1
|
Liu Y, Huang Y, Cui HW, Wang Y, Ma Z, Xiang Y, Xin HY, Liang JQ, Xin HW. Perspective view of allogeneic IgG tumor immunotherapy. Cancer Cell Int 2024; 24:100. [PMID: 38461238 PMCID: PMC10924995 DOI: 10.1186/s12935-024-03290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG via dendritic cells. AlloIgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced tumor eradication via the reported and our proposed potential signaling pathways. AlloIgG triggers systematic immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations. The promising perspectives of alloIgG immunotherapy would have advanced from mouse models to clinical trials; however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative to promote future discussion.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yuanyi Huang
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
| | - Hong-Wei Cui
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China
| | - YingYing Wang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - ZhaoWu Ma
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Jun-Qing Liang
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China.
| | - Hong-Wu Xin
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
- Key Laboratory of Human Genetic Diseases Research of Inner Mongolia, Research Centre of Molecular Medicine, Medical College of Chifeng University, Chifeng, 024000, Inner Mongolian Autonomous Region, China.
| |
Collapse
|
2
|
Macagno M, Bandini S, Bolli E, Bello A, Riccardo F, Barutello G, Merighi IF, Forni G, Lamolinara A, Del Pizzo F, Iezzi M, Cavallo F, Conti L, Quaglino E. Role of ADCC, CDC, and CDCC in Vaccine-Mediated Protection against Her2 Mammary Carcinogenesis. Biomedicines 2022; 10:biomedicines10020230. [PMID: 35203439 PMCID: PMC8869482 DOI: 10.3390/biomedicines10020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Amplification or mutation of the Her2 oncoantigen in human mammary glands leads to the development of an aggressive breast carcinoma. Several features of this breast carcinoma are reproduced in mammary carcinomas that spontaneously arise in female transgenic mice bearing the activated rat Her2 oncogene under transcriptional control of the mouse mammary tumor virus promoter-BALB-neuT (neuT) mice. We previously demonstrated that carcinoma progression in neuT mice can be prevented by DNA vaccination with RHuT, a plasmid coding for a chimeric rat/human Her2 protein. RHuT vaccination exerts an antitumor effect, mostly mediated by the induction of a strong anti-rat Her2 antibody response. IgG induced by RHuT vaccine mainly acts by blocking Her2 signaling, thus impairing cell cycle progression and inducing apoptosis of cancer cells, but other indirect effector mechanisms could be involved in the antibody-mediated protection. The recruitment of cells with perforin-dependent cytotoxic activity, able to perform antibody-dependent cellular cytotoxicity, has already been investigated. Less is known about the role of the complement system in sustaining antitumor response through complement-dependent cytotoxicity and cellular cytotoxicity in vaccinated mice. This work highlights that the weight of such mechanisms in RHuT-induced cancer protection is different in transplantable versus autochthonous Her2+ tumor models. These results may shed new light on the effector mechanisms involved in antibody-dependent anti-cancer responses, which might be exploited to ameliorate the therapy of Her2+ breast cancer.
Collapse
Affiliation(s)
- Marco Macagno
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Elisabetta Bolli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Amanda Bello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Giuseppina Barutello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Irene Fiore Merighi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Guido Forni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Alessia Lamolinara
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Francesco Del Pizzo
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Manuela Iezzi
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Federica Cavallo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Laura Conti
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Elena Quaglino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| |
Collapse
|
3
|
Zhang J, Dai Z, Yan C, Wang D, Tang D. Blocking antibody-mediated phosphatidylserine enhances cancer immunotherapy. J Cancer Res Clin Oncol 2021; 147:3639-3651. [PMID: 34499223 DOI: 10.1007/s00432-021-03792-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy is a major breakthrough in tumor therapy and has been used in monotherapy or combination therapy. However, it has been associated with poor immune tolerance in some patients or immune-related adverse events. Therefore, ideal and reliable tumor elimination strategies are urgently needed to overcome these shortcomings. Phosphatidylserine (PS) is a negatively charged phospholipid, usually present in the inner lobules of eukaryotic cell membranes. Under certain physiological or pathological conditions, PS may be exposed on the outer leaflets of apoptotic cells serving as recognition signals by phagocytes and modulating the immune response. On the contrary, increased exposure of PS in the tumor microenvironment can significantly antagonize the body's anti-tumor immunity, thereby promoting tumor growth and metastasis. During radiotherapy and chemotherapy, PS-mediated immunosuppression increases the PS levels in necrotic tissue in the tumor microenvironment, further suppressing tumor immunity. PS-targeted therapy is a promising strategy in cancer immunotherapy. It inhibits tumor growth and improves the anti-tumor activity of immune checkpoint inhibitors. A comprehensive understanding of the mechanism of PS-targeted therapy opens up a new perspective for future cancer immunotherapies.
Collapse
Affiliation(s)
- Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhujiang Dai
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Cheng Yan
- Dalian Medical University, Dalian, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
4
|
|
5
|
Morgan H, Tseng SY, Gallais Y, Leineweber M, Buchmann P, Riccardi S, Nabhan M, Lo J, Gani Z, Szely N, Zhu CS, Yang M, Kiessling A, Vohr HW, Pallardy M, Aswad F, Turbica I. Evaluation of in vitro Assays to Assess the Modulation of Dendritic Cells Functions by Therapeutic Antibodies and Aggregates. Front Immunol 2019; 10:601. [PMID: 31001248 PMCID: PMC6455063 DOI: 10.3389/fimmu.2019.00601] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 03/06/2019] [Indexed: 01/14/2023] Open
Abstract
Therapeutic antibodies have the potential to induce immunogenicity leading to the development of anti-drug antibodies (ADA) that consequently may result in reduced serum drug concentrations, a loss of efficacy or potential hypersensitivity reactions. Among other factors, aggregated antibodies have been suggested to promote immunogenicity, thus enhancing ADA production. Dendritic cells (DC) are the most efficient antigen-presenting cell population and are crucial for the initiation of T cell responses and the subsequent generation of an adaptive immune response. This work focuses on the development of predictive in vitro assays that can monitor DC maturation, in order to determine whether drug products have direct DC stimulatory capabilities. To this end, four independent laboratories aligned a common protocol to differentiate human monocyte-derived DC (moDC) that were treated with either native or aggregated preparations of infliximab, natalizumab, adalimumab, or rituximab. These drug products were subjected to different forms of physical stress, heat and shear, resulting in aggregation and the formation of subvisible particles. Each partner developed and optimized assays to monitor diverse end-points of moDC maturation: measuring the upregulation of DC activation markers via flow cytometry, analyzing cytokine, and chemokine production via mRNA and protein quantification and identifying cell signaling pathways via quantification of protein phosphorylation. These study results indicated that infliximab, with the highest propensity to form aggregates when heat-stressed, induced a marked activation of moDC as measured by an increase in CD83 and CD86 surface expression, IL-1β, IL-6, IL-8, IL-12, TNFα, CCL3, and CCL4 transcript upregulation and release of respective proteins, and phosphorylation of the intracellular signaling proteins Syk, ERK1/2, and Akt. In contrast, natalizumab, which does not aggregate under these stress conditions, induced no DC activation in any assay system, whereas adalimumab or rituximab aggregates induced only slight parameter variation. Importantly, the data generated in the different assay systems by each partner site correlated and supported the use of these assays to monitor drug-intrinsic propensities to drive maturation of DC. This moDC assay is also a valuable tool as an in vitro model to assess the intracellular mechanisms that drive DC activation by aggregated therapeutic proteins.
