1
|
Massie AM, Skorupski K, Vernau W, McLarty E, Brady RV, Vernau KM. Large T-cell extradural lymphoma with concurrent marked cerebrospinal fluid eosinophilia in a dog. J Vet Intern Med 2023; 37:2492-2497. [PMID: 37849352 PMCID: PMC10658537 DOI: 10.1111/jvim.16854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/23/2023] [Indexed: 10/19/2023] Open
Abstract
A 3-year-old male pit bull terrier was presented for a 4-day history of progressive tetraparesis and cervical pain. Magnetic resonance imaging confirmed an extradural mass within the left lateral vertebral canal extending from caudal C5 to mid-T2. Lumbar cerebrospinal fluid (CSF) demonstrated marked (90%) eosinophilic inflammation. A C6-7 dorsal laminectomy and C7-T2 left hemilaminectomy were done, with gross disease remaining. Histopathology revealed a large T cell lymphoma with marked eosinophilic infiltration. The dog underwent CHOP-based chemotherapy with resolution of clinical signs, with a similar course of therapy performed at recurrence 37 months after initial presentation. The dog was euthanized 39 months after presentation for multiorgan failure secondary to neutropenic sepsis and aspiration pneumonia. This represents a positive long-term response to multimodal treatment of extradural T-cell lymphoma within the vertebral canal associated with a marked CSF eosinophilia.
Collapse
Affiliation(s)
- Anna M. Massie
- Department of Clinical Sciences and Advanced MedicineUniversity of Pennsylvania School of Veterinary MedicinePhiladelphiaPennsylvaniaUSA
| | - Katherine Skorupski
- Department of Surgical and Radiological SciencesUniversity of California School of Veterinary MedicineDavisCaliforniaUSA
| | - William Vernau
- Department of Pathology, Microbiology and ImmunologyUniversity of California School of Veterinary MedicineDavisCaliforniaUSA
| | - Ehren McLarty
- Department of Surgical and Radiological SciencesUniversity of California School of Veterinary MedicineDavisCaliforniaUSA
| | - Rachel V. Brady
- Cell and Molecular Biology Graduate ProgramColorado State UniversityFort CollinsColoradoUSA
| | - Karen M. Vernau
- Department of Surgical and Radiological SciencesUniversity of California School of Veterinary MedicineDavisCaliforniaUSA
| |
Collapse
|
2
|
Implication of Netrin-1 Gain of Expression in Canine Nodal Lymphoma. Vet Sci 2022; 9:vetsci9090494. [PMID: 36136711 PMCID: PMC9501284 DOI: 10.3390/vetsci9090494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Canine lymphomas represent one of the most frequent groups of neoplasia, for which prognosis may be poor. Treatments are based on polychemotherapy, with variable responses. As in human lymphomas, more and more targeted therapies are studied and developed. Therapy to restore apoptosis in neoplastic cells is one of them. Netrin-1 is a ligand of dependence receptors. When bound to its receptor, a positive signaling is triggered. When unbound, apoptosis is induced. In some human cancers, neoplastic cells can lose the ability to induce apoptosis by overexpressing netrin-1, or by decreasing the receptor expression. We hypothesized a similar pathway in canine lymphomas. We observed increased expression of netrin-1, particularly in high-grade nodal lymphomas. In vitro evaluation of an anti-netrin-1 antibody is encouraging as apoptosis is restored in a T-cell lymphoma cell line. Netrin-1 appears thus as a possible survival factor in dog lymphomas. This study suggests it can be a promising tool for a targeted therapy in lymphoma management in dogs. Abstract Netrin-1 is a member of the laminin superfamily, and is known to interact with specific receptors, called dependence receptors. While upon netrin-1 binding these receptors initiate positive signaling, in absence of netrin-1, these receptors trigger apoptosis. Tumor cells can avoid apoptosis by inactivating these receptors or by gaining ligand expression. The aim of the present study was to investigate the expression of netrin-1, the ligand of dependence receptors, in canine healthy lymph nodes (LN), and in lymphomas and to evaluate efficiency of a netrin-1 interfering compound in cell cultures from canine lymphoma. Thirty-two