1
|
Zhao M, Tan X, Wu X. The Role of Ficolins in Lung Injury. J Innate Immun 2024; 16:440-450. [PMID: 39159606 PMCID: PMC11521482 DOI: 10.1159/000540954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Respiratory diseases seriously threaten human health worldwide, and lung injury is an important component of respiratory disease. Complement activation is an important function of the innate immune system. Complement activation helps the body defend against invasion by external microorganisms, whereas excessive complement activation can exacerbate tissue damage or lead to unwanted side effects. Ficolins are a class of immune-related proteins in the lectin pathway that play important roles in the body's immune defense. Although individual ficolins are not well understood, current information suggests that ficolins may play an important regulatory role in lung injury. SUMMARY Several studies have shown that ficolins are involved in the immune response in the lung, particularly in the response to infectious and inflammatory processes. KEY MESSAGES This review summarizes the role of ficolins in lung injury. Ficolins may influence the development and repair of lung injury by recognizing and binding pathogenic microorganisms, modulating the inflammatory response, and promoting the clearance of immune cells. In addition, ficolins are associated with the development and progression of lung diseases (such as pneumonia and ARDS) and may have an important impact on the pathophysiological processes of inflammatory diseases.
Collapse
Affiliation(s)
- Meiyun Zhao
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaowu Tan
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Huang L, Tan X, Xuan W, Luo Q, Xie L, Xi Y, Li R, Li L, Li F, Zhao M, Jiang Y, Wu X. Ficolin-A/2 Aggravates Severe Lung Injury through Neutrophil Extracellular Traps Mediated by Gasdermin D-Induced Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:989-1006. [PMID: 38442803 DOI: 10.1016/j.ajpath.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influenced NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of Fcna, but not Fcnb, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in Fcna knockout mice. In vitro, neutrophils derived from Fcna-/- mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, GSDMD knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas Fcn2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D-mediated pyroptosis.
Collapse
Affiliation(s)
- Li Huang
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiaowu Tan
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Luo
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Xie
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunzhu Xi
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Rong Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Feifan Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiyun Zhao
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongliang Jiang
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Xu Wu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
3
|
Blangy-Letheule A, Vergnaud A, Dupas T, Habert D, Montnach J, Oulehri W, Hassoun D, Denis M, Lecomte J, Persello A, Roquilly A, Courty J, Seve M, Leroux AA, Rozec B, Bourgoin-Voillard S, De Waard M, Lauzier B. Value of a secretomic approach for distinguishing patients with COVID-19 viral pneumonia among patients with respiratory distress admitted to intensive care unit. J Med Virol 2024; 96:e29756. [PMID: 38899468 DOI: 10.1002/jmv.29756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
In intensive care units, COVID-19 viral pneumonia patients (VPP) present symptoms similar to those of other patients with Nonviral infection (NV-ICU). To better manage VPP, it is therefore interesting to better understand the molecular pathophysiology of viral pneumonia and to search for biomarkers that may clarify the diagnosis. The secretome being a set of proteins secreted by cells in response to stimuli represents an opportunity to discover new biomarkers. The objective of this study is to identify the secretomic signatures of VPP with those of NV-ICU. Plasma samples and clinical data from NV-ICU (n = 104), VPP (n = 30) or healthy donors (HD, n = 20) were collected at Nantes Hospital (France) upon admission. Samples were enriched for the low-abundant proteins and analyzed using nontarget mass spectrometry. Specifically deregulated proteins (DEP) in VPP versus NV-ICU were selected. Combinations of 2 to 4 DEPs were established. The differences in secretome profiles of the VPP and NV-ICU groups were highlighted. Forty-one DEPs were specifically identified in VPP compared to NV-ICU. We describe five of the best combinations of 3 proteins (complement component C9, Ficolin-3, Galectin-3-binding protein, Fibrinogen alpha, gamma and beta chain, Proteoglycan 4, Coagulation factor IX and Cdc42 effector protein 4) that show a characteristic receptor function curve with an area under the curve of 95.0%. This study identifies five combinations of candidate biomarkers in VPP compared to NV-ICU that may help distinguish the underlying causal molecular alterations.
