1
|
He Q, Lai Z, Zhai Z, Zou B, Shi Y, Feng C. Advances of research in diabetic cardiomyopathy: diagnosis and the emerging application of sequencing. Front Cardiovasc Med 2025; 11:1501735. [PMID: 39872882 PMCID: PMC11769946 DOI: 10.3389/fcvm.2024.1501735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the most prevalent and severe complications associated with diabetes mellitus (DM). The onset of DCM is insidious, with the symptoms being obvious only in the late stage. Consequently, the early diagnosis of DCM is a formidable challenge which significantly influences the treatment and prognosis of DCM. Thus, it becomes imperative to uncover innovative approaches to facilitate the prompt identification and diagnosis of DCM. On the traditional clinical side, we tend to use serum biomarkers as well as imaging as the most common means of diagnosing diseases because of their convenience as well as affordability. As we delve deeper into the mechanisms of DCM, a wide variety of biomarkers are becoming competitive diagnostic indicators. Meanwhile, the application of multiple imaging techniques has also made efforts to promote the diagnosis of DCM. Besides, the spurt in sequencing technology has made it possible to give hints about disease diagnosis from the genome as well as the transcriptome, making diagnosis less difficult, more sensitive, and more predictive. Overall, sequencing technology is expected to be the superior choice of plasma biomarkers for detecting lesions at an earlier stage than imaging, and its judicious utilization combined with imaging technologies will lead to a more sensitive diagnosis of DCM in the future. Therefore, this review meticulously consolidates the progress and utilization of various biomarkers, imaging methods, and sequencing technologies in the realm of DCM diagnosis, with the aim of furnishing novel theoretical foundation and guide future research endeavors towards enhancing the diagnostic and therapeutic landscape of DCM.
Collapse
Affiliation(s)
- Qianqian He
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Ze Lai
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Zhengyao Zhai
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Beibei Zou
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yangkai Shi
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Chao Feng
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
2
|
Chen Q, Wang W, Xu Q, Dai Y, Zhu X, Chen Z, Sun N, Leung C, Gao F, Wu K. The enhancing effects of selenomethionine on harmine in attenuating pathological cardiac hypertrophy via glycolysis metabolism. J Cell Mol Med 2024; 28:e70124. [PMID: 39351650 PMCID: PMC11443162 DOI: 10.1111/jcmm.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Pathological cardiac hypertrophy, a common feature in various cardiovascular diseases, can be more effectively managed through combination therapies using natural compounds. Harmine, a β-carboline alkaloid found in plants, possesses numerous pharmacological functions, including alleviating cardiac hypertrophy. Similarly, Selenomethionine (SE), a primary organic selenium source, has been shown to mitigate cardiac autophagy and alleviate injury. To explores the therapeutic potential of combining Harmine with SE to treat cardiac hypertrophy. The synergistic effects of SE and harmine against cardiac hypertrophy were assessed in vitro with angiotensin II (AngII)-induced hypertrophy and in vivo using a Myh6R404Q mouse model. Co-administration of SE and harmine significantly reduced hypertrophy-related markers, outperforming monotherapies. Transcriptomic and metabolic profiling revealed substantial alterations in key metabolic and signalling pathways, particularly those involved in energy metabolism. Notably, the combination therapy led to a marked reduction in the activity of key glycolytic enzymes. Importantly, the addition of the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) did not further potentiate these effects, suggesting that the antihypertrophic action is predominantly mediated through glycolytic inhibition. These findings highlight the potential of SE and harmine as a promising combination therapy for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Qi Chen
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Wen‐Yan Wang
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Qing‐Yang Xu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical NeurobiologySchool of Basic Medical Sciences, Fudan UniversityShanghaiP. R. China
| | - Yan‐Fa Dai
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Xing‐Yu Zhu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Zhao‐Yang Chen
- Department of Cardiology, Heart Center of Fujian ProvinceFujian Medical University Union HospitalFuzhouFujianP. R. China
| | - Ning Sun
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical NeurobiologySchool of Basic Medical Sciences, Fudan UniversityShanghaiP. R. China
| | - Chung‐Hang Leung
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacaoP. R. China
| | - Fei Gao
- Department of cardiology, Beijing An Zhen HospitalCapital Medical UniversityChaoyangBeijingP. R. China
| | - Ke‐Jia Wu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| |
Collapse
|
3
|
Ruiz Luque J, Cevey ÁC, Pieralisi AV, Poncini C, Erra Díaz F, Azevedo Reis MV, Donato M, Mirkin GA, Goren NB, Penas FN. Fenofibrate Induces a Resolving Profile in Heart Macrophage Subsets and Attenuates Acute Chagas Myocarditis. ACS Infect Dis 2024; 10:1793-1807. [PMID: 38648355 DOI: 10.1021/acsinfecdis.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.
