1
|
Gu X, Chu Q, Ma X, Wang J, Chen C, Guan J, Ren Y, Wu S, Zhu H. New insights into iNKT cells and their roles in liver diseases. Front Immunol 2022; 13:1035950. [PMID: 36389715 PMCID: PMC9643775 DOI: 10.3389/fimmu.2022.1035950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Croudace JE, Curbishley SM, Mura M, Willcox CR, Illarionov PA, Besra GS, Adams DH, Lammas DA. Identification of distinct human invariant natural killer T-cell response phenotypes to alpha-galactosylceramide. BMC Immunol 2008; 9:71. [PMID: 19055753 PMCID: PMC2613383 DOI: 10.1186/1471-2172-9-71] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 12/03/2008] [Indexed: 11/16/2022] Open
Abstract
Background Human CD1d-restricted, invariant natural killer T cells (iNKT) are a unique class of T lymphocytes that recognise glycolipid antigens such as α-galactosylceramide (αGalCer) and upon T cell receptor (TCR) activation produce both Th1 and Th2 cytokines. iNKT cells expand when cultured in-vitro with αGalCer and interleukin 2 (IL-2) in a CD1d-restricted manner. However, the expansion ratio of human iNKT cells varies between individuals and this has implications for attempts to manipulate this pathway therapeutically. We have studied a panel of twenty five healthy human donors to assess the variability in their in-vitro iNKT cell expansion responses to stimulation with CD1d ligands and investigated some of the factors that may influence this phenomenon. Results Although all donors had comparable numbers of circulating iNKT cells their growth rates in-vitro over 14 days in response to a range of CD1d ligands and IL-2 were highly donor-dependent. Two reproducible donor response patterns of iNKT expansion were seen which we have called 'strong' or 'poor' iNKT responders. Donor response phenotype did not correlate with age, gender, frequency of circulating iNKT, or with the CD1d ligand utilised. Addition of exogenous recombinant human interleukin 4 (IL-4) to 'poor' responder donor cultures significantly increased their iNKT proliferative capacity, but not to levels equivalent to that of 'strong' responder donors. However in 'strong' responder donors, addition of IL-4 to their cultures did not significantly alter the frequency of iNKT cells in the expanded CD3+ population. Conclusion (i) in-vitro expansion of human iNKT cells in response to CD1d ligand activation is highly donor variable, (ii) two reproducible patterns of donor iNKT expansion were observed, which could be classified into 'strong' and 'poor' responder phenotypes, (iii) donor iNKT response phenotypes did not correlate with age, gender, frequency of circulating iNKT cells, or with the CD1d ligand utilised, (iv) addition of IL-4 to 'poor' but not 'strong' responder donor cultures significantly increased their in-vitro iNKT cell expansion to αGalCer.
Collapse
Affiliation(s)
- Joanne E Croudace
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Invariant natural killer T cells and immunotherapy of cancer. Clin Immunol 2008; 129:182-94. [PMID: 18783990 DOI: 10.1016/j.clim.2008.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022]
Abstract
Invariant CD1d restricted natural killer T (iNKT) cells are regulatory cells that express a canonical TCR-Valpha-chain (Valpha24.Jalpha18 in humans and Valpha14.Jalpha18 in mice) which recognizes glycolipid antigens presented by the monomorphic CD1d molecule. They can secrete a wide variety of both pro-inflammatory and anti-inflammatory cytokines very swiftly upon their activation. Evidence for the significance of iNKT cells in human cancer has been ambiguous. Still, the (pre-)clinical findings reviewed here, provide evidence for a distinct contribution of iNKT cells to natural anti-tumor immune responses in humans. Furthermore, clinical phase I studies that are discussed here have revealed that the infusion of cancer patients with ligand-loaded dendritic cells or cultured iNKT cells is well tolerated. We thus underscore the potential of iNKT cell based immunotherapy in conjunction with established modalities such as surgery and radiotherapy, as adjuvant therapy against carcinomas.
