1
|
Krauklis SA, Hussain J, Murphy KM, Dray EL, Ousley CG, Justyna K, Distefano MD, Steelman AJ, McKim DB. Mononuclear phagocyte morphological response to chemoattractants is dependent on geranylgeranyl pyrophosphate. Am J Physiol Endocrinol Metab 2024; 327:E55-E68. [PMID: 38717364 PMCID: PMC11390116 DOI: 10.1152/ajpendo.00359.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024]
Abstract
Statins are used to treat hypercholesterolemia and function by inhibiting the production of the rate-limiting metabolite mevalonate. As such, statin treatment not only inhibits de novo synthesis of cholesterol but also isoprenoids that are involved in prenylation, the posttranslational lipid modification of proteins. The immunomodulatory effects of statins are broad and often conflicting. Previous work demonstrated that statins increased survival and inhibited myeloid cell trafficking in a murine model of sepsis, but the exact mechanisms underlying this phenomenon were unclear. Herein, we investigated the role of prenylation in chemoattractant responses. We found that simvastatin treatment abolished chemoattractant responses induced by stimulation by C5a and FMLP. The inhibitory effect of simvastatin treatment was unaffected by the addition of either farnesyl pyrophosphate (FPP) or squalene but was reversed by restoring geranylgeranyl pyrophosphate (GGPP). Treatment with prenyltransferase inhibitors showed that the chemoattractant response to both chemoattractants was dependent on geranylgeranylation. Proteomic analysis of C15AlkOPP-prenylated proteins identified several geranylgeranylated proteins involved in chemoattractant responses, including RHOA, RAC1, CDC42, and GNG2. Chemoattractant responses in THP-1 human macrophages were also geranylgeranylation dependent. These studies provide data that help clarify paradoxical findings on the immunomodulatory effects of statins. Furthermore, they establish the role of geranylgeranylation in mediating the morphological response to chemoattractant C5a.NEW & NOTEWORTHY The immunomodulatory effect of prenylation is ill-defined. We investigated the role of prenylation on the chemoattractant response to C5a. Simvastatin treatment inhibits the cytoskeletal remodeling associated with a chemotactic response. We showed that the chemoattractant response to C5a was dependent on geranylgeranylation, and proteomic analysis identified several geranylgeranylated proteins that are involved in C5a receptor signaling and cytoskeletal remodeling. Furthermore, they establish the role of geranylgeranylation in mediating the response to chemoattractant C5a.
Collapse
Affiliation(s)
- Steven A Krauklis
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Jamal Hussain
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Katherine M Murphy
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Evan L Dray
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Carey G Ousley
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States
| | - Andrew J Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Daniel B McKim
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
2
|
Hashida M, Steelman AJ, Erdman JW. α-Tocopherol Depletion Exacerbates Lipopolysaccharide-Induced Reduction of Grip Strength. J Nutr 2024; 154:498-504. [PMID: 38141774 DOI: 10.1016/j.tjnut.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND α-Tocopherol (αT) deficiency causes several neurologic disorders, such as spinocerebellar ataxia, peripheral neuropathy, and myopathy. Furthermore, decreased antibody production, impaired ex vivo T cell function, and elevated cytokine production are observed in humans and mice with αT deficiency. Although modeling αT deficiency in animals is challenging, αT depletion can be more readily achieved in α-tocopherol transfer protein-null (Ttpa-/-) mice than wild-type (WT) mice. Thus, the Ttpa-/- mouse model is a useful tool for studying metabolic consequences of low αT status. Optimizing this mouse model and selecting the reliable indicators/markers of deficiency are still needed. OBJECTIVE Our objective was to assess whether αT depletion alters lipopolysaccharide (LPS)-induced inflammatory response in the brain and/or grip strength used as a proxy for fatigue. METHODS WT and Ttpa-/- weanling littermates (n = 37-40/genotype) were fed an αT deficient diet ad libitum for 9 wk. Mice were then injected with LPS (10 μg/mouse) or saline (control) intraperitoneally and killed 4 h later. Concentrations of αT in diet and tissues were measured via high-pressure liquid chromatography. Grip strength was evaluated via a grip strength meter apparatus 2 d before and 3.5 h after LPS injection. Cerebellar and serum interleukin-6 (IL-6) concentrations were measured via enzyme-linked immunosorbent assay. RESULTS αT concentrations in the liver, heart, and adipose tissue of WT mice were higher than Ttpa-/- mice. Although αT was detected in the brain, muscle, and serum of WT mice, it was undetectable in these tissues of Ttpa-/- mice. Cerebellar and serum concentrations of IL-6 were increased in LPS-treated groups but were not significantly affected by genotype. Grip strength was reduced in LPS-treated groups, an effect that was more pronounced in Ttpa-/- mice. CONCLUSIONS Systemic LPS administration caused an acute inflammatory response with a concomitant decline in grip strength, especially in Ttpa-/- mice. αT depletion appears to exacerbate reductions in grip strength brought on by systemic inflammation.
Collapse
Affiliation(s)
- Megumi Hashida
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andrew J Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|