Collapse
Affiliation(s)
- Javier Ruiz Luque
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Ágata Carolina Cevey
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Azul Victoria Pieralisi
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Carolina Poncini
- CONICET - Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires C1121A6B, Argentina
| | - Fernando Erra Díaz
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Marcus Vinicius Azevedo Reis
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Martin Donato
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Buenos Aires C1121A6B, Argentina
| | - Gerardo Ariel Mirkin
- CONICET - Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires C1121A6B, Argentina
| | - Nora Beatriz Goren
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Federico Nicolás Penas
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| |
Collapse
|
4
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
5
|
Nisimura LM, Ferreira RR, Coelho LL, de Souza EM, Gonzaga BM, Ferrão PM, Waghabi MC, de Mesquita LB, Pereira MCDS, Moreira ODC, Lannes-Vieira J, Garzoni LR. Increased angiogenesis parallels cardiac tissue remodelling in experimental acute Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2022; 117:e220005. [PMID: 36417626 PMCID: PMC9677593 DOI: 10.1590/0074-02760220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Angiogenesis has been implicated in tissue injury in several noninfectious diseases, but its role in Chagas disease (CD) physiopathology is unclear. OBJECTIVES The present study aimed to investigate the effect of Trypanosoma cruzi infection on cardiac angiogenesis during the acute phase of experimental CD. METHODS The signalling pathway involved in blood vessel formation and cardiac remodelling was evaluated in Swiss Webster mice infected with the Y strain of T. cruzi. The levels of molecules involved in the regulation of angiogenesis, such as vascular endothelial growth factor-A (VEGF-A), Flk-1, phosphorylated extracellular-signal-regulated protein kinase (pERK), hypoxia-inducible factor-1α (HIF-1α), CD31, α-smooth muscle actin (α-SMA) and also the blood vessel growth were analysed during T. cruzi infection. Hearts were analysed using conventional histopathology, immunohistochemistry and western blotting. FINDINGS In this study, our data demonstrate that T. cruzi acute infection in mice induces exacerbated angiogenesis in the heart and parallels cardiac remodelling. In comparison with noninfected controls, the cardiac tissue of T. cruzi-infected mice presented higher levels of (i) HIF-1α, VEGF-A, Flk-1 and pERK; (ii) angiogenesis; (iii) α-SMA+ cells in the tissue; and (iv) collagen -1 deposition around blood vessels and infiltrating throughout the myocardium. MAIN CONCLUSIONS We observed cardiac angiogenesis during acute experimental T. cruzi infection parallels cardiac inflammation and remodelling.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Roberto Rodrigues Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Laura Lacerda Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Elen Mello de Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Beatriz Matheus Gonzaga
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Patrícia Mello Ferrão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Mariana Caldas Waghabi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Liliane Batista de Mesquita
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| | | | - Otacilio da Cruz Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Joseli Lannes-Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
| | - Luciana Ribeiro Garzoni
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
6
|
Brochet P, Ianni BM, Laugier L, Frade AF, Silva Nunes JP, Teixeira PC, Mady C, Ferreira LRP, Ferré Q, Santos RHB, Kuramoto A, Cabantous S, Steffen S, Stolf AN, Pomerantzeff P, Fiorelli AI, Bocchi EA, Pissetti CW, Saba B, Cândido DDS, Dias FC, Sampaio MF, Gaiotto FA, Marin-Neto JA, Fragata A, Zaniratto RCF, Siqueira S, Peixoto GDL, Rigaud VOC, Bacal F, Buck P, Almeida RR, Lin-Wang HT, Schmidt A, Martinelli M, Hirata MH, Donadi EA, Costa Pereira A, Rodrigues Junior V, Puthier D, Kalil J, Spinelli L, Cunha-Neto E, Chevillard C. Epigenetic regulation of transcription factor binding motifs promotes Th1 response in Chagas disease cardiomyopathy. Front Immunol 2022; 13:958200. [PMID: 36072583 PMCID: PMC9441916 DOI: 10.3389/fimmu.2022.958200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 01/03/2023] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS’s DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.
Collapse
Affiliation(s)
- Pauline Brochet
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Barbara Maria Ianni
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Laurie Laugier
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Inserm, UMR_906, Marseille, France
| | - Amanda Farage Frade
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - João Paulo Silva Nunes
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Charles Mady
- Myocardiopathies and Aortic Diseases Unit, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- RNA Systems Biology Laboratory (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Quentin Ferré
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Ronaldo Honorato Barros Santos
- Division of Transplantation, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Andreia Kuramoto
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sandrine Cabantous
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Inserm, UMR_906, Marseille, France
| | - Samuel Steffen
- Division of Transplantation, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Antonio Noedir Stolf
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Pablo Pomerantzeff
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alfredo Inacio Fiorelli
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Cristina Wide Pissetti
- Laboratory of Immunology, Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Bruno Saba
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Darlan da Silva Cândido
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Fabrício C. Dias
- School of Medicine of Ribeirão Preto Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Ferraz Sampaio
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Fabio Antônio Gaiotto
- Division of Transplantation, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - José Antonio Marin-Neto
- School of Medicine of Ribeirão Preto Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Abílio Fragata
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Ricardo Costa Fernandes Zaniratto
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sergio Siqueira
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Giselle De Lima Peixoto
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vagner Oliveira-Carvalho Rigaud
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Heart Failure Unit, Heart Institute Instituto do Coração (InCor) School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernando Bacal
- Division of Transplantation, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Paula Buck
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Hui Tzu Lin-Wang
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - André Schmidt
- School of Medicine of Ribeirão Preto Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Martino Martinelli
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eduardo Antonio Donadi
- School of Medicine of Ribeirão Preto Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Costa Pereira
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Denis Puthier
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Lionel Spinelli
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| |
Collapse
|
7
|
Gómez-Ochoa SA, Bautista-Niño PK, Rojas LZ, Hunziker L, Muka T, Echeverría LE. Circulating MicroRNAs and myocardial involvement severity in chronic Chagas cardiomyopathy. Front Cell Infect Microbiol 2022; 12:922189. [PMID: 36004323 PMCID: PMC9393411 DOI: 10.3389/fcimb.2022.922189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/18/2022] Open
Abstract
Background Chronic Chagas Cardiomyopathy (CCM) is characterized by a unique pathophysiology in which inflammatory, microvascular and neuroendocrine processes coalesce in the development of one of the most severe cardiomyopathies affecting humans. Despite significant advances in understanding the molecular mechanisms involved in this disease, scarce information is available regarding microRNAs and clinical parameters of disease severity. We aimed to evaluate the association between circulating levels of six microRNAs with markers of myocardial injury and prognosis in this population. Methods Patients with CCM and reduced ejection fraction were included in a prospective exploratory cohort study. We assessed the association of natural log-transformed values of six circulating microRNAs (miR-34a-5p, miR-208a-5p, miR-185-5p, miR-223-5p, let-7d-5p, and miR-454-5p) with NT-proBNP levels and echocardiographic variables using linear regression models adjusted for potential confounders. By using Cox Proportional Hazard models, we examined whether levels of microRNAs could predict a composite outcome (CO), including all-cause mortality, cardiac transplantation, and implantation of a left ventricular assist device (LVAD). Finally, for mRNAs showing significant associations, we predicted the target genes and performed pathway analyses using Targetscan and Reactome Pathway Browser. Results Seventy-four patients were included (59% males, median age: 64 years). After adjustment for age, sex, body mass index, and heart failure medications, only increasing miR-223-5p relative expression levels were significantly associated with better myocardial function markers, including left atrium area (Coef. -10.2; 95% CI -16.35; -4.09), end-systolic (Coef. -45.3; 95% CI -74.06; -16.61) and end-diastolic volumes (Coef. -46.1; 95% CI -81.99; -10.26) of the left ventricle. Moreover, we observed that higher miR-223-5p levels were associated with better left-ventricle ejection fraction and lower NT-proBNP levels. No associations were observed between the six microRNAs and the composite outcome. A total of 123 target genes for miR-223-5p were obtained. From these, several target pathways mainly related to signaling by receptor tyrosine kinases were identified. Conclusions The present study found an association between miR-223-5p and clinical parameters of CCM, with signaling pathways related to receptor tyrosine kinases as a potential mechanism linking low levels of miR-223-5p with CCM worsening.
