1
|
Zheng C, Li Y, Wu X, Gao L, Chen X. Advances in the Synthesis and Physiological Metabolic Regulation of Nicotinamide Mononucleotide. Nutrients 2024; 16:2354. [PMID: 39064797 PMCID: PMC11279976 DOI: 10.3390/nu16142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+), is involved in the regulation of many physiological and metabolic reactions in the body. NMN can indirectly affect cellular metabolic pathways, DNA repair, and senescence, while also being essential for maintaining tissues and dynamic metabolic equilibria, promoting healthy aging. Therefore, NMN has found many applications in the food, pharmaceutical, and cosmetics industries. At present, NMN synthesis strategies mainly include chemical synthesis and biosynthesis. Despite its potential benefits, the commercial production of NMN by organic chemistry approaches faces environmental and safety problems. With the rapid development of synthetic biology, it has become possible to construct microbial cell factories to produce NMN in a cost-effective way. In this review, we summarize the chemical and biosynthetic strategies of NMN, offering an overview of the recent research progress on host selection, chassis cell optimization, mining of key enzymes, metabolic engineering, and adaptive fermentation strategies. In addition, we also review the advances in the role of NMN in aging, metabolic diseases, and neural function. This review provides comprehensive technical guidance for the efficient biosynthesis of NMN as well as a theoretical basis for its application in the fields of food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Chuxiong Zheng
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Yumeng Li
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xin Wu
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Le Gao
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
2
|
Cruden K, Wilkinson K, Mukaz DK, Plante TB, Zakai NA, Long DL, Cushman M, Olson NC. Soluble CD14 and Incident Diabetes Risk: The REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. J Endocr Soc 2024; 8:bvae097. [PMID: 38817635 PMCID: PMC11137750 DOI: 10.1210/jendso/bvae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 06/01/2024] Open
Abstract
Context Soluble CD14 (sCD14) is an inflammation biomarker with higher concentrations in White than Black adults. Higher sCD14 is seen in insulin resistance and diabetes. There are limited data on the relationship between sCD14 and incident diabetes. Objective To determine the association of sCD14 with incident diabetes risk in a large biracial US cohort and evaluate whether relationships differ by race. Design This study included 3401 Black and White participants from the REasons for Geographic And Racial Differences in Stroke (REGARDS) study without baseline diabetes who completed baseline and follow-up in-home visits. Modified Poisson regression models estimated risk ratios (RR) of incident diabetes per 1-SD increment sCD14, with adjustment for risk factors. A sCD14-by-race interaction evaluated whether associations differed by race. Results There were 460 cases of incident diabetes over a mean 9.5 years of follow-up. The association of sCD14 with diabetes differed by race (P for interaction < .09). Stratifying by race, adjusting for age, sex, and region, higher sCD14 was associated with incident diabetes in White (RR: 1.15; 95% CI: 1.01, 1.33) but not Black participants (RR: 0.96; 95% CI: 0.86, 1.08). In models adjusted for clinical and sociodemographic diabetes risk factors, the association was attenuated among White participants (RR: 1.10; 95% CI: 0.95, 1.28) and remained null among Black participants (RR: 0.90; 95% CI: 0.80, 1.01). Conclusion sCD14 was associated with incident diabetes risk in White but not Black adults, but this association was explained by diabetes risk factors.
Collapse
Affiliation(s)
- Kaileen Cruden
- Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Katherine Wilkinson
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Debora Kamin Mukaz
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Timothy B Plante
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Neil A Zakai
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - D Leann Long
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mary Cushman
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Nels C Olson
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
3
|
Nambala P, Mulindwa J, Noyes H, Alibu VP, Nerima B, Namulondo J, Nyangiri O, Matovu E, MacLeod A, Musaya J. Differences in gene expression profiles in early and late stage rhodesiense HAT individuals in Malawi. PLoS Negl Trop Dis 2023; 17:e0011803. [PMID: 38055777 PMCID: PMC10727365 DOI: 10.1371/journal.pntd.0011803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/18/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
T. b. rhodesiense is the causative agent of Rhodesian human African trypanosomiasis (r-HAT) in Malawi. Clinical presentation of r-HAT in Malawi varies between foci and differs from East African HAT clinical phenotypes. The purpose of this study was to gain more insights into the transcriptomic profiles of patients with early stage 1 and late stage 2 HAT disease in Malawi. Whole blood from individuals infected with T. b. rhodesiense was used for RNA-Seq. Control samples were from healthy trypanosome negative individuals matched on sex, age range, and disease foci. Illumina sequence FASTQ reads were aligned to the GRCh38 release 84 human genome sequence using HiSat2 and differential analysis was done in R Studio using the DESeq2 package. XGR, ExpressAnalyst and InnateDB algorithms were used for functional annotation and gene enrichment analysis of significant differentially expressed genes. RNA-seq was done on 23 r-HAT case samples and 28 healthy controls with 7 controls excluded for downstream analysis as outliers. A total of 4519 genes were significant differentially expressed (p adjusted <0.05) in individuals with early stage 1 r-HAT disease (n = 12) and 1824 genes in individuals with late stage 2 r-HAT disease (n = 11) compared to controls. Enrichment of innate immune response genes through neutrophil activation was identified in individuals with both early and late stages of the disease. Additionally, lipid metabolism genes were enriched in late stage 2 disease. We further identified uniquely upregulated genes (log2 Fold Change 1.4-2.0) in stage 1 (ZNF354C) and stage 2 (TCN1 and MAGI3) blood. Our data add to the current understanding of the human transcriptome profiles during T. b. rhodesiense infection. We further identified biological pathways and transcripts enriched than were enriched during stage 1 and stage 2 r-HAT. Lastly, we have identified transcripts which should be explored in future research whether they have potential of being used in combination with other markers for staging or r-HAT.