control LN and 169 lymphomas were analyzed through immunohistochemistry. Netrin-1 was expressed in the nucleoli of lymphoid and non-lymphoid cells in controls. Acquisition of a cytoplasmic expression was present in B-cell lymphomas (23.1 % in low-grade and 50.6% in high-grade) and T-cell lymphomas (50.0 % in low-grade and 78.8 % in high-grade), with a significant difference between the high- and low-grade in B-cell lymphomas. Through flow cytometry, we showed a significant increase in netrin-1 expression in either high-grade B-cell and T-cell lymphomas (19 and 5, respectively) compared with healthy LN (5), likewise an RT-qPCR analysis demonstrated a significant increase in netrin-1 expression level in 14 samples of lymphomas compared with eight samples of healthy LN. A T-cell aggressive canine lymphoma cell line and four primary canine nodal lymphomas cell cultures were treated with a netrin-1 interfering antibody. Apoptosis by measuring caspase 3 activity was significantly increased in the cell line and viability was decreased in three of the four primary cell cultures. Together, these data suggest that netrin-1 expression is increased in lymphoma, and more specifically in high-grade lymphomas, and that netrin-1 can act as a survival factor for the neoplastic cells, and so be a therapeutic target.
Collapse
|
3
|
Simultaneous Analysis of the p16 Gene and Protein in Canine Lymphoma Cells and Their Correlation with pRb Phosphorylation. Vet Sci 2022; 9:vetsci9080393. [PMID: 36006308 PMCID: PMC9416461 DOI: 10.3390/vetsci9080393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lymphoma is one of the most frequently diagnosed malignancies in dogs. The most common epigenetic alteration is gene methylation. Methylation of the p16 gene leads to decreased expression of its protein. The p16 protein inhibits the activity of cyclin-dependent kinase, as a negative control of the cell cycle to prevent phosphorylation of the retinoblastoma (pRb) protein. The methylation of the p16 gene has been reported in canine lymphomas, however, p16 protein expression has not been examined in previous studies. In this study, the gene and protein expression of p16, and phosphorylation of pRb, were examined simultaneously in canine lymphoma/leukemia cell lines treated with or without a demethylation drug in vitro. We identified the hypermethylation of the p16 gene, the decreased expression of p16 protein and the hyperphosphorylation of pRb in four out of eight cell lines. Furthermore, we revealed that the expression of the p16 protein was more stable than that of the p16 gene and more closely related to the phosphorylation of pRb. In conclusion, the p16 protein expression is suggested as a promising biomarker for canine lymphoma cells, and the p16–pRb pathway could be a target for the better treatment of canine lymphomas. Abstract Cyclin-dependent kinase inhibitor p16 (CDKN2A) primarily functions as a negative regulator of the retinoblastoma protein (pRb) pathway to prevent pRb phosphorylation, thus playing a critical role in cell cycle arrest. In canine lymphoma cells, methylation due to inactivation of the p16 gene has been reported. However, its protein expression has not been examined in previous studies. In our in vitro study, the gene and protein expression of p16 and phosphorylated pRb were examined simultaneously in eight canine lymphoma and leukemia cell lines (17-71, CLBL-1, GL-1, CLC, CLGL-90, Ema, Nody-1, and UL-1). Methylation of the p16 gene was also explored using the demethylation drug 5-Aza-2′-deoxycytidine (5-Aza). After 5-Aza treatment, p16 gene and protein expression increased and pRb phosphorylation decreased, suggesting that both hypermethylation of the p16 gene and pRb hyperphosphorylation occurred in four out of eight cell lines (CLBL-1, CLC, Nody-1, and UL-1). Moreover, the estimation of p16’s protein expression was better than that of p16’s mRNA expression because the expression of the protein was more stable than those of the gene, and highly related to the phosphorylation of pRb. These results revealed that p16’s protein expression could be a promising biomarker for canine lymphoma cells.