Collapse
Affiliation(s)
- Hannah Morgan
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Su-Yi Tseng
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Yann Gallais
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Margret Leineweber
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Pascale Buchmann
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Sabrina Riccardi
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Myriam Nabhan
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jeannette Lo
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Zaahira Gani
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Natacha Szely
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Cornelia S Zhu
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Ming Yang
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Andrea Kiessling
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Hans-Werner Vohr
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Marc Pallardy
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Fred Aswad
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Isabelle Turbica
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
6
|
Fcγ Receptor Type I (CD64)-Mediated Impairment of the Capacity of Dendritic Cells to Activate Specific CD8 T Cells by IgG-opsonized Friend Virus. Viruses 2019; 11:v11020145. [PMID: 30744065 PMCID: PMC6410291 DOI: 10.3390/v11020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) express Fcγ receptors (FcγRs) for the binding immune complexes (ICs) consisting of IgG and antigens (Ags). IC–FcγR interactions have been demonstrated to enhance activation and antigen-presenting functions of DCs. Utilizing Friend virus (FV), an oncogenic mouse retrovirus, we investigated the effect of IgG-opsonization of retroviral particles on the infection of DCs and the subsequent presentation of viral antigens by DCs to virus-specific CD8 T cells. We found that opsonization by virus-specific non-neutralizing IgG abrogated DC infection and as a consequence significantly reduced the capacity of DCs to activate virus-specific CD8 T cells. Effects of IgG-opsonization were mediated by the high-affinity FcγR type I, CD64, expressed on DCs. Our results suggest that different opsonization patterns on the retroviral surface modulate infection and antigen-presenting functions of DCs, whereby, in contrast to complement, IgG reduces the capacity of DCs to activate cytotoxic T cell (CTL) responses.
Collapse
|
7
|
Diamos AG, Larios D, Brown L, Kilbourne J, Kim HS, Saxena D, Palmer KE, Mason HS. Vaccine synergy with virus-like particle and immune complex platforms for delivery of human papillomavirus L2 antigen. Vaccine 2019; 37:137-144. [PMID: 30459071 PMCID: PMC6291209 DOI: 10.1016/j.vaccine.2018.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 01/18/2023]
Abstract
Diverse HPV subtypes are responsible for considerable disease burden worldwide, necessitating safe, cheap, and effective vaccines. The HPV minor capsid protein L2 is a promising candidate to create broadly protective HPV vaccines, though it is poorly immunogenic by itself. To create highly immunogenic and safe vaccine candidates targeting L2, we employed a plant-based recombinant protein expression system to produce two different vaccine candidates: L2 displayed on the surface of hepatitis B core (HBc) virus-like particles (VLPs) or L2 genetically fused to an immunoglobulin capable of forming recombinant immune complexes (RIC). Both vaccine candidates were potently immunogenic in mice, but were especially so when delivered together, generating very consistent and high antibody titers directed against HPV L2 (>1,000,000) that correlated with virus neutralization. These data indicate a novel immune response synergy upon co-delivery of VLP and RIC platforms, a strategy that can be adapted generally for many different antigens.
Collapse
Affiliation(s)
- Andrew G Diamos
- Center for Immunotherapy, Vaccines, & Virotherapy, Biodesign Institute at ASU; and School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Dalia Larios
- Center for Immunotherapy, Vaccines, & Virotherapy, Biodesign Institute at ASU; and School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Lauren Brown
- Center for Immunotherapy, Vaccines, & Virotherapy, Biodesign Institute at ASU; and School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Jacquelyn Kilbourne
- Center for Immunotherapy, Vaccines, & Virotherapy, Biodesign Institute at ASU; and School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Hyun Soon Kim
- Plant Systems Engineering Research Center, KRIBB, Gwahang-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Divyasha Saxena
- Center for Predictive Medicine for Emerging Infectious Diseases and Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States, Center for Predictive Medicine, Louisville, KY 40202, United States
| | - Kenneth E Palmer
- Center for Predictive Medicine for Emerging Infectious Diseases and Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States, Center for Predictive Medicine, Louisville, KY 40202, United States
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines, & Virotherapy, Biodesign Institute at ASU; and School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
8
|
Machado Y, Duinkerken S, Hoepflinger V, Mayr M, Korotchenko E, Kurtaj A, Pablos I, Steiner M, Stoecklinger A, Lübbers J, Schmid M, Ritter U, Scheiblhofer S, Ablinger M, Wally V, Hochmann S, Raninger AM, Strunk D, van Kooyk Y, Thalhamer J, Weiss R. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy. J Control Release 2017; 266:87-99. [PMID: 28919557 DOI: 10.1016/j.jconrel.2017.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14+ dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy.