Collapse
Affiliation(s)
- Peter Nambala
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
- Kamuzu University of Health Sciences, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Julius Mulindwa
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Vincent Pius Alibu
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Barbara Nerima
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Joyce Namulondo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Oscar Nyangiri
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Enock Matovu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Janelisa Musaya
- Kamuzu University of Health Sciences, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | |
Collapse
|
4
|
Development of an Untargeted Metabolomics Strategy to Study the Metabolic Rewiring of Dendritic Cells upon Lipopolysaccharide Activation. Metabolites 2023; 13:metabo13030311. [PMID: 36984754 PMCID: PMC10058937 DOI: 10.3390/metabo13030311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Dendritic cells (DCs) are essential immune cells for defense against external pathogens. Upon activation, DCs undergo profound metabolic alterations whose precise nature remains poorly studied at a large scale and is thus far from being fully understood. The goal of the present work was to develop a reliable and accurate untargeted metabolomics workflow to get a deeper insight into the metabolism of DCs when exposed to an infectious agent (lipopolysaccharide, LPS, was used to mimic bacterial infection). As DCs transition rapidly from a non-adherent to an adherent state upon LPS exposure, one of the leading analytical challenges was to implement a single protocol suitable for getting comparable metabolomic snapshots of those two cellular states. Thus, a thoroughly optimized and robust sample preparation method consisting of a one-pot solvent-assisted method for the simultaneous cell lysis/metabolism quenching and metabolite extraction was first implemented to measure intracellular DC metabolites in an unbiased manner. We also placed special emphasis on metabolome coverage and annotation by using a combination of hydrophilic interaction liquid chromatography and reverse phase columns coupled to high-resolution mass spectrometry in conjunction with an in-house developed spectral database to identify metabolites at a high confidence level. Overall, we were able to characterize up to 171 unique meaningful metabolites in DCs. We then preliminarily compared the metabolic profiles of DCs derived from monocytes of 12 healthy donors upon in vitro LPS activation in a time-course experiment. Interestingly, the resulting data revealed differential and time-dependent activation of some particular metabolic pathways, the most impacted being nucleotides, nucleotide sugars, polyamines pathways, the TCA cycle, and to a lesser extent, the arginine pathway.
Collapse
|
5
|
CD14 signaling mediates lung immunopathology and mice mortality induced by Achromobacter xylosoxidans. Inflamm Res 2022; 71:1535-1546. [PMID: 36280620 PMCID: PMC9592541 DOI: 10.1007/s00011-022-01641-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022] Open
Abstract
Objective and design Our research aimed to investigate the role of CD14 in pulmonary infection by Achromobacter xylosoxidans in an experimental murine model. Methods C57Bl/6 or CD14-deficient mice were infected intratracheally with non-lethal inoculum of A. xylosoxidans. At times 1, 3 and 7 days after infection, lungs, bronchoalveolar lavage and blood were collected. CD14 gene expression was determined by RT-PCR. The bacterial load in the lungs was assessed by counting colony forming units (CFU). Cytokines, chemokines, lipocalin-2 and sCD14 were quantified by the ELISA method. Inflammatory infiltrate was observed on histological sections stained with HE, and leukocyte subtypes were assessed by flow cytometry. In another set of experiments, C57Bl/6 or CD14-deficient mice were inoculated with lethal inoculum and the survival rate determined. Results CD14-deficient mice are protected from A. xylosoxidans-induced death, which is unrelated to bacterial load. The lungs of CD14-deficient mice presented a smaller area of tissue damage, less neutrophil and macrophage infiltration, less pulmonary edema, and a lower concentration of IL-6, TNF-α, CXCL1, CCL2 and CCL3 when compared with lungs of C57Bl/6 mice. We also observed that A. xylosoxidans infection increases the number of leukocytes expressing mCD14 and the levels of sCD14 in BALF and serum of C57Bl/6-infected mice. Conclusions In summary, our data show that in A. xylosoxidans infection, the activation of CD14 induces intense pulmonary inflammatory response resulting in mice death. Supplementary Information The online version contains supplementary material available at 10.1007/s00011-022-01641-8.
Collapse
|