1
|
Wang S, Zhao X, Zhu S, Xu J, Luo T. F-Box and Leucine-Rich Repeat Protein 7 Is a Prognostic Biomarker and Is Correlated with the Immunosuppressive Microenvironment in Colorectal Cancer. Genet Test Mol Biomarkers 2023; 27:325-338. [PMID: 37862037 DOI: 10.1089/gtmb.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Background: Colorectal cancer (CRC) is a common malignancy of the digestive system, but its specific mechanisms of occurrence and development remain incompletely understood. F-Box and leucine-rich repeat protein 7 (FBXL7) is a subunit of the Skp-cullin-F-box ubiquitin ligase, involved in cell cycle regulation, endothelial cell damage, and inflammatory immunological responses. However, the role of FBXL7 in CRC remains unknown. In this study, we investigated the clinical significance and potential mechanism of FBXL7 expression in CRC progression. Methods: We utilized data from The Cancer Genome Atlas (TCGA) and the University of California Santa Cruz Xena (UCSC Xena) database for bioinformatic analyses. Clinical CRC samples were used to confirm FBXL7 expression. Gene set enrichment analysis (GSEA) and various databases, such as TCGA, UCSC Xena, cBioPortal, University of ALabama at Birmingham CANcer data analysis portal, MethSurv, Tumor Immune Estimation Resource (TIMER), TIMER2.0, Tumor-Immune System Interaction Database, and Tumor Immune Dysfunction and Exclusion Database (TIDB), were used to investigate the role of FBXL7 in CRC. Statistical analysis was performed using R (v.3.6.3) or GraphPad Prism 8.0. Results: Our findings revealed the predictive significance of FBXL7 in CRC patients. FBXL7 expression was associated with tumor stage, lymph node stage, pathological stage, perineural invasion, and lymphatic invasion. GSEA analysis identified associations between FBXL7 and extracellular matrix organization, as well as immune-related pathways. Immunological analysis revealed a correlation between high FBXL7 expression and the development of an immunosuppressive microenvironment. Conclusion: Identifying FBXL7 as a novel biomarker for CRC could shed light on the promotion of CRC development by the immune environment.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xunping Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuyuan Zhu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiali Xu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Mohammad Mirzaei N, Hao W, Shahriyari L. Investigating the spatial interaction of immune cells in colon cancer. iScience 2023; 26:106596. [PMID: 37168560 PMCID: PMC10165418 DOI: 10.1016/j.isci.2023.106596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
The intricate network of interactions between cells and molecules in the tumor microenvironment creates a heterogeneous ecosystem. The proximity of the cells and molecules to their activators and inhibitors is essential in the progression of tumors. Here, we develop a system of partial differential equations coupled with linear elasticity to investigate the effects of spatial interactions on the tumor microenvironment. We observe interesting cell and cytokine distribution patterns, which are heavily affected by macrophages. We also see that cytotoxic T cells get recruited and suppressed at the site of macrophages. Moreover, we observe that anti-tumor macrophages reorganize the patterns in favor of a more spatially restricted cancer and necrotic core. Furthermore, the adjoint-based sensitivity analysis indicates that the most sensitive model's parameters are directly related to macrophages. The results emphasize the widely acknowledged effect of macrophages in controlling cancer cells population and spatially arranging cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, 01003 MA, USA
| | - Wenrui Hao
- Department of Mathematics, Pennsylvania State University, University Park, 16802 PA, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, 01003 MA, USA
- Corresponding author
| |
Collapse
|
3
|
Tomé-Sánchez I, Martínez-Villaluenga C, Martín-Diana AB, Rico D, Jiménez-Pulido I, Frias J, Dia VP. Antioxidant, Immunostimulatory, and Anticancer Properties of Hydrolyzed Wheat Bran Mediated through Macrophages Stimulation. Int J Mol Sci 2023; 24:ijms24087436. [PMID: 37108599 PMCID: PMC10139194 DOI: 10.3390/ijms24087436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Previous studies demonstrated that enzymatic hydrolysis enhances wheat bran (WB) biological properties. This study evaluated the immunostimulatory effect of a WB hydrolysate (HYD) and a mousse enriched with HYD (MH) before and after in vitro digestion on murine and human macrophages. The antiproliferative activity of the harvested macrophage supernatant on colorectal cancer (CRC) cells was also analyzed. MH showed significantly higher content than control mousse (M) in soluble poly- and oligosaccharides (OLSC), as well as total soluble phenolic compounds (TSPC). Although in vitro gastrointestinal digestion slightly reduced the TSPC bioaccessibility of MH, ferulic acid (FA) levels remained stable. HYD showed the highest antioxidant activity followed by MH, which demonstrated a greater antioxidant activity before and after digestion as compared with M. RAW264.7 and THP-1 cells released the highest amounts of pro-inflammatory cytokines after being treated with 0.5 mg/mL of digested WB samples. Treatment with digested HYD-stimulated RAW264.7 supernatant for 96 h showed the most anticancer effect, and spent medium reduced cancer cell colonies more than direct WB sample treatments. Although a lack of inner mitochondrial membrane potential alteration was found, increased Bax:Bcl-2 ratio and caspase-3 expression suggested activation of the mitochondrial apoptotic pathway when CRC cells were treated with macrophage supernatants. Intracellular reactive oxygen species (ROS) were positively correlated with the cell viability in CRC cells exposed to RAW264.7 supernatants (r = 0.78, p < 0.05) but was not correlated in CRC cells treated with THP-1 conditioned media. Supernatant from WB-stimulated THP-1 cells may be able to stimulate ROS production in HT-29 cells, leading to a decrease of viable cells in a time-dependent manner. Therefore, our present study revealed a novel anti-tumour mechanism of HYD through the stimulation of cytokine production in macrophages and the indirect inhibition of cell proliferation, colony formation, and activation of pro-apoptotic proteins expression in CRC cells.
