1
|
Popovic D, Kulas J, Tucovic D, Popov Aleksandrov A, Malesevic A, Glamoclija J, Brdaric E, Sokovic Bajic S, Golic N, Mirkov I, Tolinacki M. Gut microbial dysbiosis occurring during pulmonary fungal infection in rats is linked to inflammation and depends on healthy microbiota composition. Microbiol Spectr 2023; 11:e0199023. [PMID: 37623316 PMCID: PMC10581041 DOI: 10.1128/spectrum.01990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
While the effect of gut microbiota and/or inflammation on a distant body site, including the lungs (gut-lung axis), has been well characterized, data about the influence of lung microbiota and lung inflammation on gut homeostasis (lung-gut axis) are scarce. Using a well-characterized model of pulmonary infection with the fungus Aspergillus fumigatus, we investigated alterations in the lung and gut microbiota by next-generation sequencing of the V3-V4 regions of total bacterial DNA. Pulmonary inflammation due to the fungus A. fumigatus caused bacterial dysbiosis in both lungs and gut, but with different characteristics. While increased alpha diversity and unchanged bacterial composition were noted in the lungs, dysbiosis in the gut was characterized by decreased alpha diversity indices and modified bacterial composition. The altered homeostasis in the lungs allows the immigration of new bacterial species of which 41.8% were found in the feces, indicating that some degree of bacterial migration from the gut to the lungs occurs. On the contrary, the dysbiosis occurring in the gut during pulmonary infection was a consequence of the local activity of the immune system. In addition, the alteration of gut microbiota in response to pulmonary infection depends on the bacterial composition before infection, as no changes in gut bacterial microbiota were detected in a rat strain with diverse gut bacteria. The data presented support the existence of the lung-gut axis and provide additional insight into this mechanism. IMPORTANCE Data regarding the impact of lung inflammation and lung microbiota on GIT are scarce, and the mechanisms of this interaction are still unknown. Using a well-characterized model of pulmonary infection caused by the opportunistic fungus Aspergillus fumigatus, we observed bacterial dysbiosis in both the lungs and gut that supports the existence of the lung-gut axis.
Collapse
Affiliation(s)
- Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anastasija Malesevic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Glamoclija
- Mycology Laboratory, Department of Plant Physiology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emilija Brdaric
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Svetlana Sokovic Bajic
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Golic
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinacki
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Zhao X, Hu M, Zhou H, Yang Y, Shen S, You Y, Xue Z. The role of gut microbiome in the complex relationship between respiratory tract infection and asthma. Front Microbiol 2023; 14:1219942. [PMID: 37577440 PMCID: PMC10413575 DOI: 10.3389/fmicb.2023.1219942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Asthma is one of the common chronic respiratory diseases in children, which poses a serious threat to children's quality of life. Respiratory infection is a risk factor for asthma. Compared with healthy children, children with early respiratory infections have a higher risk of asthma and an increased chance of developing severe asthma. Many clinical studies have confirmed the correlation between respiratory infections and the pathogenesis of asthma, but the underlying mechanism is still unclear. The gut microbiome is an important part of maintaining the body's immune homeostasis. The imbalance of the gut microbiome can affect the lung immune function, and then affect lung health and cause respiratory diseases. A large number of evidence supports that there is a bidirectional regulation between intestinal flora and respiratory tract infection, and both are significantly related to the development of asthma. The changes of intestinal microbial components and their metabolites in respiratory tract infection may affect the occurrence and development of asthma through the immune pathway. By summarizing the latest advancements in research, this review aims to elucidate the intricate connection between respiratory tract infections and the progression of asthma by highlighting its bridging role of the gut microbiome. Furthermore, it offers novel perspectives and ideas for future investigations into the mechanisms that underlie the relationship between respiratory tract infections and asthma.
Collapse
Affiliation(s)
| | | | | | | | | | - Yannan You
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Cai L, Gao P, Wang Z, Dai C, Ning Y, Ilkit M, Xue X, Xiao J, Chen C. Lung and gut microbiomes in pulmonary aspergillosis: Exploring adjunctive therapies to combat the disease. Front Immunol 2022; 13:988708. [PMID: 36032147 PMCID: PMC9411651 DOI: 10.3389/fimmu.2022.988708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Species within the Aspergillus spp. cause a wide range of infections in humans, including invasive pulmonary aspergillosis, chronic pulmonary aspergillosis, and allergic bronchopulmonary aspergillosis, and are associated with high mortality rates. The incidence of pulmonary aspergillosis (PA) is on the rise, and the emergence of triazole-resistant Aspergillus spp. isolates, especially Aspergillus fumigatus, limits the efficacy of mold-active triazoles. Therefore, host-directed and novel adjunctive therapies are required to more effectively combat PA. In this review, we focus on PA from a microbiome perspective. We provide a general overview of the effects of the lung and gut microbiomes on the growth of Aspergillus spp. and host immunity. We highlight the potential of the microbiome as a therapeutic target for PA.