Collapse
|
4
|
ADACHI M, IGARASHI H, OKAMOTO M, TAMAMOTO T, HORI Y. Large granular lymphocyte lymphoma in the skin and urinary bladder of a dog. J Vet Med Sci 2022; 84:296-301. [PMID: 35082219 PMCID: PMC8920723 DOI: 10.1292/jvms.21-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mami ADACHI
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine
| | - Hirotaka IGARASHI
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University
| | - Minoru OKAMOTO
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Rakuno Gakuen University
| | - Takashi TAMAMOTO
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Rakuno Gakuen University
| | - Yasutomo HORI
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Rakuno Gakuen University
| |
Collapse
|
5
|
Graves SS, Storb R. Evolution of haematopoietic cell transplantation for canine blood disorders and a platform for solid organ transplantation. Vet Med Sci 2021; 7:2156-2171. [PMID: 34390541 PMCID: PMC8604109 DOI: 10.1002/vms3.601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pre-clinical haematopoietic cell transplantation (HCT) studies in canines have proven to be invaluable for establishing HCT as a highly successful clinical option for the treatment of malignant and non-malignant haematological diseases in humans. Additionally, studies in canines have shown that immune tolerance, established following HCT, enabled transplantation of solid organs without the need of lifelong immunosuppression. This progress has been possible due to multiple biological similarities between dog and mankind. In this review, the hurdles that were overcome and the methods that were developed in the dog HCT model which made HCT clinically possible are examined. The results of these studies justify the question whether HCT can be used in the veterinary clinical practice for more wide-spread successful treatment of canine haematologic and non-haematologic disorders and whether it is prudent to do so.
Collapse
Affiliation(s)
- Scott S Graves
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rainer Storb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
6
|
Sajib AM, Sandey M, Morici S, Schuler B, Agarwal P, Smith BF. Analysis of endogenous and exogenous tumor upregulated promoter expression in canine tumors. PLoS One 2020; 15:e0240807. [PMID: 33166332 PMCID: PMC7652315 DOI: 10.1371/journal.pone.0240807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
Gene therapy is a promising treatment option for cancer. However, its utility may be limited due to expression in off-target cells. Cancer-specific promoters such as telomerase reverse transcriptase (TERT), survivin, and chemokine receptor 4 (CXCR4) have enhanced activity in a variety of human and murine cancers, however, little has been published regarding these promoters in dogs. Given the utility of canine cancer models, the activity of these promoters along with adenoviral E2F enhanced E1a promoter (EEE) was evaluated in a variety of canine tumors, both from the endogenous gene and from exogenously administered constructs. Endogenous expression levels were measured for cTERT, cSurvivin, and cCXCR4 and were low for all three, with some non-malignant and some tumor cell lines and tissues expressing the gene. Expression levels from exogenously supplied promoters were measured by both the number of cells expressing the construct and the intensity of expression in individual cells. Exogenously supplied promoters were active in more cells in all tumor lines than in normal cells, with the EEE promoter being most active, followed by cTERT. The intensity of expression varied more with cell type than with specific promoters. Ultimately, no single promoter was identified that would result in reliable expression, regardless of the tumor type. Thus, these findings imply that identification of a pan-cancer promoter may be difficult. In addition, this data raises the concern that endogenous expression analysis may not accurately predict exogenous promoter activity.
Collapse
Affiliation(s)
- Abdul Mohin Sajib
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Maninder Sandey
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Samantha Morici
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Bradley Schuler
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Bruce F. Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
7
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Akiyama S, Asahina R, Ohta H, Tsukui T, Nishida H, Kamishina H, Maeda S. Th17 cells increase during maturation in peripheral blood of healthy dogs. Vet Immunol Immunopathol 2019; 209:17-21. [PMID: 30885301 DOI: 10.1016/j.vetimm.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 01/03/2023]
Abstract
Recent studies have indicated that T helper 17 (Th17) cells are involved in the pathogenesis of various inflammatory diseases in dogs. However, age-related changes in canine Th17 cells have not yet been investigated. In the present study, the proportion of Th17 cells was examined in the peripheral blood mononuclear cells (PBMCs) of healthy dogs at various ages: Group 1 (n = 16; less than 1 year of age), Group 2 (n = 25; 1-5 years), and Group 3 (n = 19; 6-9 years), using flow cytometry and an anti-human interleukin (IL)-17A monoclonal antibody that reacts with canine IL-17A. The proportion of circulating Th17 cells positively correlated with age. The age-related differences were observed in the proportion of Th17 cells among Group 1 (mean ± SD: 1.52 ± 1.18%), Group 2 (mean ± SD: 3.81 ± 1.94%) and Group 3 (mean ± SD: 7.49 ± 2.54%). Our results suggest that age-related changes in Th17 cells need to be considered in future research on Th17-related diseases in dogs.
