1
|
Benencia F, Alaniz LD, McCall KD. Editorial: Toll-like receptor expression in transformed cells: role in tumor development and cancer therapies. Front Immunol 2024; 15:1478431. [PMID: 39238644 PMCID: PMC11375609 DOI: 10.3389/fimmu.2024.1478431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Fabian Benencia
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, United States
| | - Laura D Alaniz
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA. CIT NOBA (UNNOBA-UNSADA-CONICET), Junín, Argentina
| | - Kelly D McCall
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, United States
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
2
|
Butkowsky C, Aldor N, Poynter SJ. Toll‑like receptor 3 ligands for breast cancer therapies (Review). Mol Clin Oncol 2023; 19:60. [PMID: 37424627 PMCID: PMC10326562 DOI: 10.3892/mco.2023.2656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Breast cancer is the most common cause of cancer worldwide and is the leading cause of mortality for women across most of the world. Immunotherapy is a burgeoning area of cancer treatment, including for breast cancer; these are therapies that harness the power of the immune system to clear cancerous cells. Toll-like receptor 3 (TLR3) is an RNA receptor found in the endosome, and ligands that bind to TLR3 are currently being tested for their efficacy as breast cancer immunotherapeutics. The current review introduces TLR3 and the role of this receptor in breast cancer, and summarizes data on the potential use of TLR3 ligands, mainly polyinosinic:polycytidylic acid and its derivatives, as breast cancer monotherapies or, more commonly, as combination therapies with chemotherapies, other immunotherapies and cancer vaccines. The current state of TLR3 ligand breast cancer therapy research is summarized by reporting on past and current clinical trials, and notable preliminary in vitro studies are discussed. In conclusion, TLR3 ligands have robust potential in anticancer applications as innate immune stimulants, and further studies combined with innovative technologies, such as nanoparticles, may contribute to their success.
Collapse
Affiliation(s)
- Carly Butkowsky
- Department of Health Sciences, Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Natalie Aldor
- Department of Health Sciences, Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Sarah J. Poynter
- Department of Health Sciences, Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
3
|
Fan L, Sui XY, Jin X, Zhang WJ, Zhou P, Shao ZM. High expression of TLR3 in triple-negative breast cancer predicts better prognosis-data from the Fudan University Shanghai Cancer Center cohort and tissue microarrays. BMC Cancer 2023; 23:298. [PMID: 37005579 PMCID: PMC10067281 DOI: 10.1186/s12885-023-10721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
INTRODUCTION We have previously reported that Toll-like receptor 3 (TLR3) acts as a suppressor gene for breast cancer initiation and progression. In this study, we evaluated the role of TLR3 in breast cancer using our original Fudan University Shanghai Cancer Center (FUSCC) datasets and breast cancer tissue microarrays. METHODS Using FUSCC multiomics datasets on triple- negative breast cancer (TNBC), we compared the mRNA expression of TLR3 in TNBC tissue and the adjacent normal tissue. A Kaplan-Meier plotter was performed to investigate the expression of TLR3 on prognosis in the FUSCC TNBC cohort. We performed immunohistochemical staining to analyze TLR3 protein expression in the TNBC tissue microarrays. Furthermore, bioinformatics analysis was performed using the Cancer Genome Atlas (TCGA) data to verify the results of our FUSCC study. The relationship between TLR3 and clinicopathological features was analyzed with logistic regression and the Wilcoxon signed-rank test. The association between clinical characteristics and overall survival in TCGA patients was assessed using the Kaplan-Meier method and Cox regression analysis. Gene set enrichment analysis (GSEA) was performed to identify signaling pathways that are differentially activated in breast cancer. RESULTS The mRNA expression of TLR3 was lower in TNBC tissue than in the adjacent normal tissue in the FUSCC datasets. The TLR3 had high expression in immunomodulatory (IM) and mesenchymal-like (MES) subtypes and low expression in luminal androgen receptor (LAR) and basal-like immune-suppressed (BLIS) subtypes. High expression of TLR3 in TNBC predicted better prognosis in the FUSCC TNBC cohort. Immunohistochemical staining of the tissue microarrays showed that TLR3 had lower expression in breast cancer tissues than in the adject normal tissues. Furthermore, the TLR3 expression was positively associated with B cell, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and myeloid dendritic cells. Bioinformatic analysis using high-throughput RNA-sequencing data from the TCGA demonstrated that the reduced expression of TLR3 in breast cancer was associated with advanced clinicopathological characteristics, survival time, and poor prognosis. CONCLUSIONS TLR3 has low expression in TNBC tissue. High expression of TLR3 in triple-negative breast cancer predicts better prognosis. TLR3 expression may be a potential prognostic molecular marker of poor survival in breast cancer.
Collapse
Affiliation(s)
- Lei Fan
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin-Yi Sui
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xi Jin
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wen-Juan Zhang
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Zhou
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Parkway Health, Shanghai, China.