Collapse
Affiliation(s)
| | | | - Lyda Z. Rojas
- Research Group and Development of Nursing Knowledge (GIDCEN-FCV), Research Center, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Lukas Hunziker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- *Correspondence: Taulant Muka,
| | - Luis E. Echeverría
- Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| |
Collapse
|
8
|
Selenium, TGF-Beta and Infectious Endemic Cardiopathy: Lessons from Benchwork to Clinical Application in Chagas Disease. Biomolecules 2022; 12:biom12030349. [PMID: 35327541 PMCID: PMC8944995 DOI: 10.3390/biom12030349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
For over 60 years, selenium (Se) has been known as an essential microelement to many biological functions, including cardiovascular homeostasis. This review presents a compilation of studies conducted in the past 20 years related to chronic Chagas disease cardiomyopathy (CCC), caused by Trypanosoma cruzi infection, a neglected disease that represents a global burden, especially in Latin America. Experimental and clinical data indicate that Se may be used as a complementary therapy to prevent heart failure and improve heart function. Starting from the main questions “Is Se deficiency related to heart inflammation and arrhythmogenesis in CCC?” and “Could Se be recommended as a therapeutic strategy for CCC?”, we show evidence implicating the complex and multidetermined CCC physiopathology, discussing its possible interplays with the multifunctional cytokine TGF-β as regulators of immune response and fibrosis. We present two new proposals to face this global public health challenge in vulnerable populations affected by this parasitic disease: fibrosis modulation mediated by TGF-β pathways and the possible use of selenoproteins as antioxidants regulating the increased reactive oxygen stress present in CCC inflammatory environments. We assess the opportunity to consider the beneficial effects of Se in preventing heart failure as a concept to be applied for CCC patients.
Collapse
|
9
|
Ferreira RR, Waghabi MC, Bailly S, Feige JJ, Hasslocher-Moreno AM, Saraiva RM, Araujo-Jorge TC. The Search for Biomarkers and Treatments in Chagas Disease: Insights From TGF-Beta Studies and Immunogenetics. Front Cell Infect Microbiol 2022; 11:767576. [PMID: 35186778 PMCID: PMC8847772 DOI: 10.3389/fcimb.2021.767576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The anti-inflammatory cytokine transforming growth factor beta (TGF-β) plays an important role in Chagas disease (CD), a potentially life-threatening illness caused by Trypanosoma cruzi. In this review we revisited clinical studies in CD patients combined with in vitro and in vivo experiments, presenting three main sections: an overview of epidemiological, economic, and clinical aspects of CD and the need for new biomarkers and treatment; a brief panorama of TGF-β roles and its intracellular signaling pathways, and an update of what is known about TGF-β and Chagas disease. In in vitro assays, TGF-β increases during T. cruzi infection and modulates heart cells invasion by the parasite fostering its intracellular parasite cycle. TGF-β modulates host immune response and inflammation, increases heart fibrosis, stimulates remodeling, and slows heart conduction via gap junction modulation. TGF-β signaling inhibitors reverts these effects opening a promising therapeutic approach in pre-clinical studies. CD patients with higher TGF-β1 serum level show a worse clinical outcome, implicating a predictive value of serum TGF-β as a surrogate biomarker of clinical relevance. Moreover, pre-clinical studies in chronic T. cruzi infected mice proved that inhibition of TGF-β pathway improved several cardiac electric parameters, reversed the loss of connexin-43 enriched intercellular plaques, reduced fibrosis of the cardiac tissue, restored GATA-6 and Tbox-5 transcription, supporting cardiac recovery. Finally, TGF-β polymorphisms indicate that CD immunogenetics is at the base of this phenomenon. We searched in a Brazilian population five single-nucleotide polymorphisms (-800 G>A rs1800468, -509 C>T rs1800469, +10 T>C rs1800470, +25 G>C rs1800471, and +263 C>T rs1800472), showing that CD patients frequently express the TGF-β1 gene genotypes CT and TT at position -509, as compared to noninfected persons; similar results were observed with genotypes TC and CC at codon +10 of the TGF-β1 gene, leading to the conclusion that 509 C>T and +10 T>C TGF-β1 polymorphisms are associated with Chagas disease susceptibility. Studies in genetically different populations susceptible to CD will help to gather new insights and encourage the use of TGF-β as a CD biomarker.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (LAGFB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Mariana Caldas Waghabi
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (LAGFB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Sabine Bailly
- Laboratory Biology of Cancer and Infection, Université Grenoble Alpes, Inserm, Commissariat à l’Energie Atomique, Grenoble, France
| | - Jean-Jacques Feige
- Laboratory Biology of Cancer and Infection, Université Grenoble Alpes, Inserm, Commissariat à l’Energie Atomique, Grenoble, France
| | - Alejandro M. Hasslocher-Moreno
- Clinical Research Laboratory of Chagas Disease, Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberto M. Saraiva
- Clinical Research Laboratory of Chagas Disease, Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tania C. Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Abstract
Transforming growth factor-β (TGFβ) isoforms are upregulated and activated in myocardial diseases and have an important role in cardiac repair and remodelling, regulating the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells. Cardiac injury triggers the generation of bioactive TGFβ from latent stores, through mechanisms involving proteases, integrins and specialized extracellular matrix (ECM) proteins. Activated TGFβ signals through the SMAD intracellular effectors or through non-SMAD cascades. In the infarcted heart, the anti-inflammatory and fibroblast-activating actions of TGFβ have an important role in repair; however, excessive or prolonged TGFβ signalling accentuates adverse remodelling, contributing to cardiac dysfunction. Cardiac pressure overload also activates TGFβ cascades, which initially can have a protective role, promoting an ECM-preserving phenotype in fibroblasts and preventing the generation of injurious, pro-inflammatory ECM fragments. However, prolonged and overactive TGFβ signalling in pressure-overloaded cardiomyocytes and fibroblasts can promote cardiac fibrosis and dysfunction. In the atria, TGFβ-mediated fibrosis can contribute to the pathogenic substrate for atrial fibrillation. Overactive or dysregulated TGFβ responses have also been implicated in cardiac ageing and in the pathogenesis of diabetic, genetic and inflammatory cardiomyopathies. This Review summarizes the current evidence on the role of TGFβ signalling in myocardial diseases, focusing on cellular targets and molecular mechanisms, and discussing challenges and opportunities for therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:907757. [PMID: 35784531 PMCID: PMC9240190 DOI: 10.3389/fendo.2022.907757] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Collapse
Affiliation(s)
- Meng-ling Peng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chu-wen Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hang Ren
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Shan-shan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shan-shan Zhou,