Collapse
Affiliation(s)
- Irene Tomé-Sánchez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 6, 28040 Madrid, Spain
| | | | - Ana Belén Martín-Diana
- Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Finca Zamadueñas, Castilla and Leon, 47071 Valladolid, Spain
| | - Daniel Rico
- Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Finca Zamadueñas, Castilla and Leon, 47071 Valladolid, Spain
| | - Iván Jiménez-Pulido
- Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Finca Zamadueñas, Castilla and Leon, 47071 Valladolid, Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 6, 28040 Madrid, Spain
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Haag GM, Springfeld C, Grün B, Apostolidis L, Zschäbitz S, Dietrich M, Berger AK, Weber TF, Zoernig I, Schaaf M, Waberer L, Müller DW, Al-Batran SE, Halama N, Jaeger D. Pembrolizumab and maraviroc in refractory mismatch repair proficient/microsatellite-stable metastatic colorectal cancer – The PICCASSO phase I trial. Eur J Cancer 2022; 167:112-122. [DOI: 10.1016/j.ejca.2022.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022]
|
5
|
Iftikhar R, Penrose HM, King AN, Kim Y, Ruiz E, Kandil E, Machado HL, Savkovic SD. FOXO3 Expression in Macrophages Is Lowered by a High-Fat Diet and Regulates Colonic Inflammation and Tumorigenesis. Metabolites 2022; 12:250. [PMID: 35323693 PMCID: PMC8949544 DOI: 10.3390/metabo12030250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity, characterized by augmented inflammation and tumorigenesis, is linked to genetic predispositions, such as FOXO3 polymorphisms. As obesity is associated with aberrant macrophages infiltrating different tissues, including the colon, we aimed to identify FOXO3-dependent transcriptomic changes in macrophages that drive obesity-mediated colonic inflammation and tumorigenesis. We found that in mouse colon, high-fat-diet-(HFD)-related obesity led to diminished FOXO3 levels and increased macrophages. Transcriptomic analysis of mouse peritoneal FOXO3-deficient macrophages showed significant differentially expressed genes (DEGs; FDR < 0.05) similar to HFD obese colons. These DEG-related pathways, linked to mouse colonic inflammation and tumorigenesis, were similar to those in inflammatory bowel disease (IBD) and human colon cancer. Additionally, we identified a specific transcriptional signature for the macrophage-FOXO3 axis (MAC-FOXO382), which separated the transcriptome of affected tissue from control in both IBD (p = 5.2 × 10−8 and colon cancer (p = 1.9 × 10−11), revealing its significance in human colonic pathobiologies. Further, we identified (heatmap) and validated (qPCR) DEGs specific to FOXO3-deficient macrophages with established roles both in IBD and colon cancer (IL-1B, CXCR2, S100A8, S100A9, and TREM1) and those with unexamined roles in these colonic pathobiologies (STRA6, SERPINH1, LAMB1, NFE2L3, OLR1, DNAJC28 and VSIG10). These findings establish an important understanding of how HFD obesity and related metabolites promote colonic pathobiologies.
Collapse
Affiliation(s)
- Rida Iftikhar
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Harrison M. Penrose
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Angelle N. King
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Yunah Kim
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Emmanuelle Ruiz
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA 70012, USA; (E.R.); (E.K.)
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA 70012, USA; (E.R.); (E.K.)
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70012, USA;
| | - Suzana D. Savkovic
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| |
Collapse
|
6
|
2-methylpyridine-1-ium-1-sulfonate modifies tumor-derived exosome mediated macrophage polarization: Relevance to the tumor microenvironment. Int Immunopharmacol 2022; 106:108581. [PMID: 35149296 DOI: 10.1016/j.intimp.2022.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/05/2022]
Abstract
The compound "2-methylpyridine-1-ium-1-sulfonate" (MPS) is the active constituent of Allium hirtifolium Boiss. bulbs with potent anti-angiogenic and anti-cancer activities. Tumor microenvironment (TME) plays a key role in tumor progression via tumor derived exosome (TEX) mediated polarization of M2 type tumor associated macrophages (TAMs). In this study, we explored direct and colorectal cancer (CRC) exosome-mediated impacts of MPS on macrophage polarization to find out whether MPS could modify TEX in favor of anti-tumor M1-like macrophage polarization. After MPS isolation and characterization, first its direct anti-cancer effects were evaluated on HT-29 cells. Then, TEX were isolated from untreated (C-TEX) and MPS-treated (MPS-TEX) HT-29 cells. THP-1 M0 macrophages were incubated with MPS, C-TEX and MPS-TEX. Macrophage polarization was evaluated by flow cytometry, ELISA and gene expression analysis of several M1- and M2-related markers. MPS induced apoptosis and cell cycle arrest and reduced the migration ability of HT-29 cells. C-TEX polarized M0 macrophages toward a mixed M1-/M2-like phenotype with a high predominance of M2-like cells. Macrophage treatment with MPS was associated with the induction of M1-like phenotype. Also, MPS was demonstrated to ameliorate TEX-mediated effects in favor of M1-like polarization. In conclusion, our study addresses for the first time, the potential capability of MPS in skewing macrophages toward an anti-cancer M1-like phenotype both directly and in a TEX-dependent manner. Thus, in addition to its direct anti-cancer effects, this compound could also modify TME in favor of tumor eradication via its direct and TEX-mediated effects on macrophage polarization as a novel anti-cancer mechanism.
Collapse
|
7
|
Zhang J, Li S, Zhang X, Li C, Zhang J, Zhou W. LncRNA HLA-F-AS1 promotes colorectal cancer metastasis by inducing PFN1 in colorectal cancer-derived extracellular vesicles and mediating macrophage polarization. Cancer Gene Ther 2021; 28:1269-1284. [PMID: 33531647 DOI: 10.1038/s41417-020-00276-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with high incidence and low 5-year survival. Long non-coding RNAs (lncRNAs), a kind of specific RNA transcript, are increasingly implicated in tumor growth, metastasis, invasion, and prognosis by regulating the tumor microenvironment in extracellular vesicles (EVs). This study aims at investigating the potential effect of lncRNA HLA-F-AS1 on CRC by affecting the profilin 1 (PFN1) expression pattern in the tumor EVs. The expression patterns of HLA-F-AS1 and miR-375 were determined by RT-qPCR in the CRC tissues and cells. CCK-8 and Transwell assays were conducted to detect the cell proliferation and migration, and invasion, respectively. Western blot analysis was performed to measure the expression pattern of the epithelial-mesenchymal transition (EMT) markers. Bioinformatics prediction website and dual-luciferase reporter assay were conducted to verify the interaction between HLA-F-AS1 and miR-375. The CRC-derived EVs were extracted with the expression pattern of PFN1 determined by ELISA, while its effect on the macrophage polarization was assessed by flow cytometry. The effect of PFN1-treated macrophages on CRC cell proliferation and migration was observed by subcutaneous tumorigenesis experiments in nude mice. The results indicated that the HLA-F-AS1 expression pattern was increased in the CRC tissues and cells, which promoted the migration, invasion, and EMT of CRC cells in vitro. Mechanistically, HLA-F-AS1 competitively bound to miR-375 and inversely regulated miR-375 expression pattern. Interestingly, PFN1 was identified as a direct target of miR-375, and positively modulated by HLA-F-AS1 by binding to miR-375. Overexpression of HLA-F-AS1 repressed miR-375 and promoted the PFN1 expression pattern in CRC cells and CRC-derived EVs, further promoting M2 polarization of macrophages. Furthermore, macrophages treated with PFN1 in CRC-derived EVs stimulated CRC cell proliferation and migration in vitro and in vivo. Collectively, these outcomes highlight that HLA-F-AS1 promotes the expression pattern of PFN1 in CRC-EVs by inhibiting miR-375, thereby polarizing macrophages toward M2 phenotype, and aggravating the tumorigenesis of CRC, eliciting that HLA-F-AS1 may serve as a viable and promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130000, P.R. China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130000, P.R. China
| | - Xiaona Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, 130000, P.R. China
| | - Chao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130000, P.R. China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130000, P.R. China.