- Runshangshan Medical Center, Shanghai, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Iurescia S, Fioretti D, Rinaldi M. The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation Against Cancer. Cancers (Basel) 2020; 12:E3158. [PMID: 33121210 PMCID: PMC7693898 DOI: 10.3390/cancers12113158] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last 15 years, the ability to harness a patient's own immune system has led to significant progress in cancer therapy. For instance, immunotherapeutic strategies, including checkpoint inhibitors or adoptive cell therapy using chimeric antigen receptor T-cell (CAR-T), are specifically aimed at enhancing adaptive anti-tumour immunity. Several research groups demonstrated that adaptive anti-tumour immunity is highly sustained by innate immune responses. Host innate immunity provides the first line of defence and mediates recognition of danger signals through pattern recognition receptors (PRRs), such as cytosolic sensors of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pattern (DAMP) signals. The retinoic acid-inducible gene I (RIG-I) is a cytosolic RNA helicase, which detects viral double-strand RNA and, once activated, triggers signalling pathways, converging on the production of type I interferons, proinflammatory cytokines, and programmed cell death. Approaches aimed at activating RIG-I within cancers are being explored as novel therapeutic treatments to generate an inflammatory tumour microenvironment and to facilitate cytotoxic T-cell cross-priming and infiltration. Here, we provide an overview of studies regarding the role of RIG-I signalling in the tumour microenvironment, and the most recent preclinical studies that employ RIG-I agonists. Lastly, we present a selection of clinical trials designed to prove the antitumour role of RIG I and that may result in improved therapeutic outcomes for cancer patients.
Collapse
Affiliation(s)
- Sandra Iurescia
- Institute of Translational Pharmacology (IFT), Department of Biomedical Science, National Research Council (CNR), 00133 Rome, Italy;
| | | | - Monica Rinaldi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Science, National Research Council (CNR), 00133 Rome, Italy;
| |
Collapse
|
5
|
Toll-Like Receptors Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:81-97. [PMID: 32030686 DOI: 10.1007/978-3-030-35582-1_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The involvement of inflammation in cancer progression is well-established. The immune system can play both tumor-promoting and -suppressive roles, and efforts to harness the immune system to help fight tumor growth are at the forefront of research. Of particular importance is the inflammatory profile at the site of the tumor, with respect to both the leukocyte population numbers, the phenotype of these cells, as well as the contribution of the tumor cells themselves. In this regard, the pro-inflammatory effects of pattern recognition receptor expression and activation in the tumor microenvironment have emerged as a relevant issue both for therapy and to understand tumor development.Pattern recognition receptors (PRRs) were originally recognized as components of immune cells, particularly innate immune cells, as detectors of pathogens. PRR signaling in immune cells activates them, inducing robust antimicrobial responses. In particular, toll-like receptors (TLRs) constitute a family of membrane-bound PRRs which can recognize pathogen-associated molecular patterns (PAMPs) carried by bacteria, virus, and fungi. In addition, PRRs can recognize products generated by stressed cells or damaged tissues, namely damage-associated molecular patterns or DAMPS. Taking into account the role of the immune system in fighting tumors together with the presence of immune cells in the microenvironment of different types of tumors, strategies to activate immune cells via PRR ligands have been envisioned as an anticancer therapeutic approach.In the last decades, it has been determined that PRRs are present and functional on nonimmune cells and that their activation in these cells contributes to the inflammation in the tumor microenvironment. Both tumor-promoting and antitumor effects have been observed when tumor cell PRRs are activated. This argues against nonspecific activation of PRR ligands in the tumor microenvironment as a therapeutic approach. Therefore, the use of PRR ligands for anticancer therapy might benefit from strategies that specifically deliver these ligands to immune cells, thus avoiding tumor cells in some settings. This review focuses on these aspects of TLR signaling in the tumor microenvironment.
Collapse
|
6
|
Phillippi B, Singh M, Loftus T, Smith H, Muccioli M, Wright J, Pate M, Benencia F. Effect of laminin environments and tumor factors on the biology of myeloid dendritic cells. Immunobiology 2019; 225:151854. [PMID: 31753553 DOI: 10.1016/j.imbio.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are immune cells that surveil the organism for infections or malignancies and activate specific T lymphocytes initiating specific immune responses. Contrariwise, DCs have been show to participate in the development of diseases, among them some types of cancer by inducing angiogenesis or immunosuppression. The ultimate fate of DC functions regarding their role in disease or health is prompted by signals from the microenvironment. We have previously shown that the interaction of DCs with various extracellular matrix components modifies the immune properties and angiogenic potential of these cells. The objective of the current studies was to investigate the angiogenic and immune profile of murine myeloid DCs upon interaction with laminin environments, with a particular emphasis on ovarian cancer. Our results show that murine ovarian tumors produce several types of laminins, as determined by PCR analysis, and also that tumor-associated DCs, both from ascites or solid tumors express adhesion molecules capable of interacting with these molecules as determined by flow cytometry and PCR analysis. Further, we established that DCs cultured on laminin upregulate both AKT and MEK signaling pathways, and that long-term culture on laminin surfaces decreases the immunological capacities of these cells when compared to the same cells cultured on synthetic substrates. In addition, we observed that tumor conditioned media was able to modify the metabolic status of these cells, and also reprogram the development of DCs from bone marrow precursors towards the generation of myeloid-derived suppressor cells. Overall, these studies demonstrate that the interaction between soluble factors and extracellular matrix components of the ovarian cancer microenvironment shape the biology of DCs and thus help them become co-conspirators of tumor growth.