Collapse
Affiliation(s)
| | - Amandine Vergnaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Thomas Dupas
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Damien Habert
- University of Paris-Est Créteil (UPEC), Inserm U955, Equipe 21, UMR_S955, APHP, Hôpital H. Mondor-A. Chenevier, Centre d'Investigation Clinique Biothérapie, Créteil, France
- AP-HP, Hopital Henri Mondor, Creteil, France
| | - Jérôme Montnach
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Walid Oulehri
- Service d'Anesthésie-Réanimation et Médecine péri-Opératoire, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Dorian Hassoun
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Jules Lecomte
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Antoine Persello
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthésie Réanimation, Nantes, France
| | - José Courty
- University of Paris-Est Créteil (UPEC), Inserm U955, Equipe 21, UMR_S955, APHP, Hôpital H. Mondor-A. Chenevier, Centre d'Investigation Clinique Biothérapie, Créteil, France
- AP-HP, Hopital Henri Mondor, Creteil, France
| | - Michel Seve
- Univ. Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Saint-Martin-D'hères, France
- CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, Grenoble, France
| | - Aurélia A Leroux
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Oniris, Nantes, France
| | - Bertrand Rozec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Sandrine Bourgoin-Voillard
- Univ. Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Saint-Martin-D'hères, France
- CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, Grenoble, France
| | - Michel De Waard
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- LabEx Ion Channels, Science and Therapeutics, Valbonne, France
| | - Benjamin Lauzier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| |
Collapse
|
4
|
Direct Phenotyping and Principal Component Analysis of Type Traits Implicate Novel QTL in Bovine Mastitis through Genome-Wide Association. Animals (Basel) 2021; 11:ani11041147. [PMID: 33920522 PMCID: PMC8072530 DOI: 10.3390/ani11041147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary It is well established that the physical conformation of a cow’s udder and teats may influence her susceptibility to mastitis, an inflammatory condition of the udder, which has 25% prevalence in the United States. Our aim was to improve the biological understanding of the genetics underlying mastitis by intensively characterizing cows for udder and teat conformation, including the novel traits of teat width and end shape, and directly associating those phenotypes with high-density genotypes for those exact same cows. We also generated a composite measure that accounts for multiple high-mastitis-risk udder and teat conformations in a single index for risk phenotypes. Using this approach, we identified novel genetic markers associated with udder and teat conformation, which may be good candidates for inclusion in national genetic evaluations for selection of mastitis-resistant cows. Mastitis is the costliest disease facing US dairy producers, and integrating genetic information regarding disease susceptibility into breeding programs may be an efficient way to mitigate economic loss, support the judicious use of antimicrobials, and improve animal welfare. Abstract Our objectives were to robustly characterize a cohort of Holstein cows for udder and teat type traits and perform high-density genome-wide association studies for those traits within the same group of animals, thereby improving the accuracy of the phenotypic measurements and genomic association study. Additionally, we sought to identify a novel udder and teat trait composite risk index to determine loci with potential pleiotropic effects related to mastitis. This approach was aimed at improving the biological understanding of the genetic factors influencing mastitis. Cows (N = 471) were genotyped on the Illumina BovineHD777k beadchip and scored for front and rear teat length, width, end shape, and placement; fore udder attachment; udder cleft; udder depth; rear udder height; and rear udder width. We used principal component analysis to create a single composite measure describing type traits previously linked to high odds of developing mastitis within our cohort of cows. Genome-wide associations were performed, and 28 genomic regions were significantly associated (Bonferroni-corrected p < 0.05). Interrogation of these genomic regions revealed a number of biologically plausible genes whicht may contribute to the development of mastitis and whose functions range from regulating cell proliferation to immune system signaling, including ZNF683, DHX9, CUX1, TNNT1, and SPRY1. Genetic investigation of the risk composite trait implicated a novel locus and candidate genes that have potentially pleiotropic effects related to mastitis.