Collapse
Affiliation(s)
- Yoan Machado
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Sanne Duinkerken
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Melissa Mayr
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Almedina Kurtaj
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Isabel Pablos
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Markus Steiner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Joyce Lübbers
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Uwe Ritter
- Department of Immunology, University of Regensburg, Regensburg, Germany
| | | | - Michael Ablinger
- Division of Experimental Dermatology, EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Verena Wally
- Division of Experimental Dermatology, EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Hochmann
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria
| | - Anna M Raninger
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria
| | - Dirk Strunk
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
9
|
Surawut S, Ondee T, Taratummarat S, Palaga T, Pisitkun P, Chindamporn A, Leelahavanichkul A. The role of macrophages in the susceptibility of Fc gamma receptor IIb deficient mice to Cryptococcus neoformans. Sci Rep 2017; 7:40006. [PMID: 28074867 PMCID: PMC5225418 DOI: 10.1038/srep40006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/30/2016] [Indexed: 02/04/2023] Open
Abstract
Dysfunctional polymorphisms of FcγRIIb, an inhibitory receptor, are associated with Systemic Lupus Erythaematosus (SLE). Cryptococcosis is an invasive fungal infection in SLE, perhaps due to the de novo immune defect. We investigated cryptococcosis in the FcγRIIb-/- mouse-lupus-model. Mortality, after intravenous C. neoformans-induced cryptococcosis, in young (8-week-old) and older (24-week-old) FcγRIIb-/- mice, was higher than in age-matched wild-types. Severe cryptococcosis in the FcγRIIb-/- mice was demonstrated by high fungal burdens in the internal organs with histological cryptococcoma-like lesions and high levels of TNF-α and IL-6, but not IL-10. Interestingly, FcγRIIb-/- macrophages demonstrated more prominent phagocytosis but did not differ in killing activity in vitro and the striking TNF-α, IL-6 and IL-10 levels, compared to wild-type cells. Indeed, in vivo macrophage depletion with liposomal clodronate attenuated the fungal burdens in FcγRIIb-/- mice, but not wild-type mice. When administered to wild-type mice, FcγRIIb-/- macrophages with phagocytosed Cryptococcus resulted in higher fungal burdens than FcγRIIb+/+ macrophages with phagocytosed Cryptococcus. These results support, at least in part, a model whereby, in FcγRIIb-/- mice, enhanced C. neoformans transmigration occurs through infected macrophages. In summary, prominent phagocytosis, with limited effective killing activity, and high pro-inflammatory cytokine production by FcγRIIb-/- macrophages were correlated with more severe cryptococcosis in FcγRIIb-/- mice.
Collapse
Affiliation(s)
- Saowapha Surawut
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Thunnicha Ondee
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sujittra Taratummarat
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Bangkok, Thailand
| |
Collapse
|
10
|
Tonigold M, Mailänder V. Endocytosis and intracellular processing of nanoparticles in dendritic cells: routes to effective immunonanomedicines. Nanomedicine (Lond) 2016; 11:2625-2630. [DOI: 10.2217/nnm-2016-0195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Manuel Tonigold
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Langenbeckstr. 1, 55131 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
11
|
Krishna M, Nadler SG. Immunogenicity to Biotherapeutics - The Role of Anti-drug Immune Complexes. Front Immunol 2016; 7:21. [PMID: 26870037 PMCID: PMC4735944 DOI: 10.3389/fimmu.2016.00021] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/15/2016] [Indexed: 01/17/2023] Open
Abstract
Biological molecules are increasingly becoming a part of the therapeutics portfolio that has been either recently approved for marketing or those that are in the pipeline of several biotech and pharmaceutical companies. This is largely based on their ability to be highly specific relative to small molecules. However, by virtue of being a large protein, and having a complex structure with structural variability arising from production using recombinant gene technology in cell lines, such therapeutics run the risk of being recognized as foreign by a host immune system. In the context of immune-mediated adverse effects that have been documented to biological drugs thus far, including infusion reactions, and the evolving therapeutic platforms in the pipeline that engineer different functional modules in a biotherapeutic, it is critical to understand the interplay of the adaptive and innate immune responses, the pathophysiology of immunogenicity to biological drugs in instances where there have been immune-mediated adverse clinical sequelae and address technical approaches for their laboratory evaluation. The current paradigm in immunogenicity evaluation has a tiered approach to the detection and characterization of anti-drug antibodies (ADAs) elicited in vivo to a biotherapeutic; alongside with the structural, biophysical, and molecular information of the therapeutic, these analytical assessments form the core of the immunogenicity risk assessment. However, many of the immune-mediated adverse effects attributed to ADAs require the formation of a drug/ADA immune complex (IC) intermediate that can have a variety of downstream effects. This review will focus on the activation of potential immunopathological pathways arising as a consequence of circulating as well as cell surface bound drug bearing ICs, risk factors that are intrinsic either to the therapeutic molecule or to the host that might predispose to IC-mediated effects, and review the recent literature on prevalence and intensity of established examples of type II and III hypersensitivity reactions that follow the administration of a biotherapeutic. Additionally, we propose methods for the study of immune parameters specific to the biology of ICs that could be of use in conjunction with the detection of ADAs in circulation.