Collapse
Affiliation(s)
- Ben Phillippi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Manindra Singh
- Molecular and Cellular Biology Program, Ohio University, United States
| | - Tiffany Loftus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Hannah Smith
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Maria Muccioli
- Molecular and Cellular Biology Program, Ohio University, United States
| | - Julia Wright
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Fabian Benencia
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States; Molecular and Cellular Biology Program, Ohio University, United States; Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, United States; The Diabetes Institute at Ohio University, United States.
| |
Collapse
|
7
|
Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9:biom9100567. [PMID: 31590252 PMCID: PMC6843238 DOI: 10.3390/biom9100567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the capacity of self-renewal and, through proliferation and differentiation, are responsible for the embryonic development, postnatal development, and the regeneration of tissues in the adult organism. Cancer stem cells, analogous to the physiological stem cells, have the capacity of self-renewal and may account for growth and recurrence of tumors. Development and regeneration of healthy tissues and tumors depend on the balance of different genomic and nongenomic signaling pathways that regulate stem cell quiescence, proliferation, and differentiation. During evolution, this balance became dependent on all-trans retinoic acid (RA), a molecule derived from the environmental factor vitamin A. Here we summarize some recent findings on the prominent role of RA on the proliferation of stem and progenitor cells, in addition to its well-known function as an inductor of cell differentiation. A better understanding of the regulatory mechanisms of stemness and cell differentiation by RA may improve the therapeutic options of this molecule in regenerative medicine and cancer.
Collapse
|
8
|
Elion DL, Jacobson ME, Hicks DJ, Rahman B, Sanchez V, Gonzales-Ericsson PI, Fedorova O, Pyle AM, Wilson JT, Cook RS. Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancers. Cancer Res 2018; 78:6183-6195. [PMID: 30224377 DOI: 10.1158/0008-5472.can-18-0730] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/29/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum but have not achieved widespread success in breast cancers, a tumor type considered poorly immunogenic and which harbors a decreased presence of tumor-infiltrating lymphocytes. Approaches that activate innate immunity in breast cancer cells and the tumor microenvironment are of increasing interest, based on their ability to induce immunogenic tumor cell death, type I IFNs, and lymphocyte-recruiting chemokines. In agreement with reports in other cancers, we observe loss, downregulation, or mutation of the innate viral nucleotide sensor retinoic acid-inducible gene I (RIG-I/DDX58) in only 1% of clinical breast cancers, suggesting potentially widespread applicability for therapeutic RIG-I agonists that activate innate immunity. This was tested using an engineered RIG-I agonist in a breast cancer cell panel representing each of three major clinical breast cancer subtypes. Treatment with RIG-I agonist resulted in upregulation and mitochondrial localization of RIG-I and activation of proinflammatory transcription factors STAT1 and NF-κB. RIG-I agonist triggered the extrinsic apoptosis pathway and pyroptosis, a highly immunogenic form of cell death in breast cancer cells. RIG-I agonist also induced expression of lymphocyte-recruiting chemokines and type I IFN, confirming that cell death and cytokine modulation occur in a tumor cell-intrinsic manner. Importantly, RIG-I activation in breast tumors increased tumor lymphocytes and decreased tumor growth and metastasis. Overall, these findings demonstrate successful therapeutic delivery of a synthetic RIG-I agonist to induce tumor cell killing and to modulate the tumor microenvironment in vivo Significance: These findings describe the first in vivo delivery of RIG-I mimetics to tumors, demonstrating a potent immunogenic and therapeutic effect in the context of otherwise poorly immunogenic breast cancers. Cancer Res; 78(21); 6183-95. ©2018 AACR.
Collapse
Affiliation(s)
- David L Elion
- Cancer Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Max E Jacobson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Donna J Hicks
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bushra Rahman
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Violeta Sanchez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Paula I Gonzales-Ericsson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Olga Fedorova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Anna M Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - John T Wilson
- Cancer Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Rebecca S Cook
- Cancer Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| |
Collapse
|