1
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Xu L, Fan Z, Gao Y, Tian Y, Cao Y, Chen D, Ren F. Enhancing ASPP2 promotes acute liver injury via an inflammatory immunoregulatory mechanism. Front Immunol 2024; 15:1381735. [PMID: 38840923 PMCID: PMC11150554 DOI: 10.3389/fimmu.2024.1381735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Background Acute liver injury (ALI), which is a type of inflammation-mediated hepatocellular injury, is a clinical syndrome that results from hepatocellular apoptosis and hemorrhagic necrosis. Apoptosis stimulating protein of p53-2 (ASPP2) is a proapoptotic member of the p53 binding protein family. However, the role of ASPP2 in the pathogenesis of ALI and its regulatory mechanisms remain unclear. Methods The expression of ASPP2 were compared between liver biopsies derived from patients with CHB, patients with ALI, and normal controls. Acute liver injury was modelled in mice by administration of D-GalN/LPS. Liver injury was demonstrated by serum transaminases and histological assessment of liver sections. ASPP2-knockdown mice (ASPP2+/-) were used to determine its role in acute liver injury. Mouse bone marrow macrophages (BMMs) were isolated from wildtype and ASPP2+/- mice and stimulated with LPS, and the supernatant was collected to incubate with the primary hepatocytes. Quantitative real-time PCR and western blot were used to analyze the expression level of target. Results The expression of ASPP2 was significantly upregulated in the liver tissue of ALI patients and acute liver injury mice. ASPP2+/- mice significantly relieved liver injury through reducing liver inflammation and decreasing hepatocyte apoptosis. Moreover, the conditioned medium (CM) of ASPP2+/- bone marrow-derived macrophages (BMMs) protected hepatocytes against apoptosis. Mechanistically, we revealed that ASPP2 deficiency in BMMs specifically upregulated IL-6 through autophagy activation, which decreased the level of TNF-α to reduce hepatocytes apoptosis. Furthermore, up-regulation of ASPP2 sensitizes hepatocytes to TNF-α-induced apoptosis. Conclusion Our novel findings show the critical role of ASPP2 in inflammatory immunoregulatory mechanism of ALI and provide a rationale to target ASPP2 as a refined therapeutic strategy to ameliorate acute liver injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dexi Chen
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Cai J, Zhang X, Chen P, Li Y, Liu S, Liu Q, Zhang H, Wu Z, Song K, Liu J, Shan B, Liu Y. The ER stress sensor inositol-requiring enzyme 1α in Kupffer cells promotes hepatic ischemia-reperfusion injury. J Biol Chem 2021; 298:101532. [PMID: 34953853 PMCID: PMC8760522 DOI: 10.1016/j.jbc.2021.101532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an inflammation-mediated process arising from ischemia/reperfusion-elicited stress in multiple cell types, causing liver damage during surgical procedures and often resulting in liver failure. Endoplasmic reticulum (ER) stress triggers the activation of the unfolded protein response (UPR) and is implicated in tissue injuries, including hepatic I/R injury. However, the cellular mechanism that links the UPR signaling to local inflammatory responses during hepatic I/R injury remains largely obscure. Here, we report that IRE1α, a critical ER-resident transmembrane signal transducer of the UPR, plays an important role in promoting Kupffer-cell-mediated liver inflammation and hepatic I/R injury. Utilizing a mouse model in which IRE1α is specifically ablated in myeloid cells, we found that abrogation of IRE1α markedly attenuated necrosis and cell death in the liver, accompanied by reduced neutrophil infiltration and liver inflammation following hepatic I/R injury. Mechanistic investigations in mice as well as in primary Kupffer cells revealed that loss of IRE1α in Kupffer cells not only blunted the activation of the NLRP3 inflammasome and IL-1β production, but also suppressed the expression of the inducible nitric oxide synthase (iNos) and proinflammatory cytokines. Moreover, pharmacological inhibition of IRE1α′s RNase activity was able to attenuate inflammasome activation and iNos expression in Kupffer cells, leading to alleviation of hepatic I/R injury. Collectively, these results demonstrate that Kupffer cell IRE1α mediates local inflammatory damage during hepatic I/R injury. Our findings suggest that IRE1α RNase activity may serve as a promising target for therapeutic treatment of ischemia/reperfusion-associated liver inflammation and dysfunction.
