups. CONCLUSION DCs sensitized by the yeast-expressed mPD-L1-Ig fusion protein are shown to alleviate the cardiac allograft rejection in mice.
Collapse
Affiliation(s)
- Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Hao Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Jianguo Jia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Tao Hong
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 20032, China.
| |
Collapse
|
20
|
Yang J, Li R, Ren Y, Yang Y, Xie R, Fan H. Third-party tolerogenic dendritic cells reduce allo-reactivity in vitro and ameliorate the severity of acute graft-versus-host disease in allo-bone marrow transplantation. Scand J Immunol 2014; 78:486-96. [PMID: 24283771 DOI: 10.1111/sji.12113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023]
Abstract
Tolerogenic dendritic cells (tDCs) potently induce and maintain tolerance based on their distinct characteristics compared with conventional DCs. Recent reports show that donor or host tDCs promote allograft survival in mice. In this study, the efficacy of third-party tDCs in the prevention of acute graft-versus-host disease (aGVHD) was evaluated. In vitro, tDCs derived from the bone marrow (BM) of D1 mice were induced by GM-CSF, IL-10 and TGF-β1. The phenotypes, expression of cytokines and suppression of tDCs were analysed. In vivo, the effects of adoptive transfer of third-party-tDCs were evaluated in an MHC-mismatched aGVHD mouse model. Survival, body weight, GVHD scoring, histopathological specimens and serum cytokines were analysed in tDC-treated mice and untreated controls. Tolerogenic DCs had low expression of MHC and co-stimulatory molecules, expressed high levels of 'immunosuppressive' cytokines and suppressed allo-CD4(+) T cell proliferation. In the B6→D2 mouse model, all aGVHD mice died within 18 days. Fortunately, third-party tDCs transferred at low doses (10(4)) effectively prolonged survival after allo-BMT. Furthermore, in the mice treated with 10(4) tDCs, serum levels of IL-10/TGF-β were significantly higher and the percentage of Foxp3(+) cells continually increased compared with the mice treated with other doses of tDCs. Third-party tDCs play a crucial role in reducing the severity of aGVHD by modulating the secretion of various cytokines and expanding Foxp3(+) regulatory T cells, which suggests the possibility of using third-party tDCs for therapeutic applications. Furthermore, special attention should be paid to the optimal range of tDCs for preventing allograft rejection.
Collapse
Affiliation(s)
- J Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China; Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
21
|
Van Brussel I, Lee WP, Rombouts M, Nuyts AH, Heylen M, De Winter BY, Cools N, Schrijvers DM. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: Can the unattainable dream turn into reality? Autoimmun Rev 2014; 13:138-50. [DOI: 10.1016/j.autrev.2013.09.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 01/10/2023]
|
22
|
Dendritic cells treated with chloroquine modulate experimental autoimmune encephalomyelitis. Immunol Cell Biol 2013; 92:124-32. [PMID: 24217811 DOI: 10.1038/icb.2013.73] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/03/2013] [Accepted: 10/11/2013] [Indexed: 12/22/2022]
Abstract
Chloroquine (CQ), an antimalarial drug, has been shown to modulate the immune system and reduce the severity of experimental autoimmune encephalomyelitis (EAE). The mechanisms of disease suppression are dependent on regulatory T cell induction, although Tregs-independent mechanisms exist. We aimed to evaluate whether CQ is capable to modulate bone marrow-derived dendritic cells (DCs) both phenotypically and functionally as well as whether transfer of CQ-modulated DCs reduces EAE course. Our results show that CQ-treated DCs presented altered ultrastructure morphology and lower expression of molecules involved in antigen presentation. Consequently, T cell proliferation was diminished in coculture experiments. When transferred into EAE mice, DC-CQ was able to reduce the clinical manifestation of the disease through the modulation of the immune response against neuroantigens. The data presented herein indicate that chloroquine-mediated modulation of the immune system is achieved by a direct effect on DCs and that DC-CQ adoptive transfer may be a promising approach for avoiding drug toxicity.
Collapse
|