Collapse
|
12
|
Jiang TT, Wang C, Wei LL, Yu XM, Shi LY, Xu DD, Chen ZL, Ping ZP, Li JC. Serum protein gamma-glutamyl hydrolase, Ig gamma-3 chain C region, and haptoglobin are associated with the syndromes of pulmonary tuberculosis in traditional Chinese medicine. Altern Ther Health Med 2015. [PMID: 26198726 PMCID: PMC4509701 DOI: 10.1186/s12906-015-0686-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Traditional Chinese Medicine (TCM) has been applied in treating tuberculosis (TB) based on the TCM syndromes with the effects of inhibiting Mycobacterium, strengthening the body immune system, and reducing the pulmonary toxicity. We used bioinformatic methods to study the clinical and pathological characteristics of pulmonary TB patients with TCM syndromes. Isobaric tags for relative and absolute quantification - coupled two dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) methods were applied to screen differentially expressed serum proteins. Methods Pulmonary TB cases were divided into four distinctive TCM syndromes: pulmonary Yin deficiency (PYD) syndrome, hyperactivity of fire due to Yin deficiency (HFYD) syndrome, deficiency of Qi and Yin (DQY) syndrome, and deficiency of Yin and Yang (DYY) syndrome. The serum samples from 214 pulmonary TB patients were collected, and the clinical and pathological data was analyzed by using iTRAQ-2DLC-MS/MS. Finally, the differentially expressed proteins were screened and tested by ELISA. Only 5 patients with DYY syndrome were recruited in 3 years, which were not enough for further research. Results The DQY cases had higher erythrocyte sedimentation rate (ESR) compared to the PYD and HFYD cases (P = 0.0178). 94.44 % (12 PYD, 18 HFYD, and 4 DQY before anti-TB treatment) of 36 treated TB cases were transformed to PYD accompanied with the reduction of ESR and absorption of pulmonary lesions. A total of 39 differentially expressed proteins (ratios of >1.3 or <0.75) were found among the three TCM syndromes. Proteomic studies revealed that gamma-glutamyl hydrolase (GGH), Ig gamma-3 chain C region (IGHG3), and haptoglobin (HPT) were specifically over-expressed in PYD (P < 0.01), HFYD (P < 0.001), and DQY cases (P < 0.01), respectively. Furthermore, GGH was significantly higher in PYD cases compared to the HFYD and DQY cases (P < 0.01, P < 0.001, respectively), whereas IGHG3 was significantly higher in HFYD cases than PYD and DQY cases (P < 0.001, P < 0.01, respectively). Conclusions The results suggest that TCM syndromes are significantly correlated with the pulmonary lesions and ESR. GGH was associated with folate metabolism in PYD cases, IGHG3 was linked to the control of Mycobacterium infection in HFYD patients, and HPT was involved in hypoxia in DQY patients. The present study provides new biological basis to understand the pathological changes and proteomic differences of TB syndromes. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0686-4) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. SELF NONSELF 2014; 1:314-322. [PMID: 21487506 DOI: 10.4161/self.1.4.13904] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/20/2010] [Accepted: 10/07/2010] [Indexed: 12/15/2022]
Abstract
The immunogenicity of protein therapeutics has so far proven to be difficult to predict in patients, with many biologics inducing undesirable immune responses directed towards the therapeutic resulting in reduced efficacy, anaphylaxis and occasionally life threatening autoimmunity. The most common effect of administrating an immunogenic protein therapeutic is the development of a high affinity anti-therapeutic antibody response. Furthermore, it is clear from clinical studies that protein therapeutics derived from endogenous human proteins are capable of stimulating undesirable immune responses in patients, and as a consequence, the prediction and reduction of immunogenicity has been the focus of intense research. This review will outline the principle causes of the immunogenicity in protein therapeutics, and describe the development of pre-clinical models that can be used to aid in the prediction of the immunogenic potential of novel protein therapeutics prior to administration in man.
Collapse
Affiliation(s)
- Matthew P Baker
- Antitope Ltd.; Babraham Research Campus; Babraham, Cambridge UK
| | | | | | | |
Collapse
|
14
|
Rombach-Riegraf V, Karle AC, Wolf B, Sordé L, Koepke S, Gottlieb S, Krieg J, Djidja MC, Baban A, Spindeldreher S, Koulov AV, Kiessling A. Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS One 2014; 9:e86322. [PMID: 24466023 PMCID: PMC3897673 DOI: 10.1371/journal.pone.0086322] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/07/2013] [Indexed: 12/14/2022] Open
Abstract
Subvisible proteinaceous particles which are present in all therapeutic protein formulations are in the focus of intense discussions between health authorities, academics and biopharmaceutical companies in the context of concerns that such particles could promote unwanted immunogenicity via anti-drug antibody formation. In order to provide further understanding of the subject, this study closely examines the specific biological effects proteinaceous particles may exert on dendritic cells (DCs) as the most efficient antigen-presenting cell population crucial for the initiation of the adaptive immune response. Two different model IgG antibodies were subjected to three different types of exaggerated physical stress to generate subvisible particles in far greater concentrations than the ones typical for the currently marketed biotherapeutical antibodies. The aggregated samples were used in in vitro biological assays in order to interrogate the early DC-driven events that initiate CD4 T-cell dependent humoral adaptive immune responses – peptide presentation capacity and co-stimulatory activity of DCs. Most importantly, antigen presentation was addressed with a unique approach called MHC-associated Peptide Proteomics (MAPPs), which allows for identifying the sequences of HLA-DR associated peptides directly from human dendritic cells. The experiments demonstrated that highly aggregated solutions of two model mAbs generated under controlled conditions can induce activation of human monocyte-derived DCs as indicated by upregulation of typical maturation markers including co-stimulatory molecules necessary for CD4 T-cell activation. Additional data suggest that highly aggregated proteins could induce in vitro T-cell responses. Intriguingly, strong aggregation-mediated changes in the pattern and quantity of antigen-derived HLA-DR associated peptides presented on DCs were observed, indicating a change in protein processing and presentation. Increasing the amounts of subvisible proteinaceous particles correlated very well with the pronounced increase in the peptide number and clusters presented in the context of class II HLA-DR molecules, suggesting a major involvement of a mass-action mechanism of altering the presentation.
Collapse
Affiliation(s)
- Verena Rombach-Riegraf
- Novartis Pharma AG, Technical R&D, Biologics Process R&D, Late Phase Analytical & Pharmaceutical Development, Werk Klybeck, Basel, Switzerland
- * E-mail: (VR-R); (ACK); (AK)
| | - Anette C. Karle
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Werk Klybeck, Basel, Switzerland
- * E-mail: (VR-R); (ACK); (AK)
| | - Babette Wolf
- Novartis Pharma AG, Pre-clinical Safety, Biologics Safety and Disposition, Experimental Pathology, Immunosafety, Werk Klybeck, Basel, Switzerland
| | - Laetitia Sordé
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Werk Klybeck, Basel, Switzerland
| | - Stephan Koepke
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Werk Klybeck, Basel, Switzerland
| | - Sascha Gottlieb
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Werk Klybeck, Basel, Switzerland
| | - Jennifer Krieg
- Novartis Pharma AG, Pre-clinical Safety, Biologics Safety and Disposition, Experimental Pathology, Immunosafety, Werk Klybeck, Basel, Switzerland
| | - Marie-Claude Djidja
- Novartis Pharma AG, Technical R&D, Biologics Process R&D, Late Phase Analytical & Pharmaceutical Development, Werk Klybeck, Basel, Switzerland
| | - Aida Baban
- Novartis Pharma AG, Pre-clinical Safety Biologics Safety and Disposition, Bioanalytics, Werk Klybeck, Basel, Switzerland
| | - Sebastian Spindeldreher
- Novartis Pharma AG, Pre-clinical Safety Biologics Safety and Disposition, Bioanalytics, Werk Klybeck, Basel, Switzerland
| | - Atanas V. Koulov
- Novartis Pharma AG, Technical R&D, Biologics Process R&D, Late Phase Analytical & Pharmaceutical Development, Werk Klybeck, Basel, Switzerland
| | - Andrea Kiessling
- Novartis Pharma AG, Pre-clinical Safety, Biologics Safety and Disposition, Experimental Pathology, Immunosafety, Werk Klybeck, Basel, Switzerland
- * E-mail: (VR-R); (ACK); (AK)
| |
Collapse
|
15
|
FcγRIII (CD16) equips immature 6-sulfo LacNAc–expressing dendritic cells (slanDCs) with a unique capacity to handle IgG-complexed antigens. Blood 2013; 121:3609-18. [DOI: 10.1182/blood-2012-08-447045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
The expression of CD16 by immature slanDCs equips these cells with a unique capacity to handle immune complexes. CD16 expression on slanDCs is rapidly downregulated during maturation by activation of ADAM10 and ADAM17.
