1
|
Moreno-Sosa T, Sánchez MB, Pietrobon EO, Fernandez-Muñoz JM, Zoppino FCM, Neira FJ, Germanó MJ, Cargnelutti DE, Innocenti AC, Jahn GA, Valdez SR, Mackern-Oberti JP. Desmoglein-4 Deficiency Exacerbates Psoriasiform Dermatitis in Rats While Psoriasis Patients Displayed a Decreased Gene Expression of DSG4. Front Immunol 2021; 12:625617. [PMID: 33995349 PMCID: PMC8116535 DOI: 10.3389/fimmu.2021.625617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/23/2021] [Indexed: 02/04/2023] Open
Abstract
Desmogleins are involved in cell adhesion conferring structural skin integrity. However, their role in inflammation has been barely studied, and whether desmoglein-4 modulates psoriasis lesions is completely unknown. In this study, we assessed the impact of desmoglein-4 deficiency on the severity of imiquimod (IMQ)-induced skin inflammation and psoriasiform lesions. To this end, desmoglein-4-/- Oncins France Colony A (OFA) with Sprague-Dawley (SD) genetic background were used. Additionally, human RNA-Seq datasets from psoriasis (PSO), atopic dermatitis (AD), and a healthy cohort were analyzed to obtain a desmosome gene expression overview. OFA rats displayed an intense skin inflammation while SD showed only mild inflammatory changes after IMQ treatment. We found that IMQ treatment increased CD3+ T cells in skin from both OFA and SD, being higher in desmoglein-4-deficient rats. In-depth transcriptomic analysis determined that PSO displayed twofold less DSG4 expression than healthy samples while both, PSO and AD showed more than three-fold change expression of DSG3 and DSC2 genes. Although underlying mechanisms are still unknown, these results suggest that the lack of desmoglein-4 may contribute to immune-mediated skin disease progression, promoting leukocyte recruitment to skin. Although further research is needed, targeting desmoglein-4 could have a potential impact on designing new biomarkers for skin diseases.
Collapse
Affiliation(s)
- Tamara Moreno-Sosa
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Belén Sánchez
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Elisa Olivia Pietrobon
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Manuel Fernandez-Muñoz
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Flavia Judith Neira
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María José Germanó
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Esteban Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Graciela Alma Jahn
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Susana Ruth Valdez
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
2
|
The immunoregulatory effect of sulfated Echinacea purpurea polysaccharide on chicken bone marrow-derived dendritic cells. Int J Biol Macromol 2019; 139:1123-1132. [PMID: 31394150 DOI: 10.1016/j.ijbiomac.2019.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/23/2019] [Accepted: 08/03/2019] [Indexed: 12/22/2022]
Abstract
Echinacea purpurea polysaccharide (EPP) was obtained by modern separation technology and sulfated EPP (sEPP) was prepared by sulfation modification. The immunological effects of EPP and sEPP were compared on chicken bone marrow-derived dendritic cells (chBM-DCs). The results showed that the surface marker expression of CD11c and CD80 was increased after chBM-DCs were cultured with three dosage of sEPP, especially in sEPPM group. Three dosage of sEPP, EPPL and LPS could significantly enhance the effects of chBM-DCs on the proliferation of allogenic mixed lymphocytes. After chBM-DCs treatment with EPP or sEPP in vitro, the levels of IL-2 of sEPPH and EPPM groups were significantly higher than those of LPS group (P < 0.05). All sEPP and EPP groups could enhance the level of IFN-γ and down-regulated the level of IL-4 and IL-10. Results indicated that both sEPP and EPP had immunoregulatory effects on chBM-DCs, sEPP possessed better immunoregulatory effects as compared with EPP.
Collapse
|
3
|
Funda DP, Palová-Jelínková L, Goliáš J, Kroulíková Z, Fajstová A, Hudcovic T, Špíšek R. Optimal Tolerogenic Dendritic Cells in Type 1 Diabetes (T1D) Therapy: What Can We Learn From Non-obese Diabetic (NOD) Mouse Models? Front Immunol 2019; 10:967. [PMID: 31139178 PMCID: PMC6527741 DOI: 10.3389/fimmu.2019.00967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are explored as a promising standalone or combination therapy in type 1 diabetes (T1D). The therapeutic application of tolDCs, including in human trials, has been tested also in other autoimmune diseases, however, T1D displays some unique features. In addition, unlike in several disease-induced animal models of autoimmune diseases, the prevalent animal model for T1D, the NOD mouse, develops diabetes spontaneously. This review compares evidence of various tolDCs approaches obtained from animal (mainly NOD) models of T1D with a focus on parameters of this cell-based therapy such as protocols of tolDC preparation, antigen-specific vs. unspecific approaches, doses of tolDCs and/or autoantigens, application schemes, application routes, the migration of tolDCs as well as their preventive, early pre-onset intervention or curative effects. This review also discusses perspectives of tolDC therapy and areas of preclinical research that are in need of better clarification in animal models in a quest for effective and optimal tolDC therapies of T1D in humans.
Collapse
Affiliation(s)
- David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| | - Jaroslav Goliáš
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Zuzana Kroulíková
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Alena Fajstová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Radek Špíšek
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| |
Collapse
|