1
|
Lu X, Fan M, Ma Y, Feng Y, Pan L. Redox-sensitive hydrogel based on hyaluronic acid with selenocystamine cross-linking for the delivery of Limosilactobacillus reuteri in a DSS-induced colitis mouse model. Int J Biol Macromol 2024; 276:133855. [PMID: 39032895 DOI: 10.1016/j.ijbiomac.2024.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Disrupted gut microbiota homeostasis is an important cause of inflammatory colitis. Studies have shown that effective supplementation with probiotics can maintain microbial homeostasis and alleviate colitis. Here, to increase the viability of probiotics in the harsh gastrointestinal environments and enable targeted delivery, a redox-sensitive selenium hyaluronic acid (HA-Se) hydrogel encapsulating probiotics was developed. HA was modified with selenocystamine dihydrochloride and crosslinked by an amide reaction to generate a redox-sensitive hydrogel with stable mechanical properties, a low hemolysis rate and satisfactory biocompatibility. The HA-Se hydrogel exhibited suitable sensitivity to 10 mM GSH or 100 μM H2O2. The encapsulation of Limosilactobacillus reuteri (LR) in the HA-Se hydrogel (HA-Se-LR) significantly increased the survival rate of the probiotics in simulated gastric and intestinal fluid. HA-Se-LR administration increased the survival rate of mice with dextran sulfate sodium (DSS)-induced colitis, significantly alleviated oxidative stress and inflammation, and increased the effect of LR on microbiota α diversity. These results indicate that the HA-Se hydrogel constructed in this study can be used as a delivery platform to treat colitis, expanding the targeted applications of the natural polymer HA in disease treatment and the administration of probiotics as drugs to alleviate disease symptoms.
Collapse
Affiliation(s)
- Xi Lu
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China.
| | - Mingming Fan
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yuzhe Ma
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yimeng Feng
- Mathematics Teaching and Research Group, Dajindian Town Junior High School, Zhengzhou 450000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| |
Collapse
|
2
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
3
|
Li A, Wang Y, Kulyar MFEA, Iqbal M, Lai R, Zhu H, Li K. Environmental microplastics exposure decreases antioxidant ability, perturbs gut microbial homeostasis and metabolism in chicken. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159089. [PMID: 36174690 DOI: 10.1016/j.scitotenv.2022.159089] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The widespread presence and accumulation of microplastics (MPs) in organisms has led to their recognition as a major global ecological issue. There is a lot of data on how MPs affect the physiology and behavior of aquatic species, but the effects of MPs on poultry are less understood. Therefore, we aimed to explore the adverse effects and mechanisms of MPs exposure to chicken health. Results indicated that MPs exposure decreased growth performance and antioxidant ability and impaired chickens' intestine, liver, kidney, and spleen. Additionally, the gut microbiota in chickens exposed to MPs showed a significant decrease in alpha diversity, accompanied by significant alternations in taxonomic compositions. Microbial taxonomic investigation indicated that exposure to MPs resulted in a significant increase in the relative proportions of 11 genera and a distinct decline in the relative percentages of 3 phyla and 52 genera. Among decreased bacterial taxa, 11 genera even couldn't be detected in the gut microbiota of chickens exposed to MPs. Metabolomics analysis indicated that 2561 (1190 up-regulated, 1371 down-regulated) differential metabolites were identified, mainly involved in 5 metabolic pathways, including D-amino acid metabolism, ABC transporters, vitamin digestion and absorption, mineral absorption, and histidine metabolism. Taken together, this study indicated that MPs exposure resulted in adverse health outcomes for chickens by disturbing gut microbial homeostasis and intestinal metabolism. This study also provided motivation for environmental agencies worldwide to regulate the application and disposal of plastic products and decrease environmental contamination.
Collapse
Affiliation(s)
- Aoyun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yingli Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Renhao Lai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huaisen Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
ITO E, OHKI T, TOYA N, NAKAGAWA H, HORIGOME A, ODAMAKI T, XIAO JZ, KOIDO S, NISHIKAWA Y, OHKUSA T, SATO N. Impact of Bifidobacterium adolescentis in patients with abdominal aortic aneurysm: a cross-sectional study. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:81-86. [PMID: 36660598 PMCID: PMC9816055 DOI: 10.12938/bmfh.2022-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 01/01/2023]
Abstract
The relationships between various diseases and the human gut microbiota (GM) have been revealed. However, the relationships between the human abdominal aortic aneurysm (AAA) and GM remains unknown. The aim of this cross-sectional study was to clarify the association between the human AAA and GM. Stool samples from 30 consecutive patients with AAA before aneurysm repair and those of 30 controls without vascular diseases were analyzed by 16S rRNA gene (V3-4) sequencing using an Illumina MiSeq system and QIIME 2. There was no significant difference in age (75 vs. 75 years) or gender (80% vs. 87% males) between the groups. No significant difference in GM composition was observed in principal coordinate analysis between the two groups, whereas the AAA group showed a significantly lower abundance of Bifidobacterium adolescentis (p<0.01) at the species level than the controls. This study demonstrated that the abundance of B. adolescentis decreased in patients with AAA. This is the first study to show the characteristics of the GM in patients with AAA. Studies are needed to reveal if causal relationships exists between the human AAA and GM.