| | - Wenli Zhou
- Department of Neonatology, The First Hospital of Jilin University, Changchun, 130000, P.R. China.
| |
Collapse
|
8
|
Leonard NA, Reidy E, Thompson K, McDermott E, Peerani E, Tomas Bort E, Balkwill FR, Loessner D, Ryan AE. Stromal Cells Promote Matrix Deposition, Remodelling and an Immunosuppressive Tumour Microenvironment in a 3D Model of Colon Cancer. Cancers (Basel) 2021; 13:cancers13235998. [PMID: 34885111 PMCID: PMC8656544 DOI: 10.3390/cancers13235998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most common type of cancer in the world. Immune cells and normal supporting cells (MSCs) within a tumour affect patient survival and change how well treatments work. This research aimed to develop a more relevant 3D cancer model that combines MSCs and immune cells with cancer cells to test the effects of multiple cell types on tumour growth. We successfully developed a 3D model that shows that MSCs and immune cells can change the cancer-supporting environment around the tumour cells. We show that combining MSCs and immune cells with cancer cells can increase the level of immune-suppressing molecules they release and change immunotherapeutic drug targets on the cancer cells, similar to changes seen in human tumours. Using this 3D model for research may be better for testing new drugs than traditional 2D methods and could enable the identification of new drug targets. Abstract Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. CRC develops in a complex tumour microenvironment (TME) with both mesenchymal stromal cells (MSCs) and immune infiltrate, shown to alter disease progression and treatment response. We hypothesised that an accessible, affordable model of CRC that combines multiple cell types will improve research translation to the clinic and enable the identification of novel therapeutic targets. A viable gelatine-methacrloyl-based hydrogel culture system that incorporates CRC cells with MSCs and a monocyte cell line was developed. Gels were analysed on day 10 by PCR, cytokine array, microscopy and flow cytometry. The addition of stromal cells increased transcription of matrix remodelling proteins FN1 and MMP9, induced release of tumour-promoting immune molecules MIF, Serpin E1, CXCL1, IL-8 and CXCL12 and altered cancer cell expression of immunotherapeutic targets EGFR, CD47 and PD-L1. Treatment with PD153035, an EGFR inhibitor, revealed altered CRC expression of PD-L1 but only in gels lacking MSCs. We established a viable 3D model of CRC that combined cancer cells, MSCs and monocytic cells that can be used to research the role the stroma plays in the TME, identify novel therapeutic targets and improve the transitional efficacy of therapies.
Collapse
Affiliation(s)
- Niamh A. Leonard
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Correspondence: (N.A.L.); (A.E.R.)
| | - Eileen Reidy
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, H91 W2TY Galway, Ireland; (K.T.); (E.M.)
| | - Emma McDermott
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, H91 W2TY Galway, Ireland; (K.T.); (E.M.)
| | - Eleonora Peerani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Elena Tomas Bort
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Frances R. Balkwill
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Daniela Loessner
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
- Faculty of Engineering and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Aideen E. Ryan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Correspondence: (N.A.L.); (A.E.R.)
| |
Collapse
|
9
|
Stage I-IV Colorectal Cancer Prognosis Can Be Predicted by Type and Number of Intratumoral Macrophages and CLEVER-1 + Vessel Density. Cancers (Basel) 2021; 13:cancers13235988. [PMID: 34885098 PMCID: PMC8656733 DOI: 10.3390/cancers13235988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumor-associated macrophages can either promote or prevent cancer growth depending on factors such as macrophage polarization status, tumor type, and disease stage. Macrophages and vessels interact with each other, and the number of lymphatic vessels also affects cancer survival. CLEVER-1 is a protein expressed both on immunosuppressive M2 macrophages and lymphatic vessels. The aim of this study was to validate our previous results regarding the prognostic role of CLEVER-1+ macrophages, CD68+ macrophages, and CLEVER-1+ lymphatic vessels in stage I–IV colorectal cancer. The results indicate that the prognostic role of tumor-associated macrophages and lymphatic vessels changes during disease progression. The findings resemble our earlier results, but are not completely equal, which may be due to the different types of tumor samples used in the two studies (whole section vs. tissue microarray). Abstract Macrophages, which are key players in the tumor microenvironment and affect the prognosis of many cancers, interact with lymphatic vessels in tumor tissue. However, the prognostic role of tumor-associated macrophages (TAM) and lymphatic vessels in human colorectal cancer (CRC) remains controversial. We investigated the prognostic role of CD68+ and CLEVER-1+ (common lymphatic endothelial and vascular endothelial receptor 1) TAMs in addition to CLEVER-1+ lymphatic vessels in 498 stage I–IV CRC patients. The molecular markers were detected by immunohistochemical (IHC) analysis. The results showed that, in early stage I CRC and in young patients (age below median, ≤67.4 years), a high number of CD68+ and CLEVER-1+ TAMs was associated with longer disease-specific survival (DSS). In early stage I CRC, high intratumoral CLEVER-1+ lymphatic vessel density (LVD) predicted a favorable prognosis, whereas the opposite pattern was observed in stage II CRC. The highest density of CLEVER-1+ lymphatic vessels was found in metastatic disease. The combination of intratumoral CLEVER-1+ lymphatic vesselhigh + CD68+ TAMlow was associated with poor DSS in stage I–IV rectal cancer. The present results indicate that the prognostic significance of intratumoral macrophages and CLEVER-1+ lymphatic vessels differs according to disease stage, reflecting the dynamic changes occurring in the tumor microenvironment during disease progression.
Collapse
|
10
|
Shamoun L, Landerholm K, Balboa Ramilo A, Andersson RE, Dimberg J, Wågsäter D. Association of gene and protein expression and genetic polymorphism of CC chemokine ligand 4 in colorectal cancer. World J Gastroenterol 2021; 27:5076-5087. [PMID: 34497436 PMCID: PMC8384737 DOI: 10.3748/wjg.v27.i30.5076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Leukocytes, such as T cells and macrophages, play an important role in tumorigenesis. CC chemokine ligand (CCL) 4, which is produced by lymphocytes and macrophages, has been found to be expressed in the mucosa of the gastrointestinal tract and is a potent chemoattractant for various leukocytes.