Collapse
Affiliation(s)
- Jie Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Xiaoge Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Peng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Yang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Songzi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Qian Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Hanyong Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuyin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Hao J, Sun W, Xu H. Pathogenesis of Concanavalin A induced autoimmune hepatitis in mice. Int Immunopharmacol 2021; 102:108411. [PMID: 34891001 DOI: 10.1016/j.intimp.2021.108411] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
Autoimmune hepatitis (AIH) is an autoimmune disease characterized by liver parenchymal destruction and chronic fibrosis. Its exact etiology and pathogenesis are not yet fully understood.(Please connect with the following, do not leave a line) Concanavalin A (Con A)-induced mice hepatitis model is a liver injury mediated by T cell and macrophage activation, and its pathogenesis and pathological changes are similar to human AIH. The establishment of this model has greatly promoted the research progress of AIH pathogenesis. However, the exact mechanism of Con A induced liver injury in mice, and its possible defects or deficiencies, has not yet been described in a clear and detailed manner. Therefore, the model has some limitations when applied to the study of the pathogenesis and treatment mechanism of AIH. This article reveals the pathogenesis of Con A induced liver injury in mice from the aspects of immune disorder and coagulation mechanism, expounds the significance of non-coding RNA in this model, summarizes the signal transduction pathways involved in this model, and summarizes the advantages and disadvantages of the model, which provides a theoretical basis and research target for the application of Con A induced liver injury model in AIH in the future.
Collapse
Affiliation(s)
- Jianheng Hao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China.
| | - Weili Sun
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Huichao Xu
- Acupuncture and Massage Laboratory, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
5
|
Hu C, Zhao L, Zhang F, Li L. Melatonin and its protective role in attenuating warm or cold hepatic ischaemia/reperfusion injury. Cell Prolif 2021; 54:e13021. [PMID: 33751704 PMCID: PMC8016647 DOI: 10.1111/cpr.13021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 12/26/2022] Open
Abstract
Although the liver is the only organ with regenerative capacity, various injury factors induce irreversible liver dysfunction and end‐stage liver disease. Liver resection and liver transplantation (LT) are effective treatments for individuals with liver failure, liver cirrhosis and liver cancers. The remnant or transplanted liver tissues will undergo hepatic ischaemia/reperfusion (IR), which leads to oxidative stress, inflammation, immune injury and liver damage. Moreover, systemic ischaemia induced by trauma, stroke, myocardial ischaemia, haemorrhagic shock and other injury factors also induces liver ischaemia/reperfusion injury (IRI) in individuals. Hepatic IRI can be divided into warm IRI, which is induced by liver surgery and systemic ischaemia, and cold IRI, which is induced by LT. Multiple studies have shown that melatonin (MT) acts as an endogenous free radical scavenger with antioxidant capacity and is also able to attenuate hepatic IRI via its anti‐inflammatory and antiapoptotic capacities. In this review, we discuss the potential mechanisms and current strategies of MT administration in liver surgery for protecting against warm or cold hepatic IRI. We highlight strategies to improve the efficacy and safety of MT for attenuating hepatic IRI in different conditions. After the potential mechanisms underlying the interactions between MT and other important cellular processes during hepatic IR are clarified, more opportunities will be available to use MT to treat liver diseases in the future.
Collapse
Affiliation(s)
- Chenxia Hu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingfei Zhao
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Yang Y, Ying G, Wu F, Chen Z. sTim-3 alleviates liver injury via regulation of the immunity microenvironment and autophagy. Cell Death Discov 2020; 6:62. [PMID: 32714569 PMCID: PMC7376253 DOI: 10.1038/s41420-020-00299-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Liver failure (LF) is a monocyte/macrophage-mediated liver injury that has been associated with inflammatory mediators. However, the mechanism through which monocytes/macrophages regulate LF has not been fully elucidated. In this study, we investigated the role of soluble T-cell immunoglobulin domain and mucin domain-containing molecule-3 (sTim-3) in inhibition of release of inflammatory mediators. We further assess this role in protection against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver failure (ALF), via monocyte/macrophage regulation and autophagy induction in mice. Our findings indicate significantly higher plasma sTim-3 in acute-on-chronic liver failure (ACLF) group relative to other groups, with this trend associated with disease progression. Furthermore, infiltrated recombinant sTim-3 inhibited release of various inflammatory mediators, including cytokines and human high-mobility group box-1 (HMGB1), potentially via autophagy induction. Furthermore, H&E staining and the low levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in ALF mice, supported that recombinant sTim-3 effectively alleviated liver injury. Moreover, sTim-3 induced changes in monocyte/macrophage population in mice's liver or blood, which consequently caused a reduction in proinflammatory CD11bhiF4/80lo monocyte-derived macrophages and Ly-6C(+)CD11b(+) monocytes. Conversely, sTim-3 increased autophagy levels of hepatic CD11b(+) monocyte-derived macrophages and decreased apoptosis rate of CD11b (+) monocytes in the blood. Collectively, our findings demonstrated that sTim-3 alleviated inflammatory response and liver injury by promoting autophagy and regulating monocyte/macrophage function. This indicates its potential for future development of novel therapeutic strategies against LF.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Gaoxiang Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Fengtian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| |