Collapse
Affiliation(s)
- Eisaku ITO
- Department of Surgery, Division of Vascular Surgery, The
Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba 277-0004,
Japan
| | - Takao OHKI
- Division of Vascular Surgery, Department of Surgery, The
Jikei University School of Medicine, 3-19-18 Nishi-shimbashi, Minato, Tokyo 105-8471,
Japan,*Corresponding author. Takao Ohki (E-mail: )
| | - Naoki TOYA
- Department of Surgery, Division of Vascular Surgery, The
Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba 277-0004,
Japan
| | - Hikaru NAKAGAWA
- Department of Surgery, Division of Vascular Surgery, The
Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba 277-0004,
Japan
| | - Ayako HORIGOME
- Next Generation Science Institute, Morinaga Milk Industry
Co., Ltd., 5-1 Higashihara, Zama, Kanagawa 252-0004, Japan
| | - Toshitaka ODAMAKI
- Next Generation Science Institute, Morinaga Milk Industry
Co., Ltd., 5-1 Higashihara, Zama, Kanagawa 252-0004, Japan
| | - Jin-zhong XIAO
- Next Generation Science Institute, Morinaga Milk Industry
Co., Ltd., 5-1 Higashihara, Zama, Kanagawa 252-0004, Japan
| | - Shigeo KOIDO
- Division of Gastroenterology and Hepatology, Department of
Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa,
Chiba 277-0004, Japan
| | - Yuriko NISHIKAWA
- Division of Gastroenterology and Hepatology, Department of
Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa,
Chiba 277-0004, Japan
| | - Toshifumi OHKUSA
- Department of Microbiota Research, Juntendo University
Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobuhiro SATO
- Department of Microbiota Research, Juntendo University
Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
5
|
Ghadimi D, Frahm SO, Röcken C, Ebsen M, Schwiertz A, Fölster-Holst R, Bockelmann W, Heller KJ. Effects of ad libitum free-choice access to freshly squeezed domestic white asparagus juice on intestinal microbiota composition and universal biomarkers of immuno-metabolic homeostasis and general health in middle-aged female and male C57BL/6 mice. Endocr Metab Immune Disord Drug Targets 2021; 22:401-414. [PMID: 34463231 DOI: 10.2174/1871530321666210830150620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Asparagus contains different bioactive and volatile components including pyrazines, sulphur-containing compounds, and polyphenols. Asparagus juice is a new low-calorie LAB-containing natural juice product, the usage of which is expanding. Pyrazines and sulphur-containing compounds are degraded by bacteria on one hand, but on the other hand, dietary polyphenols prevent human colorectal diseases as modulators of the composition and/or activity of gut microbiota. However, the utility of these asparagus compounds for reversal of age-associated microbial dysbiosis and the immunometabolic disorders that dysbiosis incites body inflammatory reactions was not much explored so far. Hence, using middle-aged mice, we conducted the current study to verify the effect of freshly squeezed domestic white asparagus juice on the biomarkers reflecting immuno-metabolic pathways linking age-related dysbiosis and metabolic events. MATERIALS AND METHODS Thirty-two conventional Harlan Laboratories C57BL/6 mice aged between 11-12 months were randomly divided into two groups (n=16). Mice in control group 1 received sterile tap water. Animals in group 2 had 60 days ad libitum free-choice access to sterile tap water supplemented with 5% (v/v) freshly squeezed domestic white asparagus juice. Clinical signs of general health, hydration, and inflammation were monitored daily. Caecal content samples were analysed by qPCR for microbial composition. Histology of relevant organs was carried out on day 60 after sacrificing the mice. Universal markers of metabolic- and liver function were determined in serum samples. Caecal SCFAs contents were measured using HPLC. RESULTS Overall, no significant differences in general health or clinical signs of inflammation between the two groups were observed. The liver to body weight ratio in asparagus juice-drank mice was lowered. The qPCR quantification showed that asparagus juice significantly decreased the caecal Clostridium coccoides group while causing an enhancement in Clostridium leptum, Firmicutes, and bifidobacterial groups as well as total caecal bacterial count. Asparagus juice significantly elevated the caecal contents of SCFAs. Enhanced SCFAs (acetate, butyrate, and propionate) in mice receiving asparagus juice, however, did coincide with altered lipid levels in plasma or changes in the abundance of relevant bacteria for acetate-, butyrate-, and propionate production. DISCUSSION To the best of our knowledge, this is the first study aiming at evaluating the effect of freshly squeezed German domestic white asparagus juice on universal markers of metabolic- and liver function in middle-aged mice and the role of gut microbiota in this regard. The effectiveness of asparagus juice to improve metabolism in middle-aged mice was associated with alterations in intestinal microbiota but maybe also due to uptake of higher amounts of SCFAs. Hence, the key signal pathways corresponding to improved immune-metabolic homeostasis will be an important research scheme in the future.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103 Kiel. Germany
| | - Sven Olaf Frahm
- Medizinisches Versorgungszentrum (MVZ), Pathology and Laboratory Medicine Dr. Rabenhorst, Prüner Gang 7, 24103 Kiel. Germany
| | - Christoph Röcken
- Institute of Pathology, Kiel University,University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, D-24105 Kiel. Germany
| | - Michael Ebsen
- StädtischesMVZ Kiel GmbH, Department of Pathology, Chemnitzstr.33, 24116 Kiel. Germany
| | - Andreas Schwiertz
- MVZ Institute of Microecology, Auf den Lüppen 8, 35745 Herborn. Germany
| | - Regina Fölster-Holst
- Clinic of Dermatology, University Hospital Schleswig-Holstein, Schittenhelmstr. 7, D-24105 Kiel. Germany
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103 Kiel. Germany
| | - Knut J Heller
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology; Kiel. Germany
| |
Collapse
|