AIM To examine CCL4 expression and its genetic polymorphism rs10491121 in patients with colorectal cancer (CRC) and evaluate their prognostic significance.
METHODS Luminex technology was used to determine CCL4 Levels in CRC tissue (n = 98), compared with paired normal tissue, and in plasma from patients with CRC (n = 103), compared with healthy controls (n = 97). Included patients had undergone surgical resection for primary colorectal adenocarcinomas between 1996 and 2019 at the Department of Surgery, Ryhov County Hospital, Jönköping, Sweden. Reverse transcription quantitative PCR was used to investigate the CCL4 gene expression in CRC tissue (n = 101). Paired normal tissue and TaqMan single nucleotide polymorphism assays were used for the CCL4 rs10491121 polymorphism in 610 CRC patients and 409 healthy controls.
RESULTS The CCL4 protein and messenger RNA expression levels were higher in CRC tissue than in normal paired tissue (90%, P < 0.001 and 45%, P < 0.05, respectively). CRC tissue from patients with localized disease had 2.8-fold higher protein expression levels than that from patients with disseminated disease. Low CCL4 protein expression levels in CRC tissue were associated with a 30% lower cancer-specific survival rate in patients (P < 0.01). The level of plasma CCL4 was 11% higher in CRC patients than in healthy controls (P < 0.05) and was positively correlated (r = 0.56, P < 0.01) with the CCL4 protein level in CRC tissue. The analysis of CCL4 gene polymorphism rs10491121 showed a difference (P < 0.05) between localized disease and disseminated disease in the right colon, with a dominance of allele A in localized disease. Moreover, the rate of the A allele was higher among CRC patients with mucinous cancer than among those with non-mucinous cancer.
CONCLUSION The present study indicates that the CRC tissue levels of CCL4 and CCL4 gene polymorphism rs10491121, particularly in the right colon, are associated with clinical outcome in CRC patients.
Collapse
Affiliation(s)
- Levar Shamoun
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
- Department of Laboratory Medicine and Pathology, Region Jönköping County, Jönköping 55305, Sweden
| | - Kalle Landerholm
- Department of Surgery, Region Jönköping County, Jönköping 55305, Sweden
- Department of Biomedical and Clinical Science, Linköping University, Linköping 58185, Sweden
| | | | - Roland E Andersson
- Department of Surgery, Region Jönköping County, Jönköping 55305, Sweden
- Department of Biomedical and Clinical Science, Linköping University, Linköping 58185, Sweden
| | - Jan Dimberg
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping 55111, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
11
|
Colony-stimulating factor 3 signaling in colon and rectal cancers: Immune response and CMS classification in TCGA data. PLoS One 2021; 16:e0247233. [PMID: 33606788 PMCID: PMC7895368 DOI: 10.1371/journal.pone.0247233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer is the 2nd leading cause of cancer-related deaths in the world. The mechanisms underlying CRC development, progression, and resistance to treatment are complex and not fully understood. The immune response in the tumor microenvironment has been shown to play a significant role in many cancers, including colorectal cancer. Colony-stimulating factor 3 (CSF3) has been associated with changes to the immune environment in colorectal cancer animal models. We hypothesized that CSF3 signaling would correlate with pro-tumor tumor microenvironment changes associated with immune infiltrate and response. We utilized publicly available datasets to guide future mechanistic studies of the role CSF3 and its receptor (CSF3R) play in colorectal cancer development and progression. Here, we use bioinformatics data and mRNA from patients with colon (n = 242) or rectal (n = 92) cancers, obtained from The Cancer Genome Atlas Firehose Legacy dataset. We examined correlations of CSF3 and CSF3R expression with patient demographics, tumor stage and consensus molecular subtype classification. Gene expression correlations, cell type enrichment, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data scores and Gene Ontology were used to analyze expression of receptor and ligand, tumor microenvironment infiltration of immune cells, and alterations in biological pathways. We found that CSF3 and CSF3R expression is highest in consensus molecular subtype 1 and consensus molecular subtype 4. Ligand and receptor expression are also correlated with changes in T cell and macrophage signatures. CSF3R significantly correlates with a large number of genes that are associated with poor colorectal cancer prognosis.
Collapse
|
12
|
Karagiannidis I, de Santana Van Vilet E, Said Abu Egal E, Phinney B, Jacenik D, Prossnitz ER, Beswick EJ. G-CSF and G-CSFR Induce a Pro-Tumorigenic Macrophage Phenotype to Promote Colon and Pancreas Tumor Growth. Cancers (Basel) 2020; 12:cancers12102868. [PMID: 33036138 PMCID: PMC7601499 DOI: 10.3390/cancers12102868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) in the gastrointestinal tumor microenvironment (TME) are known to polarize into populations exhibiting pro- or anti-tumoral activity in response to stimuli such as growth factors and cytokines. Our previous work has recognized granulocyte colony-stimulating factor (G-CSF) as a cytokine capable of influencing immune cells of the TME exhibiting pro-tumoral activity. Here, we aimed to focus on how G-CSF regulates TAM phenotype and function and the effects on gastrointestinal (GI) tumor progression. Thus, wildtype (WT) and G-CSFR-/- macrophages were examined for cytokine production, gene expression, and transcription factor activity. Adoptive transfer of WT or G-CSFR-/- macrophages into tumor-bearing mice was performed to study their influence in the progression of colon (MC38) and pancreatic (PK5L1940) tumor mouse models. Finally, the difference in cytotoxic potential between WT and G-CSFR-/- macrophages was examined both in vitro and in vivo. Our results indicate that G-CSF promotes increased IL-10 production and decreased IL-12 production, which was reversed in G-CSFR-/- macrophages for a pro-inflammatory phenotype. Furthermore, G-CSFR-/- macrophages were characterized by higher levels of NOS2 expression and NO production, which led to greater tumor related cytotoxicity both in vitro and in vivo. Our results suggest that in the absence of G-CSFR, macrophage-related tumor cytotoxicity was amplified. These findings, along with our previous reports, pinpoint G-CSF /G-CSFR as a prominent target for possible clinical applications that aim to control the TME and the GI tumor progression.
Collapse
Affiliation(s)
- Ioannis Karagiannidis
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA; (I.K.); (E.d.S.V.V.); (E.S.A.E.)
| | - Eliane de Santana Van Vilet
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA; (I.K.); (E.d.S.V.V.); (E.S.A.E.)
| | - Erika Said Abu Egal
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA; (I.K.); (E.d.S.V.V.); (E.S.A.E.)
| | - Brandon Phinney
- Division of Molecular Medicine, Department of Internal Medicine; Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Comprehensive Cancer Center; University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (B.P.); (D.J.); (E.R.P.)
| | - Damian Jacenik
- Division of Molecular Medicine, Department of Internal Medicine; Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Comprehensive Cancer Center; University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (B.P.); (D.J.); (E.R.P.)