Collapse
|
7
|
Li T, Liu B, Guan H, Mao W, Wang L, Zhang C, Hai L, Liu K, Cao J. PGE2 increases inflammatory damage in Escherichia coli-infected bovine endometrial tissue in vitro via the EP4-PKA signaling pathway. Biol Reprod 2020; 100:175-186. [PMID: 30010723 DOI: 10.1093/biolre/ioy162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/13/2018] [Indexed: 11/15/2022] Open
Abstract
Endometritis is the most common bovine uterine disease following parturition. The role of prostaglandin E2 (PGE2) in the regulation of endometrial inflammation and repair is well understood. Excess PGE2 is also generated in multiple inflammatory diseases, including endometritis. However, it remains unclear whether PGE2 is associated with pathogen-induced inflammatory damage to the endometrium. To clarify the role of PGE2 in pathogen-induced inflammatory damage, this study evaluated the production of PGE2, inflammatory factors, and damage-associated molecular patterns (DAMPs) in cultured Escherichia coli-infected bovine endometrial tissue. PGE2 production was significantly higher in E. coli-infected tissue, and in E. coli-infected tissue treated with 15-prostaglandin dehydrogenase (15-PGDH) inhibitors, as compared to uninfected tissue. Phospholipase A2 (PLA2), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1) were also upregulated in E. coli-infected tissue, while concentrations of arachidonic acid (AA), leukotrienes, DAMPs, and other proinflammatory factors increased. The accumulation of PGE2 clearly damaged the cultured tissue. Treatment with the COX-2, mPGES-1, EP4, and protein kinase A (PKA) inhibitors decreased the production of PGE2, inflammatory factors, and DAMPs, simultaneously alleviating the E. coli-induced endometrial tissue damage. Therefore, the PGE2 that was generated by COX-2 and mPGES-1 accumulated, and this pathogenic PGE2 increased inflammatory damage by upregulating inflammatory factors and DAMPs in E. coli-infected bovine endometrial tissue. This upregulation of inflammatory factors and DAMPs might be regulated by the EP4-PKA signaling pathway.
Collapse
Affiliation(s)
- Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Hong Guan
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Lingrui Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Chao Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Lili Hai
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| |
Collapse
|
8
|
Protective Role of mTOR in Liver Ischemia/Reperfusion Injury: Involvement of Inflammation and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7861290. [PMID: 31827701 PMCID: PMC6885218 DOI: 10.1155/2019/7861290] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/24/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Liver ischemia/reperfusion (IR) injury is a common phenomenon after liver resection and transplantation, which often results in liver graft dysfunction such as delayed graft function and primary nonfunction. The mammalian target of rapamycin (mTOR) is an evolutionarily highly conserved serine/threonine protein kinase, which coordinates cell growth and metabolism through sensing environmental inputs under physiological or pathological conditions, involved in the pathophysiological process of IR injury. In this review, we mainly present current evidence of the beneficial role of mTOR in modulating inflammation and autophagy under liver IR to provide some evidence for the potential therapies for liver IR injury.
Collapse
|
9
|
Zhao J, Tuersunmaimaiti M, Ji T, Liu T, Xu F. Hepatoprotective activity of isostrictiniin from Nymphaea candida on Con A-induced acute liver injury in mice. Nat Prod Res 2019; 35:1662-1666. [PMID: 31198052 DOI: 10.1080/14786419.2019.1622105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study is to investigate hepatoprotective activity of isostrictiniin from Nymphaea candida. Hepatic injury in mice was induced immunologically by caudal vein injecting Con A (20 mg/kg) on tenth day of isostrictiniin (25, 50, or 100 mg/kg) intragastric administration. The results demonstrated that pretreatment with isostrictiniin significantly and dose-dependently prevented increase of serum AST and ALT induced by Con A (P < 0.05). Isostrictiniin significantly reduced the levels of MDA and NO in the liver tissue and restored activities of antioxidant enzymes SOD and GSH compared with model group (P < 0.05). Furthermore, the increase of pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-18 levels were significantly suppressed by isostrictiniin pretreatment compared with model group (P < 0.05). Histopathological analysis showed that isostrictiniin attenuated the hepatocellular necrosis and reduction of inflammatory cells infiltration. The results indicates that preventive effect of isostrictiniin on acute liver injury may be attributed to its antioxidative and immunomodulatory activities.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi, China
| | | | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- Department of Toxicology, School of Public Health, Xinjiang Medical Unversity, Urumqi, China
| | - Fang Xu
- Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi, China
| |
Collapse
|
10
|