Collapse
|
5
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
6
|
Kulkarni HS, Ramphal K, Ma L, Brown M, Oyster M, Speckhart KN, Takahashi T, Byers DE, Porteous MK, Kalman L, Hachem RR, Rushefski M, McPhatter J, Cano M, Kreisel D, Scavuzzo M, Mittler B, Cantu E, Pilely K, Garred P, Christie JD, Atkinson JP, Gelman AE, Diamond JM. Local complement activation is associated with primary graft dysfunction after lung transplantation. JCI Insight 2020; 5:138358. [PMID: 32750037 PMCID: PMC7526453 DOI: 10.1172/jci.insight.138358] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The complement system plays a key role in host defense but is activated by ischemia/reperfusion injury (IRI). Primary graft dysfunction (PGD) is a form of acute lung injury occurring predominantly due to IRI, which worsens survival after lung transplantation (LTx). Local complement activation is associated with acute lung injury, but whether it is more reflective of allograft injury compared with systemic activation remains unclear. We proposed that local complement activation would help identify those who develop PGD after LTx. We also aimed to identify which complement activation pathways are associated with PGD. METHODS We performed a multicenter cohort study at the University of Pennsylvania and Washington University School of Medicine. Bronchoalveolar lavage (BAL) and plasma specimens were obtained from recipients within 24 hours after LTx. PGD was scored based on the consensus definition. Complement activation products and components of each arm of the complement cascade were measured using ELISA. RESULTS In both cohorts, sC4d and sC5b-9 levels were increased in BAL of subjects with PGD compared with those without PGD. Subjects with PGD also had higher C1q, C2, C4, and C4b, compared with subjects without PGD, suggesting classical and lectin pathway involvement. Ba levels were higher in subjects with PGD, suggesting alternative pathway activation. Among lectin pathway–specific components, MBL and FCN-3 had a moderate-to-strong correlation with the terminal complement complex in the BAL but not in the plasma. CONCLUSION Complement activation fragments are detected in the BAL within 24 hours after LTx. Components of all 3 pathways are locally increased in subjects with PGD. Our findings create a precedent for investigating complement-targeted therapeutics to mitigate PGD. FUNDING This research was supported by the NIH, American Lung Association, Children’s Discovery Institute, Robert Wood Johnson Foundation, Cystic Fibrosis Foundation, Barnes-Jewish Hospital Foundation, Danish Heart Foundation, Danish Research Foundation of Independent Research, Svend Andersen Research Foundation, and Novo Nordisk Research Foundation. Substantial differences between local and systemic complement activation in lung transplant recipients who develop primary graft dysfunction are identified in two independent cohorts.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristy Ramphal
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lina Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Melanie Brown
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Oyster
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaitlyn N Speckhart
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tsuyoshi Takahashi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E Byers
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K Porteous
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurel Kalman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ramsey R Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Melanie Rushefski
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ja'Nia McPhatter
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marlene Cano
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Brigitte Mittler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Edward Cantu
- Department of Surgery, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jason D Christie
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John P Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua M Diamond
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Wu X, Yao D, Bao L, Liu D, Xu X, An Y, Zhang X, Cao B. Ficolin A derived from local macrophages and neutrophils protects against lipopolysaccharide-induced acute lung injury by activating complement. Immunol Cell Biol 2020; 98:595-606. [PMID: 32339310 DOI: 10.1111/imcb.12344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Ficolins are important and widely distributed pattern recognition molecules that can induce lectin complement pathway activation and initiate the innate immune response. Although ficolins can bind lipopolysaccharide (LPS) in vitro, the sources, dynamic changes and roles of local ficolins in LPS-induced pulmonary inflammation and injury remain poorly understood. In this study, we established a ficolin knockout mouse model by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology, and used flow cytometry and hematoxylin and eosin staining to study the expressions and roles of local ficolins in LPS-induced pulmonary inflammation and injury. Our results show that besides ficolin B (FcnB), ficolin A (FcnA) is also expressed in leukocytes from the bone marrow, peripheral blood, lung and spleen. Further analyses showed that macrophages and neutrophils are the main sources of FcnA and FcnB, and T and B cells also express a small amount of FcnB. The intranasal administration of LPS induced local pulmonary inflammation with the increased recruitment of macrophages and neutrophils. LPS stimulation induced increased expression of FcnA and FcnB in neutrophils at the acute stage and in macrophages at the late stage. The severity of the lung injury and local inflammation of Fcna-/- mice was increased by the induction of extracellular complement activation. The recovery of LPS-induced local lung inflammation and injury was delayed in Fcnb-/- mice. Hence, these findings suggested that the local macrophage- and neutrophil-derived FcnA protects against LPS-induced acute lung injury by mediating extracellular complement activation.
Collapse
Affiliation(s)
- Xu Wu
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine , Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Di Liu
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Yunqing An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100006, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
8
|
Jarlhelt I, Genster N, Kirketerp-Møller N, Skjoedt MO, Garred P. The ficolin response to LPS challenge in mice. Mol Immunol 2019; 108:121-127. [PMID: 30818229 DOI: 10.1016/j.molimm.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
The ficolins belong to an important family of pattern recognition molecules, which contributes to complement activation via the lectin pathway. How the ficolins respond to inflammatory stimuli remains only partly understood. In the present study, we investigated the ficolin A and ficolin B expression and protein distribution patterns in a mouse model of LPS-induced inflammation. The time- and tissue-specific expression of ficolin A and B was determined by real time PCR. Furthermore, ficolin protein levels in serum and bone marrow extracts from LPS challenged mice were determined by novel in-house developed sandwich ELISAs. Ficolin A was mainly expressed in liver and spleen. However, our data also suggested that ficolin A is expressed in bone marrow, which is the main site of ficolin B expression. The level of ficolin A and B expression was increased after stimulation with LPS in the investigated tissues. This was followed by a downregulation of expression, causing mRNA levels to return to baseline 24 h post LPS challenge. Protein levels appeared to follow the same pattern as the expression profiles, with an exception of ficolin B levels in serum, which kept increasing for 24 h. Ficolin A was likewise significantly increased in bronchoalveolar lavage fluid from mice infected with the fungi A. fumigatus, pointing towards a similar effect of the ficolins in non-sterile mouse models of inflammation. The results demonstrate that LPS-induced inflammation can induce a significant ficolin response, suggesting that the murine ficolins are acute phase reactants with increase in both mRNA expression and protein levels during systemic inflammation.
Collapse
Affiliation(s)
- Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kirketerp-Møller
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Bidula S, Sexton DW, Schelenz S. Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms. J Immunol Res 2019; 2019:3205072. [PMID: 30868077 PMCID: PMC6379837 DOI: 10.1155/2019/3205072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
10
|
Genster N, Østrup O, Schjalm C, Eirik Mollnes T, Cowland JB, Garred P. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo. Sci Rep 2017; 7:3852. [PMID: 28634324 PMCID: PMC5478672 DOI: 10.1038/s41598-017-04121-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022] Open
Abstract
Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested. Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference between wildtype and ficolin deficient mice in morbidity and mortality by LPS-induced inflammation. Moreover, there was no difference between wildtype and ficolin deficient mice in the inflammatory cytokine profiles after LPS challenge. These findings were substantiated by microarray analysis revealing an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Østrup
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and K.J. Jebsen TREC, University of Tromsø, Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Fernandez-García CE, Burillo E, Lindholt JS, Martinez-Lopez D, Pilely K, Mazzeo C, Michel JB, Egido J, Garred P, Blanco-Colio LM, Martin-Ventura JL. Association of ficolin-3 with abdominal aortic aneurysm presence and progression. J Thromb Haemost 2017; 15:575-585. [PMID: 28039962 DOI: 10.1111/jth.13608] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 02/05/2023]
Abstract
Essentials Abdominal aortic aneurysm (AAA) is asymptomatic and its evolution unpredictable. To find novel potential biomarkers of AAA, microvesicles are an excellent source of biomarkers. Ficolin-3 is increased in microvesicles obtained from activated platelets and AAA tissue. Increased ficolin-3 plasma levels are associated with AAA presence and progression. SUMMARY Background Abdominal aortic aneurysm (AAA) patients are usually asymptomatic and AAA evolution is unpredictable. Ficolin-3, mainly synthesized by the liver, is a molecule of the lectin complement-activation pathway involved in AAA pathophysiology. Objectives To define extra-hepatic sources of ficolin-3 in AAA and investigate the role of ficolin-3 as a biomarker of the presence and progression of AAA. Methods Microvesicles (exosomes and microparticles) were isolated from culture-conditioned medium of ADP-activated platelets, as well as from AAA tissue-conditioned medium (thrombus and wall). Ficolin-3 levels were analyzed by western-blot, real-time PCR, immunohistochemistry and ELISA. Results Increased ficolin-3 levels were observed in microvesicles isolated from activated platelets. Similarly, microvesicles released from AAA tissue display increased ficolin-3 levels as compared with those from healthy tissue. Moreover, ficolin-3 mRNA levels in the AAA wall were greatly increased compared with healthy aortic walls. Immunohistochemistry of AAA tissue demonstrated increased ficolin-3, whereas little staining was present in healthy walls. Finally, increased ficolin-3 levels were observed in AAA patients' plasma (n = 478) compared with control plasma (n = 176), which persisted after adjustment for risk factors (adjusted odds ratio [OR], 5.29; 95% confidence interval [CI], 3.27, 8.57)]. Moreover, a positive association of ficolin-3 with aortic diameter (Rho, 0.25) and need for surgical repair was observed, also after adjustment for potential confounding factors (adjusted hazard ratio, 1.55; 95% CI, 1.11, 2.15). Conclusions In addition to its hepatic expression, ficolin-3 may be released into the extracellular medium via microvesicles, by both activated cells and pathological AAA tissue. Ficolin-3 plasma levels are associated with the presence and progression of AAA, suggesting its potential role as a biomarker of AAA.
Collapse
Affiliation(s)
- C-E Fernandez-García
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
| | - E Burillo
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
| | - J S Lindholt
- Department of Thoracic, Heart and Vascular Surgery, University Hospital of Odense, Odense, Denmark
| | - D Martinez-Lopez
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
| | - K Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Sect.7631, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - C Mazzeo
- Department of Cell Biology and Immunology, Molecular Biology Center/CSIC-UAM, Madrid, Spain
| | - J-B Michel
- Inserm, U1148, Université Paris 7, CHU X-Bichat, Paris, France
| | - J Egido
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - P Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Sect.7631, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - L M Blanco-Colio
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - J L Martin-Ventura
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
12
|
Hartmann JP, Mottelson MN, Berg RMG, Plovsing RR. Changes in ventilatory capacity and pulmonary gas exchange during systemic and pulmonary inflammation in humans. APMIS 2016; 125:11-15. [DOI: 10.1111/apm.12626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Jacob P. Hartmann
- Department of Cardiology; University Hospital Rigshospitalet; Copenhagen Denmark
| | - Mathis N. Mottelson
- Department of Clinical Physiology, Nuclear Medicine and PET; University Hospital Rigshospitalet; Copenhagen Denmark
| | - Ronan M. G. Berg
- Department of Clinical Physiology and Nuclear Medicine; Bispebjerg and Frederiksberg Hospitals; Copenhagen Denmark
| | - Ronni R. Plovsing
- Department of Intensive Care; University Hospital Rigshospitalet; Copenhagen Denmark
| |
Collapse
|