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Eric R. Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine; Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Comprehensive Cancer Center; University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (B.P.); (D.J.); (E.R.P.)
| | - Ellen J. Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA; (I.K.); (E.d.S.V.V.); (E.S.A.E.)
- Correspondence:
| |
Collapse
|
13
|
Krijgsman D, De Vries NL, Andersen MN, Skovbo A, Tollenaar RA, Møller HJ, Hokland M, Kuppen PJ. CD163 as a Biomarker in Colorectal Cancer: The Expression on Circulating Monocytes and Tumor-Associated Macrophages, and the Soluble Form in the Blood. Int J Mol Sci 2020; 21:E5925. [PMID: 32824692 PMCID: PMC7460610 DOI: 10.3390/ijms21165925] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
The macrophage-associated molecule CD163 has been reported as a prognostic biomarker in different cancer types, but its role in colorectal cancer (CRC) is unclear. We studied CD163 in the tumor microenvironment and circulation of patients with CRC in relation to clinicopathological parameters. An enzyme-linked immunosorbent assay (ELISA) was used to measure the serum sCD163 levels and multiparameter flow cytometry was used to study the peripheral blood monocytes and their CD163 expression in CRC patients (N = 78) and healthy donors (N = 50). The distribution of tumor-associated macrophages (TAMs) was studied in primary colorectal tumors with multiplex immunofluorescence. We showed that CRC patients with above-median sCD163 level had a shorter overall survival (OS, p = 0.035) as well as disease-free survival (DFS, p = 0.005). The above-median sCD163 remained significantly associated with a shorter DFS in the multivariate analysis (p = 0.049). Moreover, a shorter OS was observed in CRC patients with an above-median total monocyte percentage (p = 0.007). The number and phenotype of the stromal and intraepithelial TAMs in colorectal tumors were not associated with clinical outcome. In conclusion, sCD163 and monocytes in the circulation may be potential prognostic biomarkers in CRC patients, whereas TAMs in the tumor showed no association with clinical outcome. Thus, our results emphasize the importance of the innate systemic immune response in CRC disease progression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/blood
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Colorectal Neoplasms/blood
- Colorectal Neoplasms/pathology
- Disease-Free Survival
- Female
- Humans
- Male
- Middle Aged
- Monocytes/metabolism
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Tumor-Associated Macrophages/metabolism
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (N.L.D.V.); (R.A.E.M.T.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
| | - Natasja L. De Vries
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (N.L.D.V.); (R.A.E.M.T.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
| | - Morten N. Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Anni Skovbo
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
- FACS Core Facility, Aarhus University, 8200 Aarhus, Denmark
| | - Rob A.E.M. Tollenaar
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (N.L.D.V.); (R.A.E.M.T.)
| | - Holger J. Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Marianne Hokland
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
| | - Peter J.K. Kuppen
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (N.L.D.V.); (R.A.E.M.T.)
| |
Collapse
|
14
|
Intestinal Macrophages at the Crossroad between Diet, Inflammation, and Cancer. Int J Mol Sci 2020; 21:ijms21144825. [PMID: 32650452 PMCID: PMC7404402 DOI: 10.3390/ijms21144825] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal macrophages are key players in the regulation of the oral tolerance, controlling gut homeostasis by discriminating innocuous antigens from harmful pathogens. Diet exerts a significant impact on human health, influencing the composition of gut microbiota and the developing of several non-communicable diseases, including cancer. Nutrients and microbiota are able to modify the profile of intestinal macrophages, shaping their key function in the maintenance of the gut homeostasis. Intestinal disease often occurs as a breakdown of this balance: defects in monocyte-macrophage differentiation, wrong dietary habits, alteration of microbiota composition, and impairment in the resolution of inflammation may contribute to the development of intestinal chronic inflammation and colorectal cancer. Accordingly, dietary interventions and macrophage-targeted therapies are emerging as innovative tools for the treatment of several intestinal pathologies. In this review, we will describe the delicate balance between diet, microbiota and intestinal macrophages in homeostasis and how the perturbation of this equilibrium may lead to the occurrence of inflammatory conditions in the gut. The understanding of the molecular pathways and dietary factors regulating the activity of intestinal macrophages might result in the identification of innovative targets for the treatments of intestinal pathologies.
Collapse
|
15
|
Liu Q, Yang C, Wang S, Shi D, Wei C, Song J, Lin X, Dou R, Bai J, Xiang Z, Huang S, Liu K, Xiong B. Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell Commun Signal 2020; 18:51. [PMID: 32228612 PMCID: PMC7106599 DOI: 10.1186/s12964-020-00557-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/23/2020] [Indexed: 01/18/2023] Open
Abstract
Background Tumor-associated macrophages (TAMs) in the tumor microenvironment influence tumor initiation, invasion and metastasis. Several studies have shown that Wnt5a is mainly expressed in the tumor stroma, especially in TAMs. However, whether Wnt5a regulates the polarization and biological function of TAMs in colorectal cancer (CRC) is incompletely understood. Methods Immunofluorescence staining was performed to detect CD68 and Wnt5a expression in colorectal tissues from patients (63 CRC specimens VS 20 normal tissues). RT-qPCR, flow cytometry, ELISA and inhibitors were carried out to explore the role of Wnt5a in the polarization of TAMs. Clone formation and transwell assays were performed to determine the effects of Wnt5a–treated macrophages on tumor proliferation, migration and invasion in vitro. Finally, a xenograft model was applied to confirm the effects of Wnt5a+ TAMs on CRC tumorigenesis. Results We found that high Wnt5a+CD68+/CD68+ TAMs ratio was significantly associated with poor prognosis in CRC patients and Wnt5a+ TAM was an M2-like TAM subtype. Subsequently, we found that Wnt5a induced macrophages to secrete IL-10, which then acted as an autocrine cytokine to induce M2 polarization of these macrophages. IL-10 neutralizing antibody completely reversed the pro-M2 effect of Wnt5a. Mechanistically, the CaKMII-ERK1/2-STAT3 pathway was required for Wnt5a-mediated IL-10 expression in macrophages. Furthermore, Wnt5a-induced M2 macrophages promoted CRC cells proliferation, migration and invasion; knockdown of Wnt5a in TAMs significantly impaired the pro-tumor functions of TAMs. Conclusions Our data indicate that Wnt5a could induce M2 polarization of TAMs by regulating CaKMII-ERK1/2-STAT3 pathway–mediated IL-10 secretion, ultimately promoting tumor growth and metastasis of CRC.
