1
|
Ali Y, Kausar M, Farooq M, Farooqi N, Ul Islam Z, Khan S, Aman A, Khan N, Kamil A, Jalil F. Association of IL-17F rs2397084 (E126G), rs11465553 (V155I) and rs763780 (H161R) variants with rheumatoid arthritis and their effects on the stability of protein. PLoS One 2023; 18:e0285874. [PMID: 37751416 PMCID: PMC10522029 DOI: 10.1371/journal.pone.0285874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/03/2023] [Indexed: 09/28/2023] Open
Abstract
Interleukin-17F (IL-17F), considered a pro-inflammatory cytokine, has been shown to contribute to skeletal tissue degradation and hence chronic inflammation in rheumatoid arthritis (RA). In this study we utilized bioinformatics tools to analyze the effect of three exonic SNPs (rs2397084, rs11465553, and rs763780) on the structure and function of the IL-17F gene, and evaluated their association with RA in Pakistani patients. The predicted deleterious and damaging effects of identified genetic variants were assessed through the utilization of multiple bioinformatics tools including PROVEAN, SNP&GO, SIFT, and PolyPhen2. Structural and functional effects of these variants on protein structures were evaluated through the use of additional tools such as I-Mutant, MutPred, and ConSurf. Three-dimensional (3D) models of both the wild-type and mutant proteins were constructed through the utilization of I-TASSER software, with subsequent structural comparisons between the models conducted through the use of the TM-align score. A total of 500 individuals, 250 cases and 250 controls, were genotyped through Tri-ARMS-PCR method and the resultant data was statistically analyzed using various inheritance models. Our bioinformatics analysis showed significant structural differences for wild type and mutant protein (TM-scores and RMSD values were 0.85934 and 2.34 for rs2397084 (E126G), 0.87388 and 2.49 for rs11465553 (V155I), and 0.86572 and 0.86572 for rs763780 (H161R) with decrease stability for the later. Overall, these tools enabled us to predict that these variants are crucial in causing disease phenotypes. We further tested each of these single nucleotide variants for their association with RA. Our analysis revealed a strong positive association between the genetic variant rs763780 and the risk of developing rheumatoid arthritis (RA) at both the genotypic and allelic levels. The genotypic association was statistically significant[χ2 = 111.8; P value <0.0001], as was the allelic level [OR 3.444 (2.539-4.672); P value 0.0008]. These findings suggest that the presence of this genetic variant may increase the susceptibility to RA. Similarly, we observed a significant distribution of the genetic variant rs11465553 at the genotypic level [χ2 = 25.24; P value = 0.0001]. However, this variant did not show a significant association with RA at the allelic level [OR = 1.194 (0.930-1.531); P value = 0.183]. However, the distribution of variant rs2397084 was more or less random across our sample with no significant association either at genotypic and or allelic level. Put together, our association study and in silico prediction of decreasing of IL17-F protein stabilty confirmed that two SNPs, rs11465553 and rs763780 are crucial to the suscetibility of and showed that these RA in Pakistani patients.