Collapse
Affiliation(s)
- Liuyang Cai
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Basic School of Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Peigen Gao
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zeyu Wang
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenyang Dai
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ye Ning
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Xiaochun Xue
- Department of Pharmacy, 905th Hospital of People’s Liberation Army of China (PLA) Navy, Shanghai, China
- *Correspondence: Xiaochun Xue, ; Jinzhou Xiao, ; Chang Chen,
| | - Jinzhou Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- *Correspondence: Xiaochun Xue, ; Jinzhou Xiao, ; Chang Chen,
| | - Chang Chen
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xiaochun Xue, ; Jinzhou Xiao, ; Chang Chen,
| |
Collapse
|
4
|
Stankovic M, Veljovic K, Popovic N, Kojic S, Dunjic Manevski S, Radojkovic D, Golic N. Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 Exhibit Anti-Inflammatory Effect by Attenuation of NF-κB and MAPK Signaling in Human Bronchial Epithelial Cells. Int J Mol Sci 2022; 23:ijms23105547. [PMID: 35628361 PMCID: PMC9146699 DOI: 10.3390/ijms23105547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/28/2022] Open
Abstract
Bronchial epithelial cells are exposed to environmental influences, microbiota, and pathogens and also serve as a powerful effector that initiate and propagate inflammation by the release of pro-inflammatory mediators. Recent studies suggested that lung microbiota differ between inflammatory lung diseases and healthy lungs implicating their contribution in the modulation of lung immunity. Lactic acid bacteria (LAB) are natural inhabitants of healthy human lungs and also possess immunomodulatory effects, but so far, there are no studies investigating their anti-inflammatory potential in respiratory cells. In this study, we investigated immunomodulatory features of 21 natural LAB strains in lipopolysaccharide (LPS)-stimulated human bronchial epithelial cells (BEAS-2B). Our results show that several LAB strains reduced the expression of pro-inflammatory cytokine and chemokine genes. We also demonstrated that two LAB strains, Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22, effectively attenuated LPS-induced nuclear factor-κB (NF-κB) nuclear translocation. Moreover, BGZLS10-17 and BGPKM22 reduced the activation of p38, extracellular signal-related kinase (ERK), and c-Jun amino-terminal kinase (JNK) signaling cascade resulting in a reduction of pro-inflammatory mediator expressions in BEAS-2B cells. Collectively, the LAB strains BGZLS10-17 and BGPKM22 exhibited anti-inflammatory effects in BEAS-2B cells and could be employed to balance immune response in lungs and replenish diminished lung microbiota in chronic lung diseases.
Collapse
Affiliation(s)
- Marija Stankovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (S.K.); (S.D.M.); (D.R.)
- Correspondence:
| | - Katarina Veljovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (K.V.); (N.P.); (N.G.)
| | - Nikola Popovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (K.V.); (N.P.); (N.G.)
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (S.K.); (S.D.M.); (D.R.)
| | - Sofija Dunjic Manevski
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (S.K.); (S.D.M.); (D.R.)
| | - Dragica Radojkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (S.K.); (S.D.M.); (D.R.)
| | - Natasa Golic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (K.V.); (N.P.); (N.G.)