Collapse
Affiliation(s)
- Qing Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dongdong Shi
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Chen Wei
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jialin Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xiaobin Lin
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jian Bai
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Zhenxian Xiang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Sihao Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Keshu Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
16
|
Baig MS, Roy A, Rajpoot S, Liu D, Savai R, Banerjee S, Kawada M, Faisal SM, Saluja R, Saqib U, Ohishi T, Wary KK. Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res 2020; 69:435-451. [DOI: 10.1007/s00011-020-01318-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
|
17
|
Liu Q, Song J, Pan Y, Shi D, Yang C, Wang S, Xiong B. Wnt5a/CaMKII/ERK/CCL2 axis is required for tumor-associated macrophages to promote colorectal cancer progression. Int J Biol Sci 2020; 16:1023-1034. [PMID: 32140070 PMCID: PMC7053330 DOI: 10.7150/ijbs.40535] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are closely correlated with tumor occurrence, invasion, and metastasis. However, factors affecting the biological functions of TAMs in colorectal cancer (CRC) are incompletely understood. Here, we found that Wnt5a was mainly expressed on TAMs of tumor stroma but not on CRC cells. Subsequently, we found that Wnt5a+ TAMs facilitated tumor cell proliferation and migration, and recruited macrophages infiltration. Furthermore, Wnt5a knockdown impaired the pro-tumor roles of TAMs in vivo and in vitro. Mechanistically, the cancer-promoting roles of Wnt5a in TAMs depended on CaMKII-ERK pathway-mediated CCL2 secretion. Our data reveal the crucial role played by TAM-expressed Wnt5a in CRC tumorigenesis through paracrine secretion of CCL2. We first report the connection between Wnt5a/CaMKII/ERK/CCL2 axis and biological functions of TAMs in tumor microenvironment, indicating that Wnt5a may be a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Qing Liu
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China.,Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Jialin Song
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China.,Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Yue Pan
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dongdong Shi
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China.,Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China.,Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China.,Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China.,Hubei Cancer Clinical Study Center, Wuhan 430071, China
| |
Collapse
|
18
|
Characterization of tumor-infiltrating immune cells in relation to microbiota in colorectal cancers. Cancer Immunol Immunother 2019; 69:23-32. [DOI: 10.1007/s00262-019-02433-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/19/2019] [Indexed: 01/07/2023]
|
19
|
Javarsiani MH, Javanmard SH, Colonna F. Metastatic components in colorectal cancer. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:75. [PMID: 31523261 PMCID: PMC6734673 DOI: 10.4103/jrms.jrms_957_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Recent experiments have shown that cells with different genetic mutations can give rise to cancer transformation, both in vitro and in vivo, supported by the crosstalk between cancer cells and stroma. The stroma and the complex set of involved cells make up the tumor microenvironment that supports the engraftment of metastatic cells. In fact, environmental factors support colorectal cancer arise by formation and maintenance of cancer stem cells (CSCs). In this review, we discuss interactions between CSCs and their microenvironment that can provide better therapeutic opportunities in the metastatic cancer.
Collapse
Affiliation(s)
| | - Shagayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Francesca Colonna
- Department of General Pathology, Cattolica del Sacro Cuore Largo Francesco University, Rome, Italy
| |
Collapse
|
20
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
21
|
Song C, Gao D, Yuan T, Chen Y, Liu L, Chen X, Jiang Y. Microfluidic three-dimensional biomimetic tumor model for studying breast cancer cell migration and invasion in the presence of interstitial flow. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Wu J, Li H, Xie H, Wu X, Lan P. The malignant role of exosomes in the communication among colorectal cancer cell, macrophage and microbiome. Carcinogenesis 2019; 40:601-610. [PMID: 30864655 DOI: 10.1093/carcin/bgy138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/15/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jinjie Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyan Li
- Department of Breast and Thyroid Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianrui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Wang L, Li X, Wang B. The cytotoxicity activity of Hohenbuehelia serotina polyphenols on HeLa cells via induction of cell apoptosis and cell cycle arrest. Food Chem Toxicol 2019; 124:239-248. [DOI: 10.1016/j.fct.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
|
24
|
Deficiency in STAT1 Signaling Predisposes Gut Inflammation and Prompts Colorectal Cancer Development. Cancers (Basel) 2018; 10:cancers10090341. [PMID: 30235866 PMCID: PMC6162416 DOI: 10.3390/cancers10090341] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is part of the Janus kinase (JAK/STAT) signaling pathway that controls critical events in intestinal immune function related to innate and adaptive immunity. Recent studies have implicated STAT1 in tumor⁻stroma interactions, and its expression and activity are perturbed during colon cancer. However, the role of STAT1 during the initiation of inflammation-associated cancer is not clearly understood. To determine the role of STAT1 in colitis-associated colorectal cancer (CAC), we analyzed the tumor development and kinetics of cell recruitment in wild-type WT or STAT1-/- mice treated with azoxymethane (AOM) and dextran sodium sulfate (DSS). Following CAC induction, STAT1-/- mice displayed an accelerated appearance of inflammation and tumor formation, and increased damage and scores on the disease activity index (DAI) as early as 20 days after AOM-DSS exposure compared to their WT counterparts. STAT1-/- mice showed elevated colonic epithelial cell proliferation in early stages of injury-induced tumor formation and decreased apoptosis in advanced tumors with over-expression of the anti-apoptotic protein Bcl2 at the colon. STAT1-/- mice showed increased accumulation of Ly6G⁺Ly6C-CD11b⁺ cells in the spleen at 20 days of CAC development with concomitant increases in the production of IL-17A, IL-17F, and IL-22 cytokines compared to WT mice. Our findings suggest that STAT1 plays a role as a tumor suppressor molecule in inflammation-associated carcinogenesis, particularly during the very early stages of CAC initiation, modulating immune responses as well as controlling mechanisms such as apoptosis and cell proliferation.