Collapse
|
16
|
Pekkarinen PT, Vaali K, Jarva H, Kekäläinen E, Hetemäki I, Junnikkala S, Helminen M, Vaarala O, Meri S, Arstila TP. Impaired intestinal tolerance in the absence of a functional complement system. J Allergy Clin Immunol 2013; 131:1167-75. [DOI: 10.1016/j.jaci.2012.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 12/11/2022]
|
17
|
Hopkins RA, Connolly JE. The specialized roles of immature and mature dendritic cells in antigen cross-presentation. Immunol Res 2012; 53:91-107. [PMID: 22450675 DOI: 10.1007/s12026-012-8300-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exogenous antigen cross-presentation is integral to the stimulation of cytotoxic T-lymphocytes against viruses and tumors. Central to this process are dendritic cells (DCs), which specialize in cross-presentation. DCs may be considered to exist in two radically different states of activation, generally referred to as immature and mature. In each of these states, the cell has a series of separate and specialized abilities for the induction of T-cell immunity. In the immature state, the DC is adept in surveying the periphery, acquiring and storing antigen, but has a limited capacity for direct T-cell activation. During a brief and defined window of time following DC stimulation, nearly every aspect of antigen handling changes, as it transitions from an entity focused on protein preservation to one capable of efficient cross-presentation. It is this time period and the underlying molecular mechanisms active here, which form the core of our studies on cross-presentation.
Collapse
Affiliation(s)
- Richard A Hopkins
- Program in Translational Immunology, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Biopolis, Singapore
| | | |
Collapse
|
18
|
Ejaz A, Ammann CG, Werner R, Huber G, Oberhauser V, Hörl S, Schimmer S, Dittmer U, von Laer D, Stoiber H, Bánki Z. Targeting viral antigens to CD11c on dendritic cells induces retrovirus-specific T cell responses. PLoS One 2012; 7:e45102. [PMID: 23028784 PMCID: PMC3444473 DOI: 10.1371/journal.pone.0045102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/13/2012] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DC) represent the most potent antigen presenting cells and induce efficient cytotoxic T lymphocyte (CTL) responses against viral infections. Targeting antigens (Ag) to receptors on DCs is a promising strategy to enhance antitumor and antiviral immune responses induced by DCs. Here, we investigated the potential of CD11c-specific single-chain fragments (scFv) fused to an immunodominant peptide of Friend retrovirus for induction of virus-specific T cell responses by DCs. In vitro CD11c-specific scFv selectively targeted viral antigens to DCs and thereby significantly improved the activation of virus-specific T cells. In vaccination experiments DCs loaded with viral Ag targeted to CD11c provided improved rejection of FV-derived tumors and efficiently primed virus-specific CTL responses after virus challenge. Since the induction of strong virus-specific T cell responses is critical in viral infections, CD11c targeted protein vaccines might provide means to enhance the cellular immune response to prophylactic or therapeutic levels.
Collapse
Affiliation(s)
- Asim Ejaz
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Christoph G. Ammann
- Department of Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria
| | - Roland Werner
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Georg Huber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Verena Oberhauser
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Susanne Hörl
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Simone Schimmer
- Institute of Virology, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University of Duisburg-Essen, Essen, Germany
| | - Dorothee von Laer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
19
|
Immunogenicity to biologics: mechanisms, prediction and reduction. Arch Immunol Ther Exp (Warsz) 2012; 60:331-44. [PMID: 22930363 DOI: 10.1007/s00005-012-0189-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/11/2012] [Indexed: 01/06/2023]
Abstract
Currently, there is a significant rise in the development and clinical use of a unique class of pharmaceuticals termed as Biopharmaceuticals or Biologics, in the management of a range of disease conditions with, remarkable therapeutic benefits. However, there is an equally growing concern regarding development of adverse effects like immunogenicity in the form of anti-drug antibodies (ADA) production and hypersensitivity. Immunogenicity to biologics represents a significant hurdle in the continuing therapy of patients in a number of disease settings. Efforts focussed on the identification of factors that contribute towards the onset of immunogenic response to biologics have led to reductions in the incidence of immunogenicity. An in-depth understanding of the cellular and molecular mechanism underpinning immunogenic responses will likely improve the safety profile of biologics. This review addresses the mechanistic basis of ADA generation to biologics, with emphasis on the role of antigen processing and presentation in this process. The article also addresses the potential contribution of complement system in augmenting or modulating this response. Identifying specific factors that influences processing and presentation of biologic-derived antigens in different genotype and disease background may offer additional options for intervention in the immunogenic process and consequently, the management of immunogenicity to biologics.
Collapse
|
20
|
CR3 is the dominant phagocytotic complement receptor on human dendritic cells. Immunobiology 2012; 218:652-63. [PMID: 22906751 DOI: 10.1016/j.imbio.2012.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) play a decisive role in immunity; they interact with various pathogens via several pattern recognition and different opsonophagocytotic receptors, including Fc- and complement-receptors. β2-integrins, including complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) participate in many immunological processes, especially those involving cell migration, adherence, and phagocytosis. Human monocyte derived dendritic cells (MDCs) are known to express CR3 as well as CR4, however possible differences regarding the role of these receptors has not been addressed so far. Our aim was to explore whether there is a difference between the binding and uptake of various complement-opsonized microorganisms, mediated by CR3 and CR4. Studying the expression of receptors during differentiation of MDCs we found that the appearance of CD11b decreased, whereas that of CD11c increased. Interestingly, both receptors were present in the cell membrane in an active conformation. Here we demonstrate that ligation of CD11b directs MDCs to enhanced phagocytosis, while the maturation of the cells and their inflammatory cytokine production are not affected. Blocking CD11c alone did not change the uptake of opsonized yeast or bacteria by MDCs. We confirmed these results using siRNA; namely downregulation of CD11b blocked the phagocytosis of microbes while silencing CD11c had no effect on their uptake. Our data clearly demonstrate that complement C3-dependent phagocytosis of MDCs is mediated mainly by CR3.