| |
Collapse
|
5
|
Cai Y, Chen L, Zhang S, Zeng L, Zeng G. The role of gut microbiota in infectious diseases. WIREs Mech Dis 2022; 14:e1551. [PMID: 34974642 DOI: 10.1002/wsbm.1551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022]
Abstract
The intestine, the largest immune organ in the human body, harbors approximately 1013 microorganisms, including bacteria, fungi, viruses, and other unknown microbes. The intestine is a most important crosstalk anatomic structure between the first (the host) and second (the microorganisms) genomes. The imbalance of the intestinal microecology, especially dysbiosis of the composition, structure, and function of gut microbiota, is linked to human diseases. In this review, we investigated the roles and underlying mechanisms of gut microecology in the development, progression, and prognosis of infectious diseases. Furthermore, we discussed potential new strategies of prevention and treatment for infectious diseases based on manipulating the composition, structure, and function of intestinal microorganisms in the future. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Yongjie Cai
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lingming Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Sien Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Lingchan Zeng
- Clinical Research Center, Department of Medical Records Management, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Weis S, Meisner A, Schwiertz A, Unger MM, Becker A, Faßbender K, Schnell S, Schäfer KH, Egert M. Association between Parkinson's disease and the faecal eukaryotic microbiota. NPJ Parkinsons Dis 2021; 7:101. [PMID: 34795317 PMCID: PMC8602383 DOI: 10.1038/s41531-021-00244-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disease, and is so far not considered curable. PD patients suffer from several motor and non-motor symptoms, including gastrointestinal dysfunctions and alterations of the enteric nervous system. Constipation and additional intestinal affections can precede the classical motor symptoms by several years. Recently, we reported effects of PD and related medications on the faecal bacterial community of 34 German PD patients and 25 age-matched controls. Here, we used the same collective and analysed the V6 and V7 hypervariable region of PCR-amplified, eukaryotic 18S rRNA genes using an Illumina MiSeq platform. In all, 53% (18) of the PD samples and 72% (18) of the control samples yielded sufficient amplicons for downstream community analyses. The PD samples showed a significantly lower alpha and a different beta eukaryotic diversity than the controls. Most strikingly, we observed a significantly higher relative abundance of sequence affiliated with the Geotrichum genus in the PD samples (39.7%), when compared to the control samples (0.05%). In addition, we observed lower relative abundances of sequences affiliated with Aspergillus/Penicillium, Charophyta/Linum, unidentified Opisthokonta and three genera of minor abundant zooflagellates in the PD samples. Our data add knowledge to the small body of data about the eukaryotic microbiota of PD patients and suggest a potential association of certain gut eukaryotes and PD.
Collapse
Affiliation(s)
- Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| | - Alexandra Meisner
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| | | | - Marcus M Unger
- Department of Neurology, Saarland University, Homburg, Germany
| | - Anouck Becker
- Department of Neurology, Saarland University, Homburg, Germany
| | - Klaus Faßbender
- Department of Neurology, Saarland University, Homburg, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany.
| |
Collapse
|
7
|
Stanisavljević N, Soković Bajić S, Jovanović Ž, Matić I, Tolinački M, Popović D, Popović N, Terzić-Vidojević A, Golić N, Beškoski V, Samardžić J. Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix. Front Microbiol 2020; 11:601616. [PMID: 33335521 PMCID: PMC7736176 DOI: 10.3389/fmicb.2020.601616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
In this study, for the first time, the comprehensive analysis of antiproliferative and antioxidant activities of ramson, followed by the analysis of its associated microbiota and health-promoting effects of lactic acid bacteria (LAB), was performed. Ramson (Allium ursinum) is recognized as a medicinal plant with a long history of use in traditional medicine due to its antimicrobial and antioxidant activity. In this study the influence of in vitro gastrointestinal digestion on the cytotoxic activity of A. ursinum extracts against human malignant cell lines was demonstrated. Seven sulfur compounds, the degradation products of thiosulfinates, including diallyl disulfide were shown to inhibit proliferation of malignant cells by inducing accumulation within G2/M phase as well as to induce apoptosis through activation of caspase-3 and mitochondrial signaling pathway. Further, the A. ursinum microbiota, particularly LAB with potential probiotic effects, was analyzed by culture-dependent method and culture-independent method [denaturing gradient gel electrophoresis (DGGE)]. The obtained results revealed that the most abundant genera were Streptococcus, Lactobacillus, and Bacillus. The Lactobacillus genus was mainly represented by L. fermentum. The pulsed-field gel electrophoresis (PFGE) analysis revealed the presence of two PFGE pulsotypes. The probiotic potential of the strain L. fermentum BGSR163 belonging to PFGE pulsotype 1 and the strain L. fermentum BGSR227 belonging to the PFGE pulsotype 2 was characterized. The results revealed that both strains are safe for human use, successfully survive the simulated gastrointestinal conditions, have potential to transiently colonize the gastrointestinal tract (GIT) and have a protective immunomodulatory effect, inducing the production of proinflammatory cytokine IL17 and regulatory cytokine IL10, while decreasing the production of proinflammatory cytokine IFN-γ. In conclusion, the results of this study suggest that consumption of A. ursinum might have health-promoting properties, including anticancer effects, while L. fermentum strains isolated from A. ursinum leaves could be used as probiotics for human consumption.
Collapse
Affiliation(s)
- Nemanja Stanisavljević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- *Correspondence: Nemanja Stanisavljević,
| | - Svetlana Soković Bajić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Živko Jovanović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Matić
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dušanka Popović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nikola Popović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Amarela Terzić-Vidojević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Samardžić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|