Collapse
|
25
|
Akeus P, Szeponik L, Ahlmanner F, Sundström P, Alsén S, Gustavsson B, Sparwasser T, Raghavan S, Quiding-Järbrink M. Regulatory T cells control endothelial chemokine production and migration of T cells into intestinal tumors of APC min/+ mice. Cancer Immunol Immunother 2018; 67:1067-1077. [PMID: 29671006 PMCID: PMC6006230 DOI: 10.1007/s00262-018-2161-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 01/17/2023]
Abstract
Tumor-infiltrating lymphocytes are crucial for anti-tumor immunity. We have previously shown that regulatory T cells (Treg) are able to reduce T-cell transendothelial migration in vitro and accumulation of effector T cells in intestinal tumors in vivo. Treg depletion also resulted in increased levels of the chemokines CXCL9 and CXCL10 specifically in the tumors. In this study, we investigated the mechanisms for Treg mediated suppression of T-cell migration into intestinal tumors in the APCmin/+ mouse model. By breeding APCmin/+ mice with DEREG mice, which harbour a high affinity diphtheria toxin receptor under the control of the FOXP3 promoter, we were able to deplete Treg in tumor-bearing mice. Using adoptive transfer experiments, we could document a markedly increased migration of T cells specifically into Treg depleted tumors, and that Treg depletion results in increased production of the CXCR3 ligand CXCL10 from endothelial cells in the tumors. Furthermore, we were able to demonstrate that T cells use CXCR3 to migrate into intestinal tumors. In addition, human colon adenocarcinomas express high levels of mRNA CXCR3 ligands and tumor endothelial cells produce CXCL9 and CXCL10 ex vivo. In conclusion, this study demonstrates that Treg reduce endothelial CXCL10 production, inhibit T-cell migration into tumors and that CXCR3 mediated signalling is crucial for lymphocyte accumulation in intestinal tumors. Thus, immunotherapy aimed at Treg depletion may be effective by increasing not only T effector cell activity, but also their accumulation in tumors.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Cell Movement
- Chemokine CXCL9/metabolism
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Disease Models, Animal
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Female
- Humans
- Intestinal Neoplasms/immunology
- Intestinal Neoplasms/metabolism
- Intestinal Neoplasms/pathology
- Lymphocyte Depletion
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Receptors, CXCR3/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Paulina Akeus
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 435, 405 30, Gothenburg, Sweden.
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 435, 405 30, Gothenburg, Sweden
| | - Filip Ahlmanner
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 435, 405 30, Gothenburg, Sweden
| | - Patrik Sundström
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 435, 405 30, Gothenburg, Sweden
| | - Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 435, 405 30, Gothenburg, Sweden
| | - Bengt Gustavsson
- Department of Surgery, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tim Sparwasser
- Centre for Experimental and Clinical Infection Research, Institute of Infection Immunology, Twincore, Hanover, Germany
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 435, 405 30, Gothenburg, Sweden
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 435, 405 30, Gothenburg, Sweden
| |
Collapse
|
26
|
Porta C, Ippolito A, Consonni FM, Carraro L, Celesti G, Correale C, Grizzi F, Pasqualini F, Tartari S, Rinaldi M, Bianchi P, Balzac F, Vetrano S, Turco E, Hirsch E, Laghi L, Sica A. Protumor Steering of Cancer Inflammation by p50 NF-κB Enhances Colorectal Cancer Progression. Cancer Immunol Res 2018; 6:578-593. [PMID: 29588321 DOI: 10.1158/2326-6066.cir-17-0036] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 11/27/2017] [Accepted: 03/09/2018] [Indexed: 12/23/2022]
Abstract
Although tumor-associated macrophages (TAM) display a M2-skewed tumor-promoting phenotype in most cancers, in colorectal cancer, both TAM polarization and its impact remain controversial. We investigated the role of the M2-polarizing p50 NF-κB subunit in orchestrating TAM phenotype, tumor microenvironment composition, and colorectal cancer progression. We first demonstrated, by parallel studies in colitis-associated cancer (CAC) and in genetically driven ApcMin mouse models, that the p50-dependent inhibition of M1-polarized gut inflammation supported colorectal cancer development. In accordance with these studies, p50-/- mice displayed exacerbated CAC with fewer and smaller tumors, along with enhanced levels of M1/Th1 cytokines/chemokines, including IL12 and CXCL10, whose administration restrained CAC development in vivo The inflammatory profile supporting tumor resistance in colons from p50-/- tumor bearers correlated inversely with TAM load and positively with both recruitment of NK, NKT, CD8+ T cells and number of apoptotic tumor cells. In agreement, myeloid-specific ablation of p50 promoted tumor resistance in mice, whereas in colorectal cancer patients, a high number of p50+ TAMs at the invasive margin was associated with decreased IL12A and TBX21 expression and worse postsurgical outcome. Our findings point to p50 involvement in colorectal cancer development, through its engagement in the protumor activation of macrophages, and identify a candidate for prognostic and target therapeutic intervention. Cancer Immunol Res; 6(5); 578-93. ©2018 AACR.
Collapse
Affiliation(s)
- Chiara Porta
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "Amedeo Avogadro," Novara, Italy.
| | - Alessandro Ippolito
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "Amedeo Avogadro," Novara, Italy
| | - Francesca Maria Consonni
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "Amedeo Avogadro," Novara, Italy
| | - Lorenzo Carraro
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "Amedeo Avogadro," Novara, Italy
| | | | | | - Fabio Grizzi
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | | | - Maurizio Rinaldi
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "Amedeo Avogadro," Novara, Italy
| | - Paolo Bianchi
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Fiorella Balzac
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Torino, Italy
| | | | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Torino, Italy
| | - Luigi Laghi
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "Amedeo Avogadro," Novara, Italy. .,Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
27
|
Kather JN, Halama N, Jaeger D. Genomics and emerging biomarkers for immunotherapy of colorectal cancer. Semin Cancer Biol 2018; 52:189-197. [PMID: 29501787 DOI: 10.1016/j.semcancer.2018.02.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a common and lethal disease with a high therapeutic need. For most patients with metastatic CRC, chemotherapy is the only viable option. Currently, immunotherapy is restricted to the particular genetic subgroup of mismatch-repair deficient (MMRd)/microsatellite instable (MSI) CRC. Anti-PD1 therapy was recently FDA-approved as a second-line treatment in this subgroup. However, in a metastatic setting, these MMRd/MSI tumors are vastly outnumbered by mismatch-repair proficient (MMRp)/microsatellite stable (MSS) tumors. These MMRp/MSS tumors do not meaningfully respond to any traditional immunotherapy approach including checkpoint blockade, adoptive cell transfer and vaccination. This resistance to immunotherapy is due to a complex tumor microenvironment that counteracts antitumor immunity through a combination of poorly antigenic tumor cells and an immunosuppressive tumor microenvironment. To find ways of overcoming immunotherapy resistance in the majority of CRC patients, it is necessary to analyze the immunological makeup in an in-depth and personalized way and in the context of their tumor genetic makeup. Flexible, biomarker-guided early-phase immunotherapy trials are needed to optimize this workflow. In this review, we detail key mechanisms for immune evasion and emerging immune biomarkers for personalized immunotherapy in CRC. Also, we present a template for biomarker-guided clinical trials that are needed to move new immunotherapy approaches closer to clinical application.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niels Halama
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dirk Jaeger
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
28
|
Macrophage conditioned medium promotes colorectal cancer stem cell phenotype via the hedgehog signaling pathway. PLoS One 2018; 13:e0190070. [PMID: 29293549 PMCID: PMC5749743 DOI: 10.1371/journal.pone.0190070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/07/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND There is conflicting data on the role of macrophages in colorectal cancer (CRC); some studies have shown that macrophages can exert an anti-tumor effect whereas others show that macrophages are tumor promoting. We sought to determine the role of conditioned medium (CM) from macrophages, in particular classically activated macrophages, on the development of the CSC phenotype in CRC cells, which is believed to mediate tumor growth and chemoresistance. METHODS Murine (CT26) and human (HCP-1) CRC cell lines were treated with CM from lipopolysaccharide (LPS)-activated murine macrophages. The CSC population was assessed using the sphere-forming assay and aldehyde dehydrogenase assay. Chemoresistance studies were performed using the MTT assay. CSC transcription factors and SHH protein were analyzed by Western blotting. RESULTS The results showed that LPS-activated macrophage CM induced the CSC phenotype in CRC cells. Further studies showed that the CSC phenotype was mediated by the sonic hedgehog (SHH)-Gli signaling pathway, which is known to drive self-renewal; these effects were blocked by depletion of SHH in macrophage CM. In addition, LPS-activated macrophage CM enhanced chemoresistance. CONCLUSIONS LPS-activated macrophages play an active role in promoting the CSC phenotype through activation of the SHH-Gli signaling pathway in CRC cells.