Collapse
Affiliation(s)
- Satoshi Akiyama
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ryota Asahina
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Toshihiro Tsukui
- Nippon Zenyaku Kogyo Co., Ltd., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima 963-0196, Japan
| | - Hidetaka Nishida
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroaki Kamishina
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sadatoshi Maeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
9
|
Veloza LC, Collazos M, Olaya N, Salas S, Corredor A, Diez H, Castellanos I, Gutierrez M. Presencia del marcador lmp-1 del virus epstein barr en linfomas de caninos. REVISTA DE LA FACULTAD DE MEDICINA VETERINARIA Y DE ZOOTECNIA 2017. [DOI: 10.15446/rfmvz.v64n3.68691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epstein Barr virus (EBV) is a humans’ high prevalent virus associated with lymphoid B cells tumors development. In canines, few reports have been published regarding the presence of the virus in dogs but its role in this species remain unclear. The aim of this study was to determine the presence of LMP-1 protein of EBV in 20 canine lymphomas tissues which were previously diagnosed in a period of time between 2004 -2014. Lymphomas were reclassified in accordance with the new histopathological classifications for lymphomas and were stained by IHQ with anti-CD79a, anti-CD3 and anti-LMP1; specific antibodies for B lymphocytes, T lymphocytes and EBV biomarker respectively. As a result, it was found that the most common lymphoma was T-zone lymphoma in 75% of the cases of the study. The distribution of the cases regarding the immunostaining were: 18 positive cases with anti- CD3, 2 positive cases with anti-CD79a and 6 positive cases with anti-LMP-1. Positive cases of LMP1 as a biomarker of the presence of EBV corresponded to the 30% of the cases of the study. Chi-square test showed statistical significance between the presence of the virus and the presence of lymphomas, which suggests not only that the virus is circulating in the canine population but also that could have implications in the development of the disease. Regarding demographic parameters, only the Golden Retriever breed showed a relationship with the presence of lymphoma, but not with the presence of the virus.
Collapse
|
10
|
Villarnovo D, McCleary-Wheeler AL, Richards KL. Barking up the right tree: advancing our understanding and treatment of lymphoma with a spontaneous canine model. Curr Opin Hematol 2017; 24:359-366. [PMID: 28426554 PMCID: PMC5553274 DOI: 10.1097/moh.0000000000000357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Spontaneous lymphoma in pet dogs is increasingly recognized as an ideal model for studying the disease in humans and for developing new targeted therapeutics for patients. Increasing interest by funding agencies, the private sector, and multidisciplinary academic collaborations between different disciplines and sectors now enables large knowledge gaps to be addressed and provides additional proof-of-concept examples to showcase the significance of the canine model. RECENT FINDINGS The current review addresses the rationale for a canine lymphoma model including the valuable role it can play in drug development, serving as a link between mouse xenograft models and human clinical trials and the infrastructure that is now in place to facilitate these studies. Research in this field has focused on filling in the gaps to make the canine lymphoma model more robust. These advances have included work on biomarkers, detection of minimal residual disease, expansion of genomic and proteomic data, and immunotherapy. SUMMARY Incorporating pet dogs into the drug development pipeline can improve the efficiency and predictability of preclinical models and decrease the time and cost required for a therapeutic target to be translated into clinical benefit.
Collapse
Affiliation(s)
- Dania Villarnovo
- aDepartment of Biomedical Sciences bDepartment of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca cSandra and Edward Meyer Cancer Center dDivision of Hematology/Oncology, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|