Collapse
Affiliation(s)
- Yasir Ali
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
- School of Biomedical Sciences, Chinese University of Hong Kong, New Territories, Hong Kong
| | - Masood Kausar
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mazhar Farooq
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Nadia Farooqi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ul Islam
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Suleman Khan
- Consultant Rheumatologists, Lady Reading Hospital-MTI Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Aisha Aman
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Atif Kamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Zhu M, Guo Q, Kang H, Peng R, Dong Y, Zhang Y, Wang S, Liu H, Zhao H, Dong Z, Song K, Xu S, Wang P, Chen L, Liu J, Li F. Inhibition of FAAH suppresses RANKL-induced osteoclastogenesis and attenuates ovariectomy-induced bone loss partially through repressing the IL17 pathway. FASEB J 2023; 37:e22690. [PMID: 36468880 DOI: 10.1096/fj.202200911r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Fatty amide hydrolase (FAAH) is a key degradation enzyme of the endocannabinoid system, mainly responsible for the hydrolysis of arachidonic acid ethanolamine (AEA). Previous investigations have shown that FAAH is involved in a series of biological processes, such as inflammation, immune regulation, and transmembrane signal transduction of neurons. Endogenous cannabinoids and cannabinoid receptors have been reported to participate in the regulation of bone homeostasis by regulating the differentiation of osteoblasts and osteoclasts. We hypothesized that FAAH may play an important role in osteoclastogenesis based on the above evidence. The present study found that the FAAH expression was increased at both mRNA and protein levels during RANKL-induced osteoclastogenesis. Pharmacological and genetic inhibition of FAAH in bone marrow-derived macrophages (BMMs) inhibited osteoclastogenesis, F-actin ring formation, bone resorption, and osteoclast-specific gene expression in vitro. Moreover, intragastric administration of the FAAH inhibitor PF-04457845(PF) ameliorated ovariectomy (OVX)-induced bone loss in mice. Further investigation revealed that nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways were inhibited by PF treatment and FAAH knockdown. RNAseq indicated that the IL17 pathway was blocked by PF, and administration of recombinant murine IL17 protein could partially restore osteoclastogenesis and activate NF-κB and MAPK pathways. To sum up, our findings demonstrate that targeting FAAH could be a promising candidate strategy for treating osteoclast-related diseases, especially osteoporosis.
Collapse
Affiliation(s)
- Meipeng Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibo Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimeng Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Liu T, Yang L, Lv X, Zuo C, Jia C, Yang Z, Fan C, Chen H. Cumulative evidence for associations between genetic variants in interleukin 17 family gene and risk of human diseases. Front Immunol 2022; 13:1008184. [PMID: 36300118 PMCID: PMC9589504 DOI: 10.3389/fimmu.2022.1008184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Background Genetic association studies have elucidated the link of variants in the interleukin 17 (IL-17) family genes with susceptibility to human diseases, yet have obtained controversial outcomes. Therefore, we sought to update comprehensive synopsis of variants in the IL-17 family genes with susceptibility to human diseases. Methods Our study screened the Pubmed and Web of Science to enroll eligible articles and performed a meta-analysis, then graded the cumulative evidence of significant association using Venice criteria and false-positive report probability test, and finally assessed the function of variants with strong evidence. Results Seven variants in IL-17 family genes had significant relationships with susceptibility to 18 human diseases identified by meta-analyses. Strong evidence was assigned to 4 variants (IL-17A rs2275913, IL-17A rs8193037, IL-17F rs1889570, IL-17F rs763780) with susceptibility to 6 human diseases (lung and cervical cancer, spondyloarthritis, asthma, multiple sclerosis, rheumatoid arthritis), moderate to 2 variants with risk of 5 diseases, weak to 5 variants with risk of 10 diseases. Bioinformatics analysis suggested that the variants with strong evidence might fall in putative functional regions. Additionally, positive relationships for 5 variants with risk of 4 diseases (based on two datasets) and 14 variants with risk of 21 diseases (based on one dataset) were considered noteworthy. Conclusions This study offers updated and comprehensive clues that variants in the IL-17 family genes are significantly linked with susceptibility to cervical, lung cancer, asthma, multiple sclerosis, rheumatoid arthritis and spondyloarthritis, and elucidates the crucial role of the IL-17 regions in the genetic predisposition to cancer or noncancerous diseases.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolong Lv
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunjian Zuo
- Department of Thoracic Surgery, Army Medical Center of People’s Liberation Army of China (PLA), Chongqing, China
| | - Chenhao Jia
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zelin Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chongqi Fan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huanwen Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Huanwen Chen,
| |
Collapse
|
4
|
Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol 2022; 13:947636. [PMID: 36016949 PMCID: PMC9398455 DOI: 10.3389/fimmu.2022.947636] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T (Treg) cells are garnering increased attention in research related to autoimmune diseases, including rheumatoid arthritis (RA). They play an essential role in the maintenance of immune homeostasis by restricting effector T cell activity. Reduced functions and frequencies of Treg cells contribute to the pathogenesis of RA, a common autoimmune disease which leads to systemic inflammation and erosive joint destruction. Treg cells from patients with RA are characterized by impaired functions and by an altered phenotype. They show increased plasticity towards Th17 cells and a reduced suppressive capacity. Besides the suppressive function of Treg cells, their effectiveness is determined by their ability to migrate into inflamed tissues. In the past years, new mechanisms involved in Treg cell migration have been identified. One example of such a mechanism is the phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Efficient migration of Treg cells requires the presence of VASP. IL-6, a cytokine which is abundantly present in the peripheral blood and in the synovial tissue of RA patients, induces posttranslational modifications of VASP. Recently, it has been shown in mice with collagen-induced arthritis (CIA) that this IL-6 mediated posttranslational modification leads to reduced Treg cell trafficking. Another protein which facilitates Treg cell migration is G-protein-signaling modulator 2 (GPSM2). It modulates G-protein coupled receptor functioning, thereby altering the cellular activity initiated by cell surface receptors in response to extracellular signals. The almost complete lack of GPSM2 in Treg cells from RA patients contributes to their reduced ability to migrate towards inflammatory sites. In this review article, we highlight the newly identified mechanisms of Treg cell migration and review the current knowledge about impaired Treg cell homeostasis in RA.
Collapse
Affiliation(s)
- Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- *Correspondence: David M. Kofler,
| |
Collapse
|
5
|
Lim SH, Kim K, Choi CI. Pharmacogenomics of Monoclonal Antibodies for the Treatment of Rheumatoid Arthritis. J Pers Med 2022; 12:jpm12081265. [PMID: 36013214 PMCID: PMC9410311 DOI: 10.3390/jpm12081265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Precision medicine refers to a highly individualized and personalized approach to patient care. Pharmacogenomics is the study of how an individual’s genomic profile affects their drug response, enabling stable and effective drug selection, minimizing side effects, and maximizing therapeutic efficacy. Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation in the joints. It mainly starts in peripheral joints, such as the hands and feet, and progresses to large joints, which causes joint deformation and bone damage due to inflammation of the synovial membrane. Here, we review various pharmacogenetic studies investigating the association between clinical response to monoclonal antibody therapy and their target genetic polymorphisms. Numerous papers have reported that some single nucleotide polymorphisms (SNPs) are related to the therapeutic response of several monoclonal antibody drugs including adalimumab, infliximab, rituximab, and tocilizumab, which target tumor necrosis factor (TNF), CD20 of B-cells, and interleukin (IL)-6. Additionally, there are some pharmacogenomic studies reporting on the association between the clinical response of monoclonal antibodies having various mechanisms, such as IL-1, IL-17, IL-23, granulocyte-macrophage colony-stimulating factor (GM-CSF) and the receptor activator of nuclear factor-kappa B (RANK) inhibition. Biological therapies are currently prescribed on a “trial and error” basis for RA patients. If appropriate drug treatment is not started early, joints may deform, and long-term treatment outcomes may worsen. Pharmacogenomic approaches that predict therapeutic responses for RA patients have the potential to significantly improve patient quality of life and reduce treatment costs.
Collapse
Affiliation(s)
- Sung Ho Lim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea;
| | - Khangyoo Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea;
| | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea;
- Correspondence: ; Tel.: +82-31-961-5230
| |
Collapse
|
6
|
Koper-Lenkiewicz OM, Sutkowska K, Wawrusiewicz-Kurylonek N, Kowalewska E, Matowicka-Karna J. Proinflammatory Cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-α) Single Nucleotide Polymorphisms in Rheumatoid Arthritis-A Literature Review. Int J Mol Sci 2022; 23:ijms23042106. [PMID: 35216226 PMCID: PMC8878005 DOI: 10.3390/ijms23042106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Conducted studies highlight that a mixture of genetic and environmental factors is responsible for rheumatoid arthritis (RA) development. This study aimed to analyze the available literature for the relationship between, on the one hand, single-nucleotide polymorphisms (SNPs) in the proinflammatory cytokines genes interleukin-1 (IL-1), -6, -8, -15, -17, -18, and -23, and tumor necrosis factor-alpha (TNF-α), and on the other hand, RA susceptibility, severity, and patients' response to applied treatment. The PubMed database was searched for sources. Preference was given to articles which were published within the past 20 years. Data indicate that the relationship between selected SNPs in proinflammatory cytokines genes and susceptibility to developing RA is inconclusive, and it depends on the ethnicity of the population. Although the allelic and genotypic frequencies of many SNPs in proinflammatory cytokines genes analyzed did not differ between RA patients and healthy controls, deeper analysis showed that these polymorphisms have a relationship with clinicopathological features of RA. SNPs in proinflammatory cytokines genes also "modify patients' response" to applied treatment. Further studies, on larger cohorts of subjects and in different populations, should be conducted to elucidate the role of SNPs in IL-1, -6, -8, -15, -17, -18, and -23, and TNF-α genes in RA patients.