Collapse
|
21
|
Czajkowsky DM, Hu J, Shao Z, Pleass RJ. Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 2012; 4:1015-28. [PMID: 22837174 PMCID: PMC3491832 DOI: 10.1002/emmm.201201379] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/29/2012] [Accepted: 06/15/2012] [Indexed: 12/25/2022] Open
Abstract
Since the first description in 1989 of CD4-Fc-fusion antagonists that inhibit human immune deficiency virus entry into T cells, Fc-fusion proteins have been intensely investigated for their effectiveness to curb a range of pathologies, with several notable recent successes coming to market. These promising outcomes have stimulated the development of novel approaches to improve their efficacy and safety, while also broadening their clinical remit to other uses such as vaccines and intravenous immunoglobulin therapy. This increased attention has also led to non-clinical applications of Fc-fusions, such as affinity reagents in microarray devices. Here we discuss recent results and more generally applicable strategies to improve Fc-fusion proteins for each application, with particular attention to the newer, less charted areas.
Collapse
Affiliation(s)
- Daniel M Czajkowsky
- Key Laboratory of Systems Biomedicine (Ministry of Education) & State Key Laboratory of Oncogenes & Related Genes, Shanghai Jiao Tong University, Shanghai, P. R. China
| | | | | | | |
Collapse
|
22
|
Surface assembly of poly(I:C) on PEGylated microspheres to shield from adverse interactions with fibroblasts. J Control Release 2012; 159:204-14. [PMID: 22349184 DOI: 10.1016/j.jconrel.2012.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/01/2012] [Accepted: 02/04/2012] [Indexed: 11/20/2022]
Abstract
By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.
Collapse
|
23
|
Vaccination of neonates: Problem and issues. Vaccine 2012; 30:1541-59. [DOI: 10.1016/j.vaccine.2011.12.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/30/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
|
24
|
Bhoo SH, Lai H, Ma J, Arntzen CJ, Chen Q, Mason HS. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:807-16. [PMID: 21281425 PMCID: PMC4022790 DOI: 10.1111/j.1467-7652.2011.00593.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Filoviruses (Ebola and Marburg viruses) cause severe and often fatal haemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identifies Ebola and Marburg viruses as 'category A' pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development. The use of plant biotechnology is one possible way to cost-effectively produce subunit vaccines. In this work, a geminiviral replicon system was used to produce an Ebola immune complex (EIC) in Nicotiana benthamiana. Ebola glycoprotein (GP1) was fused at the C-terminus of the heavy chain of humanized 6D8 IgG monoclonal antibody, which specifically binds to a linear epitope on GP1. Co-expression of the GP1-heavy chain fusion and the 6D8 light chain using a geminiviral vector in leaves of N. benthamiana produced assembled immunoglobulin, which was purified by ammonium sulphate precipitation and protein G affinity chromatography. Immune complex formation was confirmed by assays to show that the recombinant protein bound the complement factor C1q. Size measurements of purified recombinant protein by dynamic light scattering and size-exclusion chromatography also indicated complex formation. Subcutaneous immunization of BALB/C mice with purified EIC resulted in anti-Ebola virus antibody production at levels comparable to those obtained with a GP1 virus-like particle. These results show excellent potential for a plant-expressed EIC as a human vaccine.
Collapse
Affiliation(s)
- Seong Hee Bhoo
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
- Graduate School of Biotechnology and Plant Metabolism Research Center Kyung Hee University, Yong-In 446-701, Korea
| | - Huafang Lai
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | - Julian Ma
- Division of Cellular and Molecular Medicine, St. George’s, University of London, Cranmer Terrace, London SW17 0RE
| | - Charles J. Arntzen
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | - Qiang Chen
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
- College of Technology and Innovation, Arizona State University, Mesa, AZ 85212, USA
| | - Hugh S. Mason
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| |
Collapse
|
25
|
Jefferis R. The antibody paradigm: present and future development as a scaffold for biopharmaceutical drugs. Biotechnol Genet Eng Rev 2011; 26:1-42. [PMID: 21415874 DOI: 10.5661/bger-26-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early studies of the humoral immune response revealed an apparent paradox: an infinite diversity of antibody specificities encoded within a finite genome. In consequence antibodies became a focus of interest for biochemists and geneticists. It resulted in the elucidation of the basic structural unit, the immunoglobulin (Ig) domain, comprised of ~ 100 amino acid residues that generate the characteristic "immunoglobulin (Ig) fold". The Ig fold has an anti-parallel ß-pleated sheet (barrel) structure that affords structural stability whilst the ß-bends allow for essentially infinite structural variation and functional diversity. This versatility is reflected in the Ig domain being the most widely utilised structural unit within the proteome. Human antibodies are comprised of multiple Ig domains and their structural diversity may be enhanced through the attachment of oligosaccharides. This review summarizes our current understanding of the immunoglobulin structure/function relationships and the application of protein and oligosaccharide engineering to further develop the Ig domain as a scaffold for the generation of new and novel antibody based therapeutics.