| |
Collapse
|
12
|
Mateus J, Nocua P, Lasso P, López MC, Thomas MC, Egui A, Cuervo C, González JM, Puerta CJ, Cuéllar A. CD8 + T Cell Response Quality Is Related to Parasite Control in an Animal Model of Single and Mixed Chronic Trypanosoma cruzi Infections. Front Cell Infect Microbiol 2021; 11:723121. [PMID: 34712620 PMCID: PMC8546172 DOI: 10.3389/fcimb.2021.723121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Chagas disease (ChD) is a chronic infection caused by Trypanosoma cruzi. This highly diverse intracellular parasite is classified into seven genotypes or discrete typing units (DTUs) and they overlap in geographic ranges, vectors, and clinical characteristics. Although studies have suggested that ChD progression is due to a decline in the immune response quality, a direct relationship between T cell responses and disease outcome is still unclear. To investigate the relationship between parasite control and immune T cell responses, we used two distinct infection approaches in an animal model to explore the histological and parasitological outcomes and dissect the T cell responses in T. cruzi-infected mice. First, we performed single infection experiments with DA (TcI) or Y (TcII) T. cruzi strains to compare the infection outcomes and evaluate its relationship with the T cell response. Second, because infections with diverse T. cruzi genotypes can occur in naturally infected individuals, mice were infected with the Y or DA strain and subsequently reinfected with the Y strain. We found different infection outcomes in the two infection approaches used. The single chronic infection showed differences in the inflammatory infiltrate level, while mixed chronic infection by different T. cruzi DTUs showed dissimilarities in the parasite loads. Chronically infected mice with a low inflammatory infiltrate (DA-infected mice) or low parasitemia and parasitism (Y/Y-infected mice) showed increases in early-differentiated CD8+ T cells, a multifunctional T cell response and lower expression of inhibitory receptors on CD8+ T cells. In contrast, infected mice with a high inflammatory infiltrate (Y-infected mice) or high parasitemia and parasitism (DA/Y-infected mice) showed a CD8+ T cell response distinguished by an increase in late-differentiated cells, a monofunctional response, and enhanced expression of inhibitory receptors. Overall, our results demonstrated that the infection outcomes caused by single or mixed T. cruzi infection with different genotypes induce a differential immune CD8+ T cell response quality. These findings suggest that the CD8+ T cell response might dictate differences in the infection outcomes at the chronic T. cruzi stage. This study shows that the T cell response quality is related to parasite control during chronic T. cruzi infection.
Collapse
Affiliation(s)
- Jose Mateus
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Nocua
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Adriana Egui
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John Mario González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Concepción J Puerta
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuéllar
- Grupo de Ciencias de Laboratorio Clínico, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
13
|
Hoffman KA, Villar MJ, Poveda C, Bottazzi ME, Hotez PJ, Tweardy DJ, Jones KM. Signal Transducer and Activator of Transcription-3 Modulation of Cardiac Pathology in Chronic Chagasic Cardiomyopathy. Front Cell Infect Microbiol 2021; 11:708325. [PMID: 34504808 PMCID: PMC8421853 DOI: 10.3389/fcimb.2021.708325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/23/2021] [Indexed: 01/31/2023] Open
Abstract
Chronic Chagasic cardiomyopathy (CCC) is a severe clinical manifestation that develops in 30%–40% of individuals chronically infected with the protozoal parasite Trypanosoma cruzi and is thus an important public health problem. Parasite persistence during chronic infection drives pathologic changes in the heart, including myocardial inflammation and progressive fibrosis, that contribute to clinical disease. Clinical manifestations of CCC span a range of symptoms, including cardiac arrhythmias, thromboembolic disease, dilated cardiomyopathy, and heart failure. This study aimed to investigate the role of signal transducer and activator of transcription-3 (STAT3) in cardiac pathology in a mouse model of CCC. STAT3 is a known cellular mediator of collagen deposition and fibrosis. Mice were infected with T. cruzi and then treated daily from 70 to 91 days post infection (DPI) with TTI-101, a small molecule inhibitor of STAT3; benznidazole; a combination of benznidazole and TTI-101; or vehicle alone. Cardiac function was evaluated at the beginning and end of treatment by echocardiography. By the end of treatment, STAT3 inhibition with TTI-101 eliminated cardiac fibrosis and fibrosis biomarkers but increased cardiac inflammation; serum levels of interleukin-6 (IL-6), and IFN−γ; cardiac gene expression of STAT1 and nuclear factor-κB (NF-κB); and upregulation of IL-6 and Type I and Type II IFN responses. Concurrently, decreased heart function was measured by echocardiography and myocardial strain. These results indicate that STAT3 plays a critical role in the cardiac inflammatory–fibrotic axis during CCC.
Collapse
Affiliation(s)
- Kristyn A Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Maria Jose Villar
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States
| | - Cristina Poveda
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States
| | - Maria Elena Bottazzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States.,Department of Biology, Baylor University, Waco, TX, United States
| | - Peter J Hotez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States.,Department of Biology, Baylor University, Waco, TX, United States
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine and Department of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kathryn M Jones
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States
| |
Collapse
|
14
|
Hoffman K, Liu Z, Hossain E, Bottazzi ME, Hotez PJ, Jones KM, McCall LI. Alterations to the Cardiac Metabolome Induced by Chronic T. cruzi Infection Relate to the Degree of Cardiac Pathology. ACS Infect Dis 2021; 7:1638-1649. [PMID: 33843195 PMCID: PMC8588157 DOI: 10.1021/acsinfecdis.0c00816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic Chagasic cardiomyopathy (CCC) is a Neglected Tropical Disease caused by the parasite Trypanosoma cruzi. The pathognomonic findings in symptomatic CCC patients and animal models includes diffuse cardiac fibrosis and inflammation with persistent parasite presence in the heart. This study investigated chemical alterations in different regions of the heart in relation to cardiac pathology indicators to better understand the long-term pathogenesis of this neglected disease. We used data from echocardiography, fibrosis biomarkers, and histopathological analysis to fully evaluate cardiac pathology. Metabolites isolated from the pericardial and endocardial sides of the right ventricular myocardium were analyzed by liquid chromatography tandem mass spectrometry. The endocardial sections contained significantly less cardiac inflammation and fibrosis than the pericardial sections. Cardiac levels of acylcarnitines, phosphocholines, and other metabolites were significantly disrupted in accordance with cardiac fibrosis, inflammation, and serum fibrosis biomarker levels. These findings have potential implications in treatment and monitoring for CCC patients.