Collapse
|
29
|
Hull MA, Cuthbert RJ, Ko CWS, Scott DJ, Cartwright EJ, Hawcroft G, Perry SL, Ingram N, Carr IM, Markham AF, Bonifer C, Coletta PL. Paracrine cyclooxygenase-2 activity by macrophages drives colorectal adenoma progression in the Apc Min/+ mouse model of intestinal tumorigenesis. Sci Rep 2017; 7:6074. [PMID: 28729694 PMCID: PMC5519705 DOI: 10.1038/s41598-017-06253-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/12/2017] [Indexed: 01/29/2023] Open
Abstract
Genetic deletion or pharmacological inhibition of cyclooxygenase (COX)-2 abrogates intestinal adenoma development at early stages of colorectal carcinogenesis. COX-2 is localised to stromal cells (predominantly macrophages) in human and mouse intestinal adenomas. Therefore, we tested the hypothesis that paracrine Cox-2-mediated signalling from macrophages drives adenoma growth and progression in vivo in the ApcMin/+ mouse model of intestinal tumorigenesis. Using a transgenic C57Bl/6 mouse model of Cox-2 over-expression driven by the chicken lysozyme locus (cLys-Cox-2), which directs integration site-independent, copy number-dependent transgene expression restricted to macrophages, we demonstrated that stromal macrophage Cox-2 in colorectal (but not small intestinal) adenomas from cLys-Cox-2 x ApcMin/+ mice was associated with significantly increased tumour size (P = 0.025) and multiplicity (P = 0.025), compared with control ApcMin/+ mice. Transgenic macrophage Cox-2 expression was associated with increased dysplasia, epithelial cell Cox-2 expression and submucosal tumour invasion, as well as increased nuclear β-catenin translocation in dysplastic epithelial cells. In vitro studies confirmed that paracrine macrophage Cox-2 signalling drives catenin-related transcription in intestinal epithelial cells. Paracrine macrophage Cox-2 activity drives growth and progression of ApcMin/+ mouse colonic adenomas, linked to increased epithelial cell β-catenin dysregulation. Stromal cell (macrophage) gene regulation and signalling represent valid targets for chemoprevention of colorectal cancer.
Collapse
Affiliation(s)
- Mark A Hull
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom.
| | - Richard J Cuthbert
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - C W Stanley Ko
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Daniel J Scott
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Elizabeth J Cartwright
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Gillian Hawcroft
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Sarah L Perry
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Nicola Ingram
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Ian M Carr
- Section of Translational Medicine, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Alexander F Markham
- Section of Translational Medicine, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Constanze Bonifer
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - P Louise Coletta
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
30
|
Zou K, Wang Y, Hu Y, Zheng L, Xu W, Li G. Specific tumor-derived CCL2 mediated by pyruvate kinase M2 in colorectal cancer cells contributes to macrophage recruitment in tumor microenvironment. Tumour Biol 2017; 39:1010428317695962. [PMID: 28347237 DOI: 10.1177/1010428317695962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Development of colorectal cancer has been considered as a result of imbalance of pro- and anti-inflammatory intestinal microenvironment accompanied by macrophage recruitment. Despite macrophages are implicated in remodeling tumor microenvironment, the mechanism of macrophage recruitment is not fully elucidated yet. In this study, we reported clinical association of highly expressed pyruvate kinase M2 in colorectal cancer with macrophage attraction. The conditioned medium from Caco-2 and HT-29 cells with depleted pyruvate kinase M2 dramatically reduced macrophage recruitment, which is reversed by addition of, a critical chemotaxis factor to macrophage migration, rCCL2. Silencing of endogenous pyruvate kinase M2 markedly decreased CCL2 expression and secretion by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Endogenous pyruvate kinase M2 interacted with p65 and mediated nuclear factor-κB signaling pathway and mainly regulated phosphorylation of Ser276 on p65 nuclear factor-κB. In addition, inhibition of macrophage recruitment caused by pyruvate kinase M2 silencing was rescued by ectopic expression of p65. Interestingly, pyruvate kinase M2 highly expressed in colorectal cancer tissue, which is correction with macrophage distribution. Taken together, we revealed a novel mechanism of pyruvate kinase M2 in promoting colorectal cancer progression by recruitment of macrophages through p65 nuclear factor-κB-mediated expression of CCL2.
Collapse
Affiliation(s)
- Kejian Zou
- 1 Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,2 Hainan General Hospital, Haikou, China
| | - Yaodong Wang
- 3 Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Yan Hu
- 2 Hainan General Hospital, Haikou, China
| | | | - Wanfu Xu
- 5 Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guoxin Li
- 1 Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Tauriello DVF, Calon A, Lonardo E, Batlle E. Determinants of metastatic competency in colorectal cancer. Mol Oncol 2017; 11:97-119. [PMID: 28085225 PMCID: PMC5423222 DOI: 10.1002/1878-0261.12018] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types and represents a major therapeutic challenge. Although initial events in colorectal carcinogenesis are relatively well characterized and treatment for early‐stage disease has significantly improved over the last decades, the mechanisms underlying metastasis – the main cause of death – remain poorly understood. Correspondingly, no effective therapy is currently available for advanced or metastatic disease. There is increasing evidence that colorectal cancer is hierarchically organized and sustained by cancer stem cells, in concert with various stromal cell types. Here, we review the interplay between cancer stem cells and their microenvironment in promoting metastasis and discuss recent insights relating to both patient prognosis and novel targeted treatment strategies. A better understanding of these topics may aid the prevention or reduction of metastatic burden.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Spain
| | - Alexandre Calon
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Enza Lonardo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|