Collapse
Affiliation(s)
- Olga M. Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland; (K.S.); (E.K.); (J.M.-K.)
- Correspondence:
| | - Kinga Sutkowska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland; (K.S.); (E.K.); (J.M.-K.)
| | - Natalia Wawrusiewicz-Kurylonek
- Department of Clinical Genetics, Medical University of Bialystok, Waszyngtona 13, 15-269 Białystok, Poland;
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland
| | - Ewa Kowalewska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland; (K.S.); (E.K.); (J.M.-K.)
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland; (K.S.); (E.K.); (J.M.-K.)
| |
Collapse
|
7
|
Wielińska J, Świerkot J, Kolossa K, Bugaj B, Chaszczewska-Markowska M, Jeka S, Bogunia-Kubik K. Polymorphisms within Genes Coding for IL-17A and F and Their Receptor as Clinical Hallmarks in Ankylosing Spondylitis. Mediators Inflamm 2021; 2021:3125922. [PMID: 34744511 PMCID: PMC8566063 DOI: 10.1155/2021/3125922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
IL-17A and IL-17F together with their coreceptor (IL-17RA/RC) were reported to play a significant role in the pathogenesis of spondyloarthritis. The group of axial spondyloarthritis comprises ankylosing spondylitis (AS), a rheumatic disease characterized by chronic inflammation of the joints in the spine. This study is aimed at investigating IL-17A, IL-17F, IL-17RA, and IL-17RC polymorphisms as potential biomarkers of disease susceptibility, clinical parameters, and anti-TNF treatment outcome in a cohort of Polish ankylosing spondylitis patients. In total, 328 subjects, including 138 AS patients and 190 healthy volunteers, participated in the study. Genotyping of IL-17A rs2275913 (G/A), IL-17F rs763780 (A/G), IL-17RA rs4819554 (A/G), and IL-17RC rs708567 (G/A) was performed on real-time PCR instrument using LightSNiP assays. No significant differences were revealed in genotype and allele distribution between patients and controls despite the association of the IL-17RC rs708567 AA homozygosity with the earlier onset of the disease. Moreover, some relationships between IL-17F rs763780 and IL-17RA rs4819554 polymorphisms with clinical parameters related to the disease activity and anti-TNF treatment outcome were observed. IL-17F rs763780 G allele was found to be associated with high disease activity and BASDAI after 6 months and poor response to the treatment while higher VAS values were more common among IL-17RA rs4819554 G variant carriers. In conclusion, the IL-17F rs763780 polymorphism should be considered as a promising biomarker of disease activity and anti-TNF treatment outcome. The IL-17RA rs48419554 G allele may serve as a potential marker of disease severity in Polish AS patients.
Collapse
Affiliation(s)
- Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Katarzyna Kolossa
- Department of Rheumatology and Connective Tissue Diseases, Jan Biziel University Hospital No. 2, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Bartosz Bugaj
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Sławomir Jeka
- Department of Rheumatology and Connective Tissue Diseases, Jan Biziel University Hospital No. 2, Ujejskiego 75, 85-168 Bydgoszcz, Poland
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellońska 15, 85-067 Bydgoszcz, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|