Collapse
Affiliation(s)
- Kristyn Hoffman
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ekram Hossain
- Department of Chemistry and Biochemistry and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Maria Elena Bottazzi
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States; Texas Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States; Department of Biology, Baylor University, Waco, Texas 76798, United States
| | - Peter J. Hotez
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States; Texas Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States; Department of Biology, Baylor University, Waco, Texas 76798, United States
| | - Kathryn M. Jones
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States; Texas Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, Laboratories of Molecular Anthropology and Microbiome Research, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
15
|
Lan H, Cheng Y, Mu J, Huang Y, Chen H, Zhao L, Wang K, Hu Z. Glucose-rich polysaccharide from dried 'Shixia' longan activates macrophages through Ca 2+ and CR3- mediated MAPKs and PI3K-AKT pathways. Int J Biol Macromol 2020; 167:845-853. [PMID: 33181209 DOI: 10.1016/j.ijbiomac.2020.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022]
Abstract
A water-soluble glucose-rich polysaccharide from dried 'Shixia' longan pulp (LPsx) has been isolated for the first time, and its structure and immuno-regulatory mechanism were studied. LPsx is a hetero-polysaccharide with the average molecular weight 4102 g/mol. It was mainly consisted of glucose (95.9%), and small proportions of arabinose (2.1%), galactose (1.0%), mannose (0.6%), and xylose (0.4%). As analyzed by NMR, LPsx was mainly composed of (1 → 6)-α-d-glucose and (1 → 6)-β-d-glucose, branched with α-d-glucose-(1→. The immunomodulatory activity study showed that LPsx significantly increased the phagocytosis of macrophages, and strongly promoted the production of NO, IL-1β, IL-6 and TNF-α. Moreover, LPsx could inhibit the inflammatory response induced by lipopolysaccharide. The immuno-regulatory mechanism of LPsx was studied using RNA- sequencing and receptors activity analyses. It was found that LPsx induced macrophage activation via Ca2+ and CR3-mediated MAPKs and PI3K-AKT signaling pathways. The results would be helpful for revealing the health promoting mechanism of dried 'Shixia' longan in traditional Chinese medicine.
Collapse
Affiliation(s)
- Haibo Lan
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongxia Cheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Mu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanfen Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huifang Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Resolvin D1 Administration Is Beneficial in Trypanosoma cruzi Infection. Infect Immun 2020; 88:IAI.00052-20. [PMID: 32152197 DOI: 10.1128/iai.00052-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Chagas disease is a major public health issue, affecting ∼10 million people worldwide. Transmitted by a protozoan named Trypanosoma cruzi, this infection triggers a chronic inflammatory process that can lead to cardiomyopathy (Chagas disease). Resolvin D1 (RvD1) is a novel proresolution lipid mediator whose effects on inflammatory diseases dampens pathological inflammatory responses and can restore tissue homeostasis. Current therapies are not effective in altering the outcome of T. cruzi infection, and as RvD1 has been evaluated as a therapeutic agent in various inflammatory diseases, we examined if exogenous RvD1 could modulate the pathogenesis of Chagas disease in a murine model. CD-1 mice infected with the T. cruzi Brazil strain were treated with RvD1. Mice were administered 3 μg/kg of body weight RvD1 intraperitoneally on days 5, 10, and 15 to examine the effect of RvD1 on acute disease or administered the same dose on days 60, 65, and 70 to examine its effects on chronic infection. RvD1 therapy increased the survival rate and controlled parasite replication in mice with acute infection and reduced the levels of interferon gamma and transforming growth factor β (TGF-β) in mice with chronic infection. In addition, there was an increase in interleukin-10 levels with RvD1 therapy in both mice with acute infection and mice with chronic infection and a decrease in TGF-β levels and collagen content in cardiac tissue. Together, these data indicate that RvD1 therapy can dampen the inflammatory response, promote the resolution of T. cruzi infection, and prevent cardiac fibrosis.
Collapse
|
17
|
Wozniak JM, Silva TA, Thomas D, Siqueira-Neto JL, McKerrow JH, Gonzalez DJ, Calvet CM. Molecular dissection of Chagas induced cardiomyopathy reveals central disease associated and druggable signaling pathways. PLoS Negl Trop Dis 2020; 14:e0007980. [PMID: 32433643 PMCID: PMC7279607 DOI: 10.1371/journal.pntd.0007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease, the clinical presentation of T. cruzi infection, is a major human health concern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving, chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in particular are the most severe consequence of chronic Chagas disease and cannot be reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbiasedly interrogated the host signaling events in heart tissues isolated from a Chagas disease mouse model using quantitative, multiplexed proteomics. We defined the host response to infection at both the proteome and phospho-proteome levels. The proteome showed an increase in the immune response and a strong repression of several mitochondrial proteins. Complementing the proteome studies, the phospho-proteomic survey found an abundance of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic analysis of kinase activity provided substantial evidence for the activation of NDRG2 and JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2 and the inhibition of casein family kinases were also predicted. We concluded our analyses by linking the diseased heart proteome profile to known therapeutic interventions, uncovering a potential to target mitochondrial proteins, secreted immune effectors and core kinases for the treatment of chronic Chagas disease. Together, this study provides molecular insight into host proteome and phospho-proteome responses to T. cruzi infection in the heart for the first time, highlighting pathways that can be further validated for functional contributions to disease and suitability as drug targets.
Collapse
Affiliation(s)
- Jacob M. Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
| | - Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
- * E-mail: (DJG); (CMC)
| | - Claudia M. Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
- * E-mail: (DJG); (CMC)
| |
Collapse
|
18
|
Silva TA, Ferreira LFDC, Pereira MCDS, Calvet CM. Differential Role of TGF-β in Extracellular Matrix Regulation During Trypanosoma cruzi-Host Cell Interaction. Int J Mol Sci 2019; 20:E4836. [PMID: 31569452 PMCID: PMC6801917 DOI: 10.3390/ijms20194836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a determinant for inflammation and fibrosis in cardiac and skeletal muscle in Chagas disease. To determine its regulatory mechanisms, we investigated the response of Trypanosoma cruzi-infected cardiomyocytes (CM), cardiac fibroblasts (CF), and L6E9 skeletal myoblasts to TGF-β. Cultures of CM, CF, and L6E9 were infected with T. cruzi (Y strain) and treated with TGF-β (1-10 ng/mL, 1 h or 48 h). Fibronectin (FN) distribution was analyzed by immunofluorescence and Western blot (WB). Phosphorylated SMAD2 (PS2), phospho-p38 (p-p38), and phospho-c-Jun (p-c-Jun) signaling were evaluated by WB. CF and L6E9 showed an increase in FN from 1 ng/mL of TGF-β, while CM displayed FN modulation only after 10 ng/mL treatment. CF and L6E9 showed higher PS2 levels than CM, while p38 was less stimulated in CF than CM and L6E9. T. cruzi infection resulted in localized FN disorganization in CF and L6E9. T. cruzi induced an increase in FN in CF cultures, mainly in uninfected cells. Infected CF cultures treated with TGF-β showed a reduction in PS2 and an increase in p-p38 and p-c-Jun levels. Our data suggest that p38 and c-Jun pathways may be participating in the fibrosis regulatory process mediated by TGF-β after T. cruzi infection.