Collapse
Affiliation(s)
- Roy Jefferis
- School of Immunity and Infection, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
26
|
Sanchez-Garcia J, Serrano-López J, García-Sanchez V, Alvarez-Rivas MA, Jimenez-Moreno R, Pérez-Seoane C, Herrera-Arroyo C, Serrano J, de Dios JF, Torres-Gomez A. Tumor necrosis factor-α-secreting CD16+ antigen presenting cells are effectively removed by granulocytapheresis in ulcerative colitis patients. J Gastroenterol Hepatol 2010; 25:1869-75. [PMID: 21091999 DOI: 10.1111/j.1440-1746.2010.06377.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM In human blood, two main subsets of antigen-presenting-cells (APCs) have been described: plasmocytoid dendritic cells (pDC) and myeloid dendritic cells (mDC) which are further subdivided in CD11c-mDC and CD16-mDC DC. In ulcerative colitis patients (UC) peripheral blood APCs express significant levels of the activation and lack immature-tolerogeneic APCs. Adacolumn selective granulocytapheresis (GCAP) has been associated with clinical efficacy in patients with UC. In the present study we sought the effect of sequential GCAP procedures in peripheral blood APCs in patients with UC and the effect on soluble cytokines. METHODS We used multiparametric flow cytometry to quantify peripheral blood APCs and serum cytokines in 210 samples obtained from seven patients with steroid-dependent or steroid resistant UC undergoing GCAP treatment. Samples were drawn before, after 30 and 60 min of each session. RESULTS Each GCAP session resulted in a dramatic tenfold reduction of peripheral blood CD16-mDC (P < 0.01), pDC decreased twofold (P = 0.05) but CD11c-mDC remained unchanged. This depletion was reached after 30 min and maintained at 60 min. The depletion of CD16-mDC and monocytes was associated with a reduction of serum tumor necrosis factor levels and a raise in interleukin-10 levels, although no statistical difference was reached. CONCLUSION The effect of GCAP in peripheral blood APC consisted mainly on a significant depletion of tumor necrosis factor-α secreting CD16-mDC. This finding could suggest a potential mechanism of GCAP beneficial effect that must be confirmed in larger series.
Collapse
Affiliation(s)
- Joaquin Sanchez-Garcia
- Department of Hematology and Laboratory for Cellular Therapy, University Hospital Reina Sofía, Cordoba, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kou PM, Babensee JE. Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J Biomed Mater Res A 2010; 96:239-60. [PMID: 21105173 DOI: 10.1002/jbm.a.32971] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 12/21/2022]
Abstract
Macrophages (Mϕ) and dendritic cells (DCs) are critical antigen presenting cells that play pivotal roles in host responses to biomaterial implants. Although Mϕs have been widely studied for their roles in the inflammatory responses against biomaterials, the roles that DCs play in the host responses toward implanted materials have only recently been explored. DCs are of significant research interest because of the emergence of a large number of combination products that cross-traditional medical device boundaries. These products combine biomaterials with biologics, including cells, nucleic acids, and/or proteins. The biomaterial component may evoke an inflammatory response, primarily mediated by neutrophils and Mϕs, whereas the biologic component may elicit an immunogenic immune response, initiated by DCs involving lymphocyte activation. Control of Mϕ phenotypic balance from proinflammatory M1 to reparative M2 is a goal of investigators to optimize the host response to biomaterials. Similarly, control of DC phenotype from proinflammatory to toleragenic is of interest in vaccine delivery and tissue engineering/transplantation situations, respectively. This review discusses the interconnection between innate and adaptive immunity, the comparative and contrasting phenotypes and roles of Mϕs and DCs in immunity, their responses to biomaterials and the strategies to modulate their phenotype for applications in tissue engineering and vaccine delivery. Furthermore, the collaboration between and unique roles of DCs and Mϕs needs to be addressed in future studies to gain a more complete picture of host responses toward combination products.
Collapse
Affiliation(s)
- Peng Meng Kou
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
28
|
Pekkarinen PT, Vaali K, Junnikkala S, Rossi LH, Tuovinen H, Meri S, Vaarala O, Arstila TP. A functional complement system is required for normal T helper cell differentiation. Immunobiology 2010; 216:737-43. [PMID: 21074891 DOI: 10.1016/j.imbio.2010.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Complement is a fundamental part of the innate immune system, and also modulates B cell responses. Its effects on T cells, however, are less well studied. Here we have studied antigen-specific T cell responses in C3-knockout (C3-KO) C57BL/6 mice. The animals were immunized with ovalbumin (OVA) in complete Freund's adjuvant, which favors T helper 1 (Th1)-type responses. Splenic lymphocytes from C3-KO mice proliferated less in response to OVA stimulation than splenocytes from control wild type (WT) mice. The response in the C3-KO mice was also qualitatively different. The expression of Th1 lineage determining transcription factor T-bet was decreased in OVA-stimulated splenocytes, and the induction of Th1-associated IgG subclasses impaired. In WT mice T cell proliferation in response to OVA was positively correlated with antigen-specific IgG2a and IgG3 levels. In C3-KO mice the proliferative response correlated with antigen-specific IgE levels, consistent with Th2 deviation. The expression of Th1-inducing cytokines IL-12 and IFN-γ was also decreased in the collecting lymph nodes in the C3-KO mice after immunization. Our results show that the complement system and its component C3 participate in the regulation of T cell responses, and that complement function is required for normal T helper cell differentiation.
Collapse
Affiliation(s)
- Pirkka T Pekkarinen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lim PY, Louie KL, Styer LM, Shi PY, Bernard KA. Viral pathogenesis in mice is similar for West Nile virus derived from mosquito and mammalian cells. Virology 2010; 400:93-103. [PMID: 20167345 DOI: 10.1016/j.virol.2010.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/13/2009] [Accepted: 01/24/2010] [Indexed: 01/07/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen. During replication, WNV acquires different carbohydrates and lipid membranes, depending on its mosquito or vertebrate hosts. Consequently, WNV derived from mosquito and vertebrate cell lines differ in their infectivity for dendritic cells (DCs) and induction of type I interferon (IFN-alpha/beta) in vitro. We evaluated the pathogenesis of WNV derived from mosquito (WNV(C6/36)) and vertebrate (WNV(BHK)) cell lines in mice. The tissue tropism, infectivity, clinical disease, and mortality did not differ for mice inoculated with WNV(C6/36) or WNV(BHK), and there were only minor differences in viral load and serum levels of IFN-alpha/beta. The replication kinetics of WNV(C6/36) and WNV(BHK) were equivalent in primary DCs and skin cells although primary DCs were more susceptible to WNV(C6/36) infection than to WNV(BHK) infection, suggesting that less virus is produced per infected cell for WNV(C6/36). In conclusion, viral source has minimal effect on WNV pathogenesis in vivo.