Wang YM, Li K, Dou XG, Bai H, Zhao XP, Ma X, Li LJ, Chen ZS, Huang YC. Treatment of AECHB and Severe Hepatitis (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498915 DOI: 10.1007/978-94-024-1603-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the general treatment and immune principles and internal management for AECHB and HBV ACLF, including ICU monitoring, general supportive medications/nutrition/nursing, immune therapy, artificial liver supportive systems, hepatocyte/stem cell, and liver transplant, management for special populations, frequently clinical complications and the utilization of Chinese traditional medicines.Early clinical indicators of severe hepatitis B include acratia, gastrointestinal symptoms, a daily increase in serum bilirubin >1 mg/dL, toxic intestinal paralysis, bleeding tendency and mild mind anomaly or character change, and the presence of other diseases inducing severe hepatitis. Laboratory indicators include T-Bil, PTA, cholinesterase, pre-albumin and albumin. The roles of immune indicators (such as IL-6, TNF-α, and fgl2), gene polymorphisms, HBV genotypes, and gene mutations as early clinical indicators. Intensive Care Unit monitor patients with severe hepatitis include intracranial pressure, infection, blood dynamics, respiratory function, renal function, blood coagulation function, nutritional status and blood purification process. Nursing care should not only include routine care, but psychological and special care (complications). Nutrition support and nursing care should be maintained throughout treatment for severe hepatitis. Common methods of evaluating nutritional status include direct human body measurement, creatinine height index (CHI) and subject global assessment of nutrition (SGA). Malnourished patients should receive enteral or parenteral nutrition support. Immune therapies for severe hepatitis include promoting hepatocyte regeneration (e.g. with glucagon, hepatocyte growth factor and prostaglandin E1), glucocorticoid suppressive therapy, and targeting molecular blocking. Corticosteroid treatment should be early and sufficient, and adverse drug reactions monitored. Treatments currently being investigated are those targeting Toll-like receptors, NK cell/NK cell receptors, macrophage/immune coagulation system, CTLA-4/PD-1 and stem cell transplantation. In addition to conventional drugs and radioiodine, corticosteroids and artificial liver treatment can also be considered for severe hepatitis patients with hyperthyreosis. Patients with gestational severe hepatitis require preventive therapy for fetal growth restriction, and it is necessary to choose the timing and method of fetal delivery. For patients with both diabetes and severe hepatitis, insulin is preferred to oral antidiabetic agents to control blood glucose concentration. Liver toxicity of corticosteroids and immune suppressors should be monitored during treatment for severe hepatitis in patients with connective tissue diseases including SLE, RA and sicca syndrome. Patient with connective tissue diseases should preferably be started after the antiviral treatment with nucleos(t)ide analogues. An artificial liver can improve patients’ liver function; remove endotoxins, blood ammonia and other toxins; correct amino acid metabolism and coagulation disorders; and reverse internal environment imbalances. Non-bioartificial livers are suitable for patients with early and middle stage severe hepatitis; for late-stage patients waiting for liver transplantation; and for transplanted patients with rejection reaction or transplant failure. The type of artificial liver should be determined by each patient’s condition and previous treatment purpose, and patients should be closely monitored for adverse reactions and complications. Bio- and hybrid artificial livers are still under development. MELD score is the international standard for choosing liver transplantation. Surgical methods mainly include the in situ classic type and the piggyback type; transplantation includes no liver prophase, no liver phase or new liver phase. Preoperative preparation, management of intraoperative and postoperative complications and postoperative long-term treatment are keys to success. Severe hepatitis belongs to the categories of “acute jaundice”, “scourge jaundice”, and “hot liver” in traditional Chinese medicine. Treatment methods include Chinese traditional medicines, acupuncture and acupoint injection, external application of drugs, umbilical compress therapy, drip, blow nose therapy, earpins, and clysis. Dietary care is also an important part of traditional Chinese medicine treatment.
Collapse
|
11
|
Ding Z, Du D, Yang Y, Yang M, Miao Y, Zou Z, Zhang X, Li Z, Zhang X, Zhang L, Wang X, Zhao Y, Jiang J, Jiang F, Zhou P. Short-term use of MyD88 inhibitor TJ-M2010-5 prevents d-galactosamine/lipopolysaccharide-induced acute liver injury in mice. Int Immunopharmacol 2018; 67:356-365. [PMID: 30583234 DOI: 10.1016/j.intimp.2018.11.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/14/2023]
Abstract
Excessive activation of the TLR/MyD88 signaling pathway contributes to several inflammation-related diseases. Previously, our laboratory synthesized a novel thiazaol-aminoramification MyD88 inhibitor named TJ-M2010-5. In this study, we interrogated the role of MyD88, as well as the protective effect of TJ-M2010-5, in a d-gal/LPS-induced acute liver injury mouse model. In order to induce acute liver injury, BALB/c mice received intraperitoneal injection of d-gal and LPS at a dose of 800 mg/kg and 80 μg/kg body weight, respectively. All mice died within 48 h of injection without intervention. However, pre-treatment with TJ-M2010-5 as well as knock-out (KO) of the MyD88 gene significantly improved mouse survival rate to 73.3% and 80% at 48 h, respectively, and both treatments protected liver function. These pathological results demonstrated that TJ-M2010-5 and MyD88 KO reduced the infiltration of inflammatory cells and protected hepatocytes against apoptosis. Furthermore, TJ-M2010-5 remarkably inhibited NF-κB and MAPK signaling in vivo. LPS-induced activation of macrophages as well as pro-inflammatory factors were also shown to be decreased after TJ-M2010-5 treatment in vivo and in vitro. Taken together, these results suggested that blockage of the TLR/MyD88 signaling pathway by TJ-M2010-5 has an important role in the prevention of inflammation-related acute liver injury.
Collapse
Affiliation(s)
- Zuochuan Ding
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Min Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Yan Miao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xue Zhang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430030, China
| | - Limin Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xinqiang Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Jipin Jiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Fengchao Jiang
- Academy of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
12
|
Cui Q, Pan Y, Zhang W, Zhang Y, Ren S, Wang D, Wang Z, Liu X, Xiao W. Metabolites of Dietary Acteoside: Profiles, Isolation, Identification, and Hepatoprotective Capacities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2660-2668. [PMID: 29478321 DOI: 10.1021/acs.jafc.7b04650] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, cistanche tea has been increasingly used as a major herbal supplement in functional drinks, and it has attracted a growing number of consumers because of its excellent tonic effects and medicinal properties. Acteoside (ACT), which is the principal bioactive component of Chinese cistanche tea, possesses various pharmacological effects. This study profiled, isolated, identified, and investigated the hepatoprotective capacities of metabolites in rat urine after the administration of ACT. Eleven metabolites, including one new compound (M8), were obtained and identified by nuclear magnetic resonance (NMR) spectroscopy for the first time. Compared with native ACT, ACT metabolites such as hydroxytyrosol (HT), 3-hydroxyphenylpropionic acid (3-HPP), and caffeic acid (CA) exhibited higher hepatoprotective activities by regulating oxidative stress, lipid peroxidation, and inflammatory responses in a GalN/LPS-induced-acute-hepatic-injury mouse model. The HT treatment markedly reduced the levels of TNF-α to 280 ± 14.3 ng/L compared with the model group (429 ± 9.20 ng/L, p < 0.01). The results obtained indicated that cistanche tea could be developed as a functional drink for the prevention of hepatic injuries and that ACT metabolites could be responsible for the potent hepatoprotective activity as well as the other therapeutic effects.
Collapse
Affiliation(s)
- Qingling Cui
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Yingni Pan
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
- Jiangsu Kanion Pharmaceutical Company Ltd. , Lianyungang 222001 , China
| | - Wei Zhang
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Yanan Zhang
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Shumeng Ren
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Dongmei Wang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Company Ltd. , Lianyungang 222001 , China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process , Lianyungang 222001 , China
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Company Ltd. , Lianyungang 222001 , China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process , Lianyungang 222001 , China
| |
Collapse
|
13
|
Bystrom P, Foley N, Toledo-Pereyra L, Quesnelle K. Ischemic preconditioning modulates ROS to confer protection in liver ischemia and reperfusion. EXCLI JOURNAL 2017; 16:483-496. [PMID: 28694752 PMCID: PMC5491905 DOI: 10.17179/excli2017-166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
Ischemia reperfusion (IR) injury is a significant cause of morbidity and mortality in liver transplantation. When oxygen is reintroduced to the liver graft it initiates a cascade of molecular reactions leading to the release of reactive oxygen species (ROS) and pro-inflammatory cytokines. These soluble mediators propagate a sterile immune response to cause significant tissue damage. Ischemic preconditioning (IPC) is one method that reduces hepatocellular injury by altering the immune response and inhibiting the production of ROS. Studies quantifying the effects of IPC in humans have demonstrated an improved liver enzyme panel in patients receiving grafts pretreated with IPC as compared to patients receiving the standard of care. In our review, we explore current literature in the field in order to describe the mechanism through which IPC regulates the production of ROS and improves IR injury.
Collapse
Affiliation(s)
- Phillip Bystrom
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Biomedical Sciences
| | - Nicole Foley
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Biomedical Sciences
| | - Luis Toledo-Pereyra
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Surgery
| | - Kelly Quesnelle
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Biomedical Sciences
| |
Collapse
|
14
|
Bao S, Zhao Q, Zheng J, Li N, Huang C, Chen M, Cheng Q, Zhu M, Yu K, Liu C, Shi G. Interleukin-23 mediates the pathogenesis of LPS/GalN-induced liver injury in mice. Int Immunopharmacol 2017; 46:97-104. [PMID: 28282579 DOI: 10.1016/j.intimp.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Interleukin-23 (IL-23) is required for T helper 17 (Th17) cell responses and IL-17 production in hepatitis B virus infection. A previous study showed that the IL-23/IL-17 axis aggravates immune injury in patients with chronic hepatitis B virus infection. However, the role of IL-23 in acute liver injury remains unclear. OBJECTIVE The purpose of this study was to determine the role of the inflammatory cytokine IL-23 in lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute liver injury in mice. METHODS Serum IL-23 from patients with chronic hepatitis B virus (CHB), acute-on-chronic liver failure (ACLF) and healthy individuals who served as healthy controls (HCs) was measured by ELISA. An IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody was administered intravenously at the time of challenge with LPS (10μg/kg) and GalN (400mg/kg) in C57BL/6 mice. Hepatic pathology and the expression of Th17-related cytokines, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and the stabilization factor Csf3 were assessed in liver tissue. RESULTS Serum IL-23 was significantly upregulated in ACLF patients compared with CHB patients and HCs (P<0.05 for both). Serum IL-23 was significantly upregulated in the non-survival group compared with the survival group of ACLF patients, which was consistent with LPS/GalN-induced acute hepatic injury in mice (P<0.05 for both). Moreover, after treatment, serum IL-23 was downregulated in the survival group of ACLF patients (P<0.001). Compared with LPS/GalN mice, mice treated with either an IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody showed less severe liver tissue histopathology and significant reductions in the expression of Th17-related inflammatory cytokine, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and stabilization factors Csf3 within the liver tissue compared with LPS/GalN mice (P<0.05 for all). CONCLUSION High serum IL-23 was associated with mortality in ACLF patients and LPS/GalN-induced acute liver injury in mice. IL-23 neutralizing antibodies attenuated liver injury by reducing the expression of Th17-related inflammatory cytokines, neutrophil chemoattractants and stabilization factors within the liver tissue, which indicated that IL-23 likely functions upstream of Th17-related cytokine and chemokine expression to recruit inflammatory cells into the liver.
Collapse
Affiliation(s)
- Suxia Bao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiang Zhao
- Institute of Liver Diseases, Dawn Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200040, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ning Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingquan Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Cheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chenghai Liu
- Institute of Liver Diseases, Dawn Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200040, China
| | - Guangfeng Shi
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
15
|
Lea JD, Clarke JI, McGuire N, Antoine DJ. Redox-Dependent HMGB1 Isoforms as Pivotal Co-Ordinators of Drug-Induced Liver Injury: Mechanistic Biomarkers and Therapeutic Targets. Antioxid Redox Signal 2016; 24:652-65. [PMID: 26481429 DOI: 10.1089/ars.2015.6406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE High-mobility group box 1 (HMGB1) is a critical protein in the coordination of the inflammatory response in drug-induced liver injury (DILI). HMGB1 is released from necrotic hepatocytes and activated immune cells. The extracellular function of HMGB1 is dependent upon redox modification of cysteine residues that control chemoattractant and cytokine-inducing properties. Existing biomarkers of DILI such as alanine aminotransferase (ALT) have limitations such as lack of sensitivity and tissue specificity that can adversely affect clinical intervention. RECENT ADVANCES HMGB1 isoforms have been shown to be more sensitive biomarkers than ALT for predicting DILI development and the requirement for liver transplant following acetaminophen (APAP) overdose. Hepatocyte-specific conditional knockout of HMGB1 has demonstrated the pivotal role of HMGB1 in DILI and liver disease. Tandem mass spectrometry (MS/MS) enables the characterization and quantification of different mechanism-dependent post-translationally modified isoforms of HMGB1. CRITICAL ISSUES HMGB1 shows great promise as a biomarker of DILI. However, current diagnostic assays are either too time-consuming to be clinically applicable (MS/MS) or are unable to distinguish between different redox and acetyl isoforms of HMGB1 (ELISA). Additionally, HMGB1 is not liver specific, so while it outperforms ALT (also not liver specific) as a biomarker for the prediction of DILI development, it should be used in a biomarker panel along with liver-specific markers such as miR-122. FUTURE DIRECTIONS A point-of-care test for HMGB1 and the development of redox and acetyl isoform-targeting antibodies will advance clinical utility. Work is ongoing to validate baseline levels of circulating HMGB1 in healthy volunteers.
Collapse
Affiliation(s)
- Jonathan D Lea
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Joanna I Clarke
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Niamh McGuire
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| |
Collapse
|
16
|
Du Z, Zhou Y, Lu X, Li L, Lu C, Li L, Li B, Bu H, Yang J, Shi Y. Octreotide prevents liver failure through upregulating 5'-methylthioadenosine in extended hepatectomized rats. Liver Int 2016; 36:212-22. [PMID: 25944273 DOI: 10.1111/liv.12863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/01/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Insufficient liver regeneration and hepatocyte injury caused by excessive portal perfusion are considered to be responsible for post-hepatectomy liver failure (PLF) or small-for-size syndrome in living-donor liver transplantation. Somatostatin can decrease portal vein pressure (PVP) but simultaneously inhibits liver regeneration. This interesting paradox motivated us to investigate the outcome of PLF in response to somatostatin treatment. METHODS Rats receiving extended partial hepatectomy (90% PH) were treated with octreotide, a somatostatin analogue, or placebo. Animal survival, serum parameters and hepatic histology were evaluated. Metabolomic analysis was performed to investigate the effect of octreotide on hepatocyte metabolism. RESULTS Despite significantly inhibiting early regeneration, octreotide application noticeably improved the hepatic histology, liver function and survival after PH but did not decrease the PVP level. Metabolomic analysis exhibited that octreotide profoundly and exclusively altered the levels of five metabolites that participate in or closely associate with the methionine cycle, a biochemical reaction that uniquely produces S-adenosylmethionine (SAMe), an active methyl residual donor for methyltransferase reactions. Among these metabolites, 5'-methylthioadenosine (MTA), a derivate of SAMe, increased three-fold and was found independently improve the hepatic histology and reduce inflammatory cytokines in hepatectomized rats. CONCLUSIONS Octreotide exclusively regulates the methionine cycle reaction and augments the MTA level in hepatocytes. MTA prominently protects hepatocytes against shear stress injury and reduces the secondary inflammation, thereby protecting rats from PLF.