Collapse
Affiliation(s)
- Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil.
| | | | | | - Claudia Magalhães Calvet
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
19
|
Ferreira RR, Abreu RDS, Vilar-Pereira G, Degrave W, Meuser-Batista M, Ferreira NVC, da Cruz Moreira O, da Silva Gomes NL, Mello de Souza E, Ramos IP, Bailly S, Feige JJ, Lannes-Vieira J, de Araújo-Jorge TC, Waghabi MC. TGF-β inhibitor therapy decreases fibrosis and stimulates cardiac improvement in a pre-clinical study of chronic Chagas' heart disease. PLoS Negl Trop Dis 2019; 13:e0007602. [PMID: 31365537 PMCID: PMC6690554 DOI: 10.1371/journal.pntd.0007602] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/12/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
TGF-β involvement in Chagas disease cardiomyopathy has been clearly demonstrated. The TGF-β signaling pathway is activated in the cardiac tissue of chronic phase patients and is associated with an increase in extracellular matrix protein expression. The aim of this study was to investigate the effect of GW788388, a selective inhibitor of TβR1/ALK5, on cardiac function in an experimental model of chronic Chagas' heart disease. To this end, C57BL/6 mice were infected with Trypanosoma cruzi (102 parasites from the Colombian strain) and treated orally with 3mg/kg GW788388 starting at 120 days post-infection (dpi), when 100% of the infected mice show cardiac damage, and following three distinct treatment schedules: i) single dose; ii) one dose per week; or iii) three doses per week during 30 days. The treatment with GW788388 improved several cardiac parameters: reduced the prolonged PR and QTc intervals, increased heart rate, and reversed sinus arrhythmia, and atrial and atrioventricular conduction disorders. At 180 dpi, 30 days after treatment interruption, the GW3x-treated group remained in a better cardiac functional condition. Further, GW788388 treatment reversed the loss of connexin-43 enriched intercellular plaques and reduced fibrosis of the cardiac tissue. Inhibition of the TGF-β signaling pathway reduced TGF-β/pSmad2/3, increased MMP-9 and Sca-1, reduced TIMP-1/TIMP-2/TIMP-4, and partially restored GATA-6 and Tbox-5 transcription, supporting cardiac recovery. Moreover, GW788388 administration did not modify cardiac parasite load during the infection but reduced the migration of CD3+ cells to the heart tissue. Altogether, our data suggested that the single dose schedule was not as effective as the others and treatment three times per week during 30 days seems to be the most effective strategy. The therapeutic effects of GW788388 are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-β inhibitors.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Rayane da Silva Abreu
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Wim Degrave
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil
| | - Nilma Valéria Caldeira Ferreira
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil
| | - Otacílio da Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Natália Lins da Silva Gomes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Elen Mello de Souza
- Laboratório de Virologia Molecular—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Isalira P. Ramos
- UFRJ, Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Sabine Bailly
- Université Grenoble-Alpes, Inserm, CEA, Biology of Cancer and Infection Laboratory, Grenoble, France
| | - Jean-Jacques Feige
- Université Grenoble-Alpes, Inserm, CEA, Biology of Cancer and Infection Laboratory, Grenoble, France
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Tania C. de Araújo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
- * E-mail:
| |
Collapse
|
20
|
Czarzasta K, Koperski L, Segiet A, Janiszewski M, Kuch M, Gornicka B, Cudnoch-Jedrzejewska A. The role of high fat diet in the regulation of MAP kinases activity in left ventricular fibrosis. Acta Histochem 2019; 121:303-310. [PMID: 30733042 DOI: 10.1016/j.acthis.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 01/11/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
It is well known that obesity contributes to the development of systemic inflammatory responses, which in turn may be involved in the process of interstitial fibrosis and left ventricular (LV) remodelling. Activation of pro-inflammatory factors such as transforming growth factor β (TGF-β) can directly stimulate mitogen-activated protein kinase (MAPK) p38 and JNK. The aim of the study was to evaluate the level of TGF-β and MAPK p38 and JNK in the LV in Sprague Dawley (SPRD) rats maintained on a high fat diet (HFD). The SPRD rats from 4 weeks of age were on a normal fat diet (NFD) or a HFD for 12 weeks (NFD-16-week-old rats, NFD 16-wk; or HFD-16-week-old rats, HFD 16-wk) or 16 weeks (NFD-20-week-old rats, NFD 20-wk; or HFD-20-week-old rats, HFD 20-wk). At the end of the experiment, blood and LV were collected from all rats for further analysis (biochemical, Real Time PCR and immunohistochemical analysis). TGF-β mRNA expression did not differ between the study groups of rats. However, p38 MAPK mRNA expression was significantly lower in the HFD 20-wk rats than in both the HFD 16-wk rats and the NFD 20-wk rats. c-jun mRNA expression was significantly higher in the HFD 16-wk rats than in the NFD 16-wk rats. There was significantly lower expression of c-jun mRNA in the HFD 20-wk rats and in the NFD 20-wk rats than in the HFD 16-wk rats and in the NFD 16-wk rats, respectively. TGF-β type II receptor (TβRII) protein demonstrated only cytoplasmic reactivity, while p38 MAPK protein and c-jun protein showed both nuclear and cytoplasmic reactivity. The results suggest that a high fat diet and in two time intervals significantly influence the expression of p38 MAPK and JNK in the LV. However, demonstrating their potential involvement in the processes of interstitial myocardial fibrosis and left ventricular remodeling requires further research.