Collapse
Affiliation(s)
- Pei-Yin Lim
- Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201, USA
| | | | | | | | | |
Collapse
|
30
|
Poon IKH, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 2009; 17:381-97. [PMID: 20019744 DOI: 10.1038/cdd.2009.195] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phagocytosis serves as one of the key processes involved in development, maintenance of tissue homeostasis, as well as in eliminating pathogens from an organism. Under normal physiological conditions, dying cells (e.g., apoptotic and necrotic cells) and pathogens (e.g., bacteria and fungi) are rapidly detected and removed by professional phagocytes such as macrophages and dendritic cells (DCs). In most cases, specific receptors and opsonins are used by phagocytes to recognize and bind their target cells, which can trigger the intracellular signalling events required for phagocytosis. Depending on the type of target cell, phagocytes may also release both immunomodulatory molecules and growth factors to orchestrate a subsequent immune response and wound healing process. In recent years, evidence is growing that opsonins and receptors involved in the removal of pathogens can also aid the disposal of dying cells at all stages of cell death, in particular plasma membrane-damaged cells such as late apoptotic and necrotic cells. This review provides an overview of the molecular mechanisms and the immunological outcomes of late apoptotic/necrotic cell removal and highlights the striking similarities between late apoptotic/necrotic cell and pathogen clearance.
Collapse
Affiliation(s)
- I K H Poon
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australia
| | | | | |
Collapse
|
31
|
Oracki SA, Tsantikos E, Quilici C, Light A, Schmidt T, Lew AM, Martin JE, Smith KG, Hibbs ML, Tarlinton DM. CTLA4Ig alters the course of autoimmune disease development in Lyn-/- mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:757-63. [PMID: 19966213 DOI: 10.4049/jimmunol.0804349] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lyn-deficient (Lyn(-/-)) mice develop an age-dependent autoimmune disease similar to systemic lupus erythematosus, characterized by the production of IgG anti-nuclear Ab. To determine the extent to which this autoimmune phenotype is driven by T cell costimulation, we generated Lyn(-/-) mice expressing a soluble form of the T cell inhibitory molecule, CTLA4 (CTLA4Ig). Surprisingly, although CTLA4Ig prevented myeloid hyperplasia, splenomegaly and IgG anti-nuclear Ab production in Lyn(-/-) mice, it did not inhibit immune complex deposition and tissue destruction in the kidney. In fact, regardless of CTLA4Ig expression, Lyn(-/-) serum contained elevated titers of IgA anti-nuclear Ab, although generally IgA deposition in the kidney was only revealed in the absence of self-reactive IgG. This demonstrated that activation of autoreactive B cell clones in Lyn(-/-) mice can still occur despite impaired costimulation. Indeed, CTLA4Ig did not alter perturbed Lyn(-/-) B cell development and behavior, and plasma cell frequencies were predominantly unaffected. These results suggest that when self-reactive B cell clones are unimpeded in acquiring T cell help, they secrete pathogenic IgG autoantibodies that trigger the fulminant autoimmunity normally observed in Lyn(-/-) mice. The absence of these IgG immune complexes reveals an IgA-mediated axis of autoimmunity that is not sufficient to cause splenomegaly or extramedullary myelopoiesis, but which mediates destructive glomerulonephritis. These findings have implications for the understanding of the basis of Ab-mediated autoimmune diseases and for their treatment with CTLA4Ig.
Collapse
Affiliation(s)
- Sarah A Oracki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The complexity and number of antigens (Ags) seen during an immune response has hampered the development of malaria vaccines. Antibodies (Abs) play an important role in immunity to malaria and their passive administration is effective at controlling the disease. Abs represent approximately 25% of all proteins undergoing clinical trials, and these 'smart biologicals' have undergone a major revival with the realization that Abs lie at the interface between innate and adaptive immunity. At least 18 Abs have FDA approval for clinical use and approximately 150 are in clinical trials, the majority for the treatment of cancer, allograft rejection or autoimmune disease. Despite these triumphs none are in development for malaria, principally because they are perceived as being too expensive for a disease mainly afflicting poor and marginalized populations. Although unlikely, at least in the foreseeable future, that Ab-based prophylaxis will be made available to the millions of people at risk from malaria, they may be incorporated into current vaccine approaches, since Abs act as correlates of protection in studies aimed at defining the best Ags to include in vaccines. Abs may also form the basis for novel vaccination strategies by targeting Ags to appropriate antigen presenting cells. Therefore, to develop the most efficacious vaccines it will be necessary to fully understand which Abs and Fc-receptors (FcRs) are best engaged for a positive outcome.
Collapse
Affiliation(s)
- R J Pleass
- Institute of Genetics, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
33
|
Hosszu KK, Santiago-Schwarz F, Peerschke EIB, Ghebrehiwet B. Evidence that a C1q/C1qR system regulates monocyte-derived dendritic cell differentiation at the interface of innate and acquired immunity. Innate Immun 2009; 16:115-27. [PMID: 19710097 DOI: 10.1177/1753425909339815] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Growing evidence shows that C1q modulates the growth and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because C1q regulates both innate and acquired immune responses, we postulated that C1q modulates the transition from monocytes to DCs, i.e. the interface between innate and acquired immunity. Human peripheral blood monocytes cultured with soluble C1q and DC growth factors (granulocyte-macrophage colony-stimulating factor + Interleukin-4) failed to down-regulate monocyte-associated (CD14, CD16) and up-regulate DC-associated (CD83, CD86) markers. Impaired DC differentiation was not due to apoptosis; further analysis revealed the development of CD14(hi)CD11c(hi)CD16 (+/-) cells that have previously been associated with both innate and acquired immunity. Monocyte-DC precursors expressed gC1qR, the receptor for globular heads of C1q, from the outset, while cC1qR, the receptor for the collagen tails of C1q, was expressed at low levels. Notably, the binding pattern of monoclonal antibodies specific to the globular heads of C1q indicated that C1q is bound to monocytes via globular heads, presumably through gC1qR. Moreover, gC1qR levels decreased, while cC1qR levels were dramatically amplified as monocytes differentiated into immature DC. Thus, specific C1q/C1q receptor (R) interactions may control the transition from the monocyte state (innate immunity) toward the professional antigen-presenting cell state (adaptive immunity).
Collapse
Affiliation(s)
- Kinga K Hosszu
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | | | | | |
Collapse
|
34
|
Albert Christophersen O, Haug A. More about hypervirulent avian influenza: Is the world now better prepared? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600701343286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Anna Haug
- Norwegian University of Life Science (UMB), Arboretveien, Ås, Norway
| |
Collapse
|
35
|
Targeting allergen to Fc gammaRