1
|
Iketani A, Takano M, Kasakura K, Iwatsuki M, Tsuji A, Matsuda K, Minegishi R, Hosono A, Nakanishi Y, Takahashi K. CCAAT/enhancer-binding protein α-dependent regulation of granule formation in mast cells by intestinal bacteria. Eur J Immunol 2024; 54:e2451094. [PMID: 38980255 DOI: 10.1002/eji.202451094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
The antiallergic effects of gut microbiota have been attracting attention in recent years, but the underlying cellular and molecular mechanisms have not yet been fully understood. In this study, we aimed to investigate these mechanisms specifically focusing on mast cells. Mast cells retain intracellular granules containing various inflammatory mediators such as histamine, which are released outside the cells upon IgE and allergen stimulation. We previously reported that increased expression of the transcription factor, CCAAT/enhancer-binding protein α (C/EBPα), suppresses granule formation in mast cells and that Lacticaseibacillus casei JCM1134T (LC) upregulates C/EBPα levels. Here, granule formation in mouse bone marrow-derived mast cells was suppressed in a MyD88-dependent manner after LC treatment due to C/EBPα-dependent downregulation of the genes encoding serglycin (SRGN) and mast cell protease 4 (Mcpt4). Furthermore, C/EBPα expression was regulated by DNA methylation in the 5' region far upstream of the transcription start site. LC suppressed DNA methylation of specific CpG motifs in the 5' region of the C/EBPα gene. These results conclude that specific gut microbial components, such as those from LC, suppress granule formation in mast cells by inhibiting SRGN and Mcpt4 expression via reduced C/EBPα gene methylation.
Collapse
Affiliation(s)
- Ayaka Iketani
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Mai Takano
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Kazumi Kasakura
- Department of Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Miono Iwatsuki
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Ayu Tsuji
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kou Matsuda
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Remina Minegishi
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Akira Hosono
- Department of Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yusuke Nakanishi
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kyoko Takahashi
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- Department of Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
2
|
Liu JS, Huang RY, Wei YJ, Tsai GJ, Huang CH. Influence of Cordyceps militaris-fermented grain substrate extracts on alleviating food allergy in mice. Heliyon 2023; 9:e23315. [PMID: 38144334 PMCID: PMC10746508 DOI: 10.1016/j.heliyon.2023.e23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Background Cordyceps militaris is recognized as a tonic in traditional Chinese medicine, and there have been documented findings on the anti-allergic properties of its extract derived from the fruiting body. Due to the limited availability of wild C. militaris, a specialized grain substrate has been devised for the solid-state fermentation of its fruiting bodies. However, the fermented grain substrate is considered waste and usually used as feeds for animals. To achieve the sustainable development goals, C. militaris-fermented grain substrate (CFGS) was collected to prepare CFGS extracts. Further, the anti-allergic properties of these extracts were assessed with the aim of exploring novel applications. Methods The water extract and ethanol extract of CFGS were prepared, and their potential in alleviating allergic enteritis was assessed in mice with food allergy. Assessment of immunomodulatory effects included the measurement of serum antibodies and splenic cytokines. Additionally, influence of extracts on gut microbiota composition was examined through sequencing analysis of 16S rRNA gene from freshly collected feces of the mice. Results Daily administration of the water and ethanol extracts, at doses of 50 or 250 mg/kg body weight, demonstrated a notable alleviation of allergic diarrhea and enteritis. This was accompanied by a decrease in mast cell infiltration in the duodenum and a reduction in allergen-specific IgE production in the serum. Both extracts led to a significant decrease in IL-4 secretion. Conversely, there was an increase in IFN-γ, IL-10, and TGF-β secretion from splenocytes. Remarkably, allergic mice exhibited a distinct fecal microbiota profile compared to that of normal mice. Intriguingly, the administration of these extracts had varying effects on the fecal microbiota. Conclusion Taken together, these findings collectively indicate the potential of CFGS extracts as promising candidates for functional foods. These extracts show promise in managing allergic enteritis and modulating gut microbiota.
Collapse
Affiliation(s)
- Jia-Shan Liu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Rong-Yi Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yu-Jyun Wei
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
3
|
Zachariassen LF, Ebert MBB, Mentzel CMJ, Deng L, Krych L, Nielsen DS, Stokholm J, Hansen CHF. Cesarean section induced dysbiosis promotes type 2 immunity but not oxazolone-induced dermatitis in mice. Gut Microbes 2023; 15:2271151. [PMID: 37889696 PMCID: PMC10730161 DOI: 10.1080/19490976.2023.2271151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Delivery by cesarean section (CS) is associated with an altered gut microbiota (GM) colonization and a higher risk of later chronic inflammatory diseases. Studies investigating the association between CS and atopic dermatitis (AD) are contradictive and often biased by confounding factors. The aim of this study was therefore to provide experimental evidence for the association between CS and AD in a mouse model and clarify the role of the GM changes associated with CS. It was hypothesized that CS-delivered mice, and human CS-GM transplanted mice develop severe dermatitis due to early dysbiosis. BALB/c mice delivered by CS or vaginally (VD) as well as BALB/c mice transplanted with GM from CS or VD human donors were challenged with oxazolone on the ear. The severity of dermatitis was evaluated by ear thickness and clinical and histopathological assessment which were similar between all groups. The immune response was assessed by serum IgE concentration, local cytokine response, and presence of immune cells in the draining lymph node. Both CS-delivered mice and mice inoculated with human CS-GM had a higher IgE concentration. A higher proportion of Th2 cells were also found in the CS-GM inoculated mice, but no differences were seen in the cytokine levels in the affected ears. In support of the experimental findings, a human cohort analysis from where the GM samples were obtained found that delivery mode did not affect the children's risk of developing AD. In conclusion, CS-GM enhanced a Th2 biased immune response, but had no effect on oxazolone-induced dermatitis in mice.
Collapse
Affiliation(s)
- Line Fisker Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Bernadette Bergh Ebert
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Caroline Märta Junker Mentzel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Deng
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Jakob Stokholm
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, Gentofte, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Arukha AP, Freguia CF, Mishra M, Jha JK, Kariyawasam S, Fanger NA, Zimmermann EM, Fanger GR, Sahay B. Lactococcus lactis Delivery of Surface Layer Protein A Protects Mice from Colitis by Re-Setting Host Immune Repertoire. Biomedicines 2021; 9:1098. [PMID: 34572293 PMCID: PMC8470720 DOI: 10.3390/biomedicines9091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by gastrointestinal inflammation comprised of Crohn's disease and ulcerative colitis. Centers for Disease Control and Prevention report that 1.3% of the population of the United States (approximately 3 million people) were affected by the disease in 2015, and the number keeps increasing over time. IBD has a multifactorial etiology, from genetic to environmental factors. Most of the IBD treatments revolve around disease management, by reducing the inflammatory signals. We previously identified the surface layer protein A (SlpA) of Lactobacillus acidophilus that possesses anti-inflammatory properties to mitigate murine colitis. Herein, we expressed SlpA in a clinically relevant, food-grade Lactococcus lactis to further investigate and characterize the protective mechanisms of the actions of SlpA. Oral administration of SlpA-expressing L. lactis (R110) mitigated the symptoms of murine colitis. Oral delivery of R110 resulted in a higher expression of IL-27 by myeloid cells, with a synchronous increase in IL-10 and cMAF in T cells. Consistent with murine studies, human dendritic cells exposed to R110 showed exquisite differential gene regulation, including IL-27 transcription, suggesting a shared mechanism between the two species, hence positioning R110 as potentially effective at treating colitis in humans.
Collapse
Affiliation(s)
- Ananta Prasad Arukha
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
- Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Meerambika Mishra
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
| | - Jyoti K. Jha
- Rise Therapeutics, Rockville, MD 20850, USA; (C.F.F.); (J.K.J.); (G.R.F.)
| | - Subhashinie Kariyawasam
- Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Ellen M. Zimmermann
- Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL 32608, USA;
| | - Gary R. Fanger
- Rise Therapeutics, Rockville, MD 20850, USA; (C.F.F.); (J.K.J.); (G.R.F.)
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
| |
Collapse
|