Collapse
|
21
|
Pillai G, Chibale K, Constable EC, Keller AN, Gutierrez MM, Mirza F, Sengstag C, Masimirembwa C, Denti P, Maartens G, Ramsay M, Ogutu B, Makonnen E, Gordon R, Ferreira CG, Goldbaum FA, Degrave WMS, Spector J, Tadmor B, Kaiser HJ. The Next Generation Scientist program: capacity-building for future scientific leaders in low- and middle-income countries. BMC MEDICAL EDUCATION 2018; 18:233. [PMID: 30305069 PMCID: PMC6180641 DOI: 10.1186/s12909-018-1331-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/21/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Scientific and professional development opportunities for early career scientists in low- and middle- income countries (LMICs) are limited and not consistent. There is a disproportionately low number of biomedical and clinical researchers in LMIC's relative to their high burden of disease, a disparity that is aggravated by emigration of up to 70% of scientists from their countries of birth for education and employment elsewhere. To help address this need, a novel University-accredited, immersive fellowship program was established by a large public-academic-private network. We sought to describe the program and summarize progress and lessons learned over its first 7-years. METHODS Hallmarks of the program are a structured learning curriculum and bespoke research activities tailored to the needs of each fellow. Research projects expose the scientists to state-of-the-art methodologies and leading experts in their fields while also ensuring that learnings are implementable within their home infrastructure. Fellows run seminars on drug discovery and development that reinforce themes of scientific leadership and teamwork together with practical modules on addressing healthcare challenges within their local systems. Industry mentors achieve mutual learning to better understand healthcare needs in traditionally underserved settings. We evaluated the impact of the program through an online survey of participants and by assessing research output. RESULTS More than 140 scientists and clinicians from 25 countries participated over the 7-year period. Evaluation revealed strong evidence of knowledge and skills transfer, and beneficial self-reported impact on fellow's research output and career trajectories. Examples of program impact included completion of post-graduate qualifications; establishment and implementation of good laboratory- and clinical- practice mechanisms; and becoming lead investigators in local programs. There was a high retention of fellows in their home countries (> 75%) and an enduring professional network among the fellows and their mentors. CONCLUSIONS Our experience demonstrates an example for how multi-sectoral partners can contribute to scientific and professional development of researchers in LMICs and supports the idea that capacity-building efforts should be tailored to the specific needs of beneficiaries to be maximally effective. Lessons learned may be applied to the design and conduct of other programs to strengthen science ecosystems in LMICs.
Collapse
Affiliation(s)
- Goonaseelan Pillai
- CP+ Associates GmbH, Basel, Switzerland
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | | | | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience and Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bernhards Ogutu
- University of Strathmore and Kenya Medical Research Institute, Nairobi, Kenya
| | - Eyasu Makonnen
- Center For Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Biswas S, Thomas AA, Chakrabarti S. LncRNAs: Proverbial Genomic "Junk" or Key Epigenetic Regulators During Cardiac Fibrosis in Diabetes? Front Cardiovasc Med 2018; 5:28. [PMID: 29670886 PMCID: PMC5893820 DOI: 10.3389/fcvm.2018.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in a multitude of biological processes. Recent evidences demonstrate potential pathogenetic implications of lncRNAs in diabetic cardiomyopathy (DCM); however, the majority of lncRNAs have not been comprehensively characterized. While the precise molecular mechanisms underlying the functions of lncRNAs remain to be deciphered in DCM, emerging data in other pathophysiological conditions suggests that lncRNAs can have versatile features such as genomic imprinting, acting as guides for certain histone-modifying complexes, serving as scaffolds for specific molecules, or acting as molecular sponges. In an effort to better understand these features of lncRNAs in the context of DCM, our review will first summarize some of the key molecular alterations that occur during fibrosis in the diabetic heart (extracellular proteins and endothelial-to-mesenchymal transitioning), followed by a review of the current knowledge on the crosstalk between lncRNAs and major epigenetic mechanisms (histone methylation, histone acetylation, DNA methylation, and microRNAs) within this fibrotic process.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Anu Alice Thomas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| |
Collapse
|
23
|
Curvo EO, Ferreira RR, Madeira FS, Alves GF, Chambela MC, Mendes VG, Sangenis LHC, Waghabi MC, Saraiva RM. Correlation of transforming growth factor-β1 and tumour necrosis factor levels with left ventricular function in Chagas disease. Mem Inst Oswaldo Cruz 2018. [PMID: 29513876 PMCID: PMC5851032 DOI: 10.1590/0074-02760170440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Transforming growth factor β1 (TGF-β1) and tumour necrosis factor (TNF) have been implicated in Chagas disease pathophysiology and may correlate with left ventricular (LV) function. OBJECTIVES We determined whether TGF-β1 and TNF serum levels correlate with LV systolic and diastolic functions and brain natriuretic peptide (BNP) serum levels in chronic Chagas disease. METHODS This cross-sectional study included 152 patients with Chagas disease (43% men; 57 ± 12 years old), classified as 53 patients with indeterminate form and 99 patients with cardiac form (stage A: 24, stage B: 25, stage C: 44, stage D: 6). TGF-β1, TNF, and BNP were determined by enzyme-linked immunosorbent assay ELISA. Echocardiogram was used to determine left atrial and LV diameters, as well as LV ejection fraction and diastolic function. FINDINGS TGF-b1 serum levels were lower in stages B, C, and D, while TNF serum levels were higher in stages C and D of the cardiac form. TGF-β1 presented a weak correlation with LV diastolic function and LV ejection fraction. TNF presented a weak correlation with left atrial and LV diameters and LV ejection fraction. CONCLUSIONS TNF is increased, while TGF-β1 is decreased in the cardiac form of chronic Chagas disease. TNF and TGF-β1 serum levels present a weak correlation with LV systolic and diastolic function in Chagas disease patients.
Collapse
Affiliation(s)
- Eduardo Ov Curvo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Roberto R Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Fabiana S Madeira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Gabriel F Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Mayara C Chambela
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Veronica G Mendes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Luiz Henrique C Sangenis
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Mariana C Waghabi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Roberto M Saraiva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
24
|
TGF- β Polymorphisms Are a Risk Factor for Chagas Disease. DISEASE MARKERS 2018; 2018:4579198. [PMID: 29670670 PMCID: PMC5835243 DOI: 10.1155/2018/4579198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β1 (TGF-β1) is an important mediator in Chagas disease. Furthermore, patients with higher TGF-β1 serum levels show a worse clinical outcome. Gene polymorphism may account for differences in cytokine production during infectious diseases. We tested whether TGFB1 polymorphisms could be associated with Chagas disease susceptibility and severity in a Brazilian population. We investigated five single-nucleotide polymorphisms (-800 G>A, -509 C>T, +10 T>C, +25 G>C, and +263 C>T). 152 patients with Chagas disease (53 with the indeterminate form and 99 with the cardiac form) and 48 noninfected subjects were included. Genotypes CT and TT at position -509 of the TGFB1 gene were more frequent in Chagas disease patients than in noninfected subjects. Genotypes TC and CC at codon +10 of the TGFB1 gene were also more frequent in Chagas disease patients than in noninfected subjects. We found no significant differences in the distribution of the studied TGFB1 polymorphisms between patients with the indeterminate or cardiac form of Chagas disease. Therefore, -509 C>T and +10 T>C TGFB1 polymorphisms are associated with Chagas disease susceptibility in a Brazilian population.