Collapse
|
4
|
Iizuka A, Ikarashi Y, Yoshida M, Heike Y, Takeda K, Quinn G, Wakasugi H, Kitagawa M, Takaue Y. Interleukin (IL)-4 promotes T helper type 2-biased natural killer T (NKT) cell expansion, which is regulated by NKT cell-derived interferon-gamma and IL-4. Immunology 2007; 123:100-7. [PMID: 18005033 DOI: 10.1111/j.1365-2567.2007.02732.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
CD1d-restricted natural killer T (NKT) cells can rapidly produce T helper type 1 (Th1) and Th2 cytokines and also play regulatory or pathological roles in immune responses. NKT cells are able to expand when cultured with alpha-galactosylceramide (alpha-GalCer) and interleukin (IL)-2 in a CD1d-restricted manner. However, the expansion ratio of human NKT cells is variable from sample to sample. In this study, we sought to determine what factor or factors are responsible for efficient in vitro expansion of NKT cells from various inbred mouse strains. Although the proportion of NKT cells in the spleen was nearly identical in each mouse strain, the growth rates of NKT cells cultured in vitro with alpha-GalCer and IL-2 were highly variable. NKT cells from the B6C3F1 and BDF1 mouse strains expanded more than 20-fold after 4 days in culture. In contrast, NKT cells from the strain C3H/HeN did not proliferate at all. We found that cell expansion efficiency correlated with the level of IL-4 detectable in the supernatant after culture. Furthermore, we found that exogenous IL-4 augmented NKT cell proliferation early in the culture period, whereas interferon (IFN)-gamma tended to inhibit NKT cell proliferation. Thus, the ratio of production of IL-4 and IFN-gamma was important for NKT cell expansion but the absolute levels of these cytokines did not affect expansion. This finding suggests that effective expansion of NKT cells requires Th2-biased culture conditions.
Collapse
Affiliation(s)
- Akira Iizuka
- Chemotherapy Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kuwatani M, Ikarashi Y, Iizuka A, Kawakami C, Quinn G, Heike Y, Yoshida M, Asaka M, Takaue Y, Wakasugi H. Modulation of acute graft-versus-host disease and chimerism after adoptive transfer of in vitro-expanded invariant Valpha14 natural killer T cells. Immunol Lett 2006; 106:82-90. [PMID: 16806496 DOI: 10.1016/j.imlet.2006.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/01/2006] [Accepted: 05/03/2006] [Indexed: 11/26/2022]
Abstract
Mouse natural killer T cells with an invariant Valpha14-Jalpha18 TCR rearrangement (Valpha14i NKT cells) are able to regulate immune responses through rapid and large amounts of Th1 and Th2 cytokine production. It has been reported that in vivo administration of the Valpha14i NKT cell ligand, alpha-galactosylceramide (alpha-GalCer) significantly reduced morbidity and mortality of acute graft-versus-host disease (GVHD) in mice. In this study, we examined whether adoptive transfer of in vitro-expanded Valpha14i NKT cells using alpha-GalCer and IL-2 could modulate acute GVHD in the transplantation of spleen cells of C57BL/6 mice into (B6xDBA/2) F(1) mice. We found that the adoptive transfer of cultured spleen cells with a combination of alpha-GalCer and IL-2, which contained many Valpha14i NKT cells, modulated acute GVHD by exhibiting long-term mixed chimerism and reducing liver damage. Subsequently, the transfer of Valpha14i NKT cells purified from spleen cells cultured with alpha-GalCer and IL-2 also inhibited acute GVHD. This inhibition of acute GVHD by Valpha14i NKT cells was blocked by anti-IL-4 but not by anti-IFN-gamma monoclonal antibody. Therefore, the inhibition was dependent on IL-4 production by Valpha14i NKT cells. Our findings highlight the therapeutic potential of in vitro-expanded Valpha14i NKT cells for the prevention of acute GVHD after allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Masaki Kuwatani
- Pharmacology Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|