Collapse
Affiliation(s)
- Zhenggui Du
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Thyroid and Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhou
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xufeng Lu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Changli Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayin Yang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Li Y, Li Q, Chen H, Wang T, Liu L, Wang G, Xie K, Yu Y. Hydrogen Gas Alleviates the Intestinal Injury Caused by Severe Sepsis in Mice by Increasing the Expression of Heme Oxygenase-1. Shock 2015; 44:90-8. [DOI: 10.1097/shk.0000000000000382] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
The sterile inflammation in the exacerbation of HBV-associated liver injury. Mediators Inflamm 2015; 2015:508681. [PMID: 25892853 PMCID: PMC4393905 DOI: 10.1155/2015/508681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Exacerbation of hepatitis B virus-associated liver injury is characterized by abnormal immune response which not only mobilizes specific antiviral effects but also poses a potentially lethal nonspecific sterile inflammation to the host. How nonspecific sterile inflammation is triggered after the preexisting injury caused by specific immune injury remains elusive. In the setting of sterile inflammation, endogenous damage-associated molecular patterns are released by stressed and dying hepatocytes, which alarm the immune system through their potential pattern recognition receptors and related signaling pathways, orchestrate the influx of diverse cytokines, and ultimately amplify liver destruction. This review highlights current knowledge about the sterile hepatic inflammation in the exacerbation of chronic hepatitis B.
Collapse
|
19
|
Li Y, Xie K, Chen H, Wang G, Yu Y. Hydrogen gas inhibits high-mobility group box 1 release in septic mice by upregulation of heme oxygenase 1. J Surg Res 2015; 196:136-48. [PMID: 25818978 DOI: 10.1016/j.jss.2015.02.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sepsis is a potentially fatal whole-body inflammation caused by severe infection. Hydrogen gas (H2) is effective for treating sepsis. In this study, we hypothesized that the protective function of H2 in mice with septic lung injury occurred through the activation of heme oxygenase 1 (HO-1) and its upstream regulator nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). MATERIALS AND METHODS Male institute of cancer research mice were subjected to sepsis by cecal ligation and puncture (CLP) with the presence or absence of H2. Beginning at 1 and 6 h after CLP or sham operation, respectively, 2% H2 was inhaled for 1 h. We intraperitoneally injected the HO-1 inhibitor zinc protoporphyrin IX (40 mg/kg) 1 h before CLP. To assess the severity of septic lung injury, we observed the 7-d survival rate, wet/dry weight ratio of lung, lung histopathologic score, oxygenation index, and so forth. Serum and homogenates from the lung, liver, and kidney were acquired for measuring the levels of high-mobility group box 1 (HMGB1) at 6, 12, and 24 h after CLP or sham operation. Furthermore, the protein and messenger RNA expression of Nrf2, HO-1, and HMGB1 was measured at 6, 12, and 24 h. RESULTS Septic mice had a lower survival rate and more severe lung injury compared with the sham group. However, therapy with H2 increased the survival rate and alleviated the severity of lung injury, reduced the HMGB1 level, and increased the HO-1 and Nrf2 levels in septic mice. Moreover, the HO-1 inhibitor zinc protoporphyrin IX significantly eliminated the protective effect of H2 on septic lung injury. CONCLUSIONS H2 plays a significant role in regulating the release of the inflammatory cytokine HMGB1 in septic mice, which is partially mediated through the activation of HO-1 as a downstream molecule of Nrf2.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China.
| | - Hongguang Chen
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Guolin Wang
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China.
| |
Collapse
|
20
|
Molecular responses to ischemia and reperfusion in the liver. Arch Toxicol 2015; 89:651-7. [PMID: 25566829 DOI: 10.1007/s00204-014-1437-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 01/03/2023]
Abstract
Ischemia/reperfusion (IR) injury occurs when oxygen is rapidly reintroduced into ischemic tissue, resulting in cell death and necrotic tissue damage. This is a major concern during liver transplantation procedures since there is an inevitable interruption and subsequent restoration of circulation. IR injury in liver tissue is initiated through reactive oxygen species (ROS), which are generated by hepatocytes during IR insult. Although these ROS are thought to play a protective roll since they are known to activate several pathways involved in the hypoxic response, they also trigger a localized sterile immune response that results in the recruitment of Kupffer cells and neutrophils to the site of IR insult. These immune cells generate larger quantities of ROS that trigger apoptosis and oncotic necrosis in liver tissue. In this review, we will summarize what is currently known about the response of liver tissue to IR insult at the molecular level.