Collapse
|
25
|
Yue Y, Meng K, Pu Y, Zhang X. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract 2017; 133:124-130. [PMID: 28934669 DOI: 10.1016/j.diabres.2017.08.018] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases account for the major cause of morbidity and mortality among individuals with diabetes. The diabetic cardiomyopathy (DCM) is a type of diabetic cardiovascular disease, which further directs to the heart failure. The researchers found that diabetes induced cardiac fibrosis plays a vital role in several of the pathological changes that associated with DCM, causing left ventricular hypertrophy (LVH), diastolic dysfunction and systolic dysfunction. However, the mechanisms involved in the pathogenesis of DCM are still elusive. Many studies have demonstrated that the transforming growth factor beta (TGF-β) is one of the molecular mediators implicated in the progression of fibrogenesis. In diabetes, hyperglycemia causes the expression changes of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), TGF-β genes, TGF-β proteins and their receptors. Activated TGF-β further leads to cardiac fibrosis, which in turn inducing DCM through the SMAD-dependent and independent pathways. Here, we reviewed the the molecular pathways that activate TGF-β then leading to cardiac fibrosis, which induced the pathological changes of DCM. Illustrating the pathways of TGF-ß would propose an efficient way for the management of diabetic cardiomyopathy (see Fig. 1).
Collapse
Affiliation(s)
- Yiyang Yue
- College of Agriculture & Biotechnology, Zhejiang University, China
| | - Ke Meng
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuejie Pu
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Zhang
- School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Figueiredo AB, Souza-Testasicca MC, Mineo TWP, Afonso LCC. Leishmania amazonensis-Induced cAMP Triggered by Adenosine A 2B Receptor Is Important to Inhibit Dendritic Cell Activation and Evade Immune Response in Infected Mice. Front Immunol 2017; 8:849. [PMID: 28791011 PMCID: PMC5524897 DOI: 10.3389/fimmu.2017.00849] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
Differently from others Leishmania species, infection by the protozoan parasite L. amazonensis is associated with a lack of antigen-specific T-cell responses. Dendritic cells (DC) are essential for the innate immune response and for directing the differentiation of T-helper lymphocytes. Previously, we showed that L. amazonensis infection impairs DC activation through the activation of adenosine A2B receptor, and here, we evaluated the intracellular events triggered by this receptor in infected cells. To this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Our results show, for the first time, that L. amazonensis increases the production of cAMP and the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in infected DC by a mechanism dependent on the A2B receptor. Furthermore, L. amazonensis impairs CD40 expression and IL-12 production by DC, and the inhibition of adenylate cyclase, phosphoinositide 3-kinase (PI3K), and ERK1/2 prevent these effects. The increase of ERK1/2 phosphorylation and the inhibition of DC activation by L. amazonensis are independent of protein kinase A (PKA). In addition, C57BL/6J mice were inoculated in the ears with metacyclic promastigotes, in the presence of PSB1115, an A2B receptor antagonist. PSB1115 treatment increases the percentage of CD40+ DC on ears and draining lymph nodes. Furthermore, this treatment reduces lesion size and tissue parasitism. Lymph node cells from treated mice produce higher levels of IFN-γ than control mice, without altering the production of IL-10. In conclusion, we suggest a new pathway used by the parasite (A2B receptor → cAMP → PI3K → ERK1/2) to suppress DC activation, which may contribute to the decrease of IFN-γ production following by the deficiency in immune response characteristic of L. amazonensis infection.
Collapse
Affiliation(s)
- Amanda Braga Figueiredo
- Laboratório de Imunoparasitologia, ICEB/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Míriam Conceição Souza-Testasicca
- Laboratório de Imunoparasitologia, ICEB/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Coordenadoria da Área de Ciências Biológicas, Instituto Federal de Minas Gerais, Campus Ouro Preto, Ouro Preto, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratório de Imunoparasitologia "Dr. Mario Endsfeldz Camargo", ICBIM, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Luís Carlos Crocco Afonso
- Laboratório de Imunoparasitologia, ICEB/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
27
|
Bagchi RA, Lin J, Wang R, Czubryt MP. Regulation of fibronectin gene expression in cardiac fibroblasts by scleraxis. Cell Tissue Res 2016; 366:381-391. [PMID: 27324126 DOI: 10.1007/s00441-016-2439-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
The glycoprotein fibronectin is a key component of the extracellular matrix. By interacting with numerous matrix and cell surface proteins, fibronectin plays important roles in cell adhesion, migration and intracellular signaling. Up-regulation of fibronectin occurs in tissue fibrosis, and previous studies have identified the pro-fibrotic factor TGFβ as an inducer of fibronectin expression, although the mechanism responsible remains unknown. We have previously shown that a key downstream effector of TGFβ signaling in cardiac fibroblasts is the transcription factor scleraxis, which in turn regulates the expression of a wide variety of extracellular matrix genes. We noted that fibronectin expression tracked closely with scleraxis expression, but it was unclear whether scleraxis directly regulated the fibronectin gene. Here, we report that scleraxis acts via two E-box binding sites in the proximal human fibronectin promoter to govern fibronectin expression, with the second E-box being both sufficient and necessary for scleraxis-mediated fibronectin expression to occur. A combination of electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that scleraxis interacted to a greater degree with the second E-box. Over-expression or knockdown of scleraxis resulted in increased or decreased fibronectin expression, respectively, and scleraxis null mice presented with dramatically decreased immunolabeling for fibronectin in cardiac tissue sections compared to wild-type controls. Furthermore, scleraxis was required for TGFβ-induced fibronectin expression: TGFβ lost its ability to induce fibronectin expression following scleraxis knockdown. Together, these results demonstrate a novel and required role for scleraxis in the regulation of cardiac fibroblast fibronectin gene expression basally or in response to TGFβ.
Collapse
Affiliation(s)
- Rushita A Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Division of Cardiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, RC2- Room 8450, Aurora, CO, 80045, USA
| | - Justin Lin
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Ryan Wang
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|