Collapse
|
21
|
Preparation and optimization of ophiopogon polysaccharide liposome and its activity on Kupffer cells. Int J Pharm 2014; 477:421-30. [DOI: 10.1016/j.ijpharm.2014.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/17/2014] [Accepted: 10/26/2014] [Indexed: 01/22/2023]
|
22
|
Possamai LA, Thursz MR, Wendon JA, Antoniades CG. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure. J Hepatol 2014; 61:439-45. [PMID: 24703954 DOI: 10.1016/j.jhep.2014.03.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
Acute liver failure (ALF) is a condition with a high mortality and morbidity for which new treatments are desperately required. We contend that although the initial event in ALF is liver cell death, the clinical syndrome of ALF and its complications including multi-organ dysfunction and sepsis, are largely generated by the immune response to liver injury. Hepatic macrophages fulfil a diversity of roles in ALF, from pro-inflammatory to pro-resolution. Their inherent plasticity means the same macrophages may have a variety of functions depending on the local tissue environment at different stages of disease. A better understanding of the mechanisms that regulate macrophage plasticity during ALF will be an essential step towards realising the potential of immune-modulating therapies that re-orientate macrophages to promote the desirable functions of attenuating liver injury and promoting liver repair/regenerative responses. The key dynamics: temporal (early vs. late phase), regional (hepatic vs. systemic), and activation (pro-inflammatory vs. pro-resolution) are discussed and the potential for novel ALF therapies that modulate monocyte/macrophage function are described.
Collapse
Affiliation(s)
- Lucia A Possamai
- Department of Hepatology, St Mary's Campus, Imperial College London, London, UK
| | - Mark R Thursz
- Department of Hepatology, St Mary's Campus, Imperial College London, London, UK
| | - Julia A Wendon
- Liver Intensive Care Unit, Institute of Liver Sciences, King's College London, London, UK
| | - Charalambos Gustav Antoniades
- Department of Hepatology, St Mary's Campus, Imperial College London, London, UK; Liver Intensive Care Unit, Institute of Liver Sciences, King's College London, London, UK.
| |
Collapse
|
23
|
Protective effects of hesperidin on concanavalin A-induced hepatic injury in mice. Int Immunopharmacol 2014; 21:406-11. [PMID: 24867793 DOI: 10.1016/j.intimp.2014.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/08/2023]
Abstract
Hesperidin (HDN) is a citrus bioflavonoid, which widely exists in many plants. Previous researches have proved that HDN has several functions such as anti-oxidant, anti-tumor, anti-inflammatory, immune regulation and so on. In the present study, we explored the protective effects of HDN on concanavalin A (Con A)-induced hepatic injury. Acute hepatic injury model was established successfully by intravenous administration of Con A (15 mg/kg) in male C57BL/6 mice, and HDN was pretreated for 10 days before Con A challenge. It was found that the hepatic injury was notably improved in HDN pretreated mice. Furthermore, hepatic oxidative stress and the production of proinflammatory cytokines including TNF-α and IFN-γ were decreased by HDN pretreatment. More importantly, compared with Con A-treated mice, the expression and releasing of HMGB1 and T-cell activation were markedly reduced in HDN pretreated mice. Thus, these results suggest that HDN protects mice from Con A-induced hepatic injury by suppressing hepatocyte oxidative stress, producing cytokines, expressing and releasing HMGB1 and activating T cells.
Collapse
|
24
|
Eguchi A, Wree A, Feldstein AE. Biomarkers of liver cell death. J Hepatol 2014; 60:1063-74. [PMID: 24412608 DOI: 10.1016/j.jhep.2013.12.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 12/08/2013] [Accepted: 12/26/2013] [Indexed: 12/14/2022]
Abstract
Hepatocyte cell death during liver injury was classically viewed to occur by either programmed (apoptosis), or accidental, uncontrolled cell death (necrosis). Growing evidence from our increasing understanding of the biochemical and molecular mechanisms involved in cell demise has provided an expanding view of various modes of cell death that can be triggered during both acute and chronic liver damage such as necroptosis, pyroptosis, and autophagic cell death. The complexity of non-invasively assessing the predominant mode of cell death during a specific liver insult in either experimental in vivo models or in humans is highlighted by the fact that in many instances there is significant crosstalk and overlap between the different cell death pathways. Nevertheless, the realization that during cell demise triggered by a specific mode of cell death certain intracellular molecules such as proteins, newly generated protein fragments, or MicroRNAs are released from hepatocytes into the extracellular space and may appear in circulation have spurred a significant interest in the development of non-invasive markers to monitor liver cell death. This review focuses on some of the most promising markers, and their potential role in assessing the presence and severity of liver damage in humans.
Collapse
Affiliation(s)
- Akiko Eguchi
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, San Diego, CA 92123, United States
| | - Alexander Wree
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, San Diego, CA 92123, United States
| | - Ariel E Feldstein
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, San Diego, CA 92123, United States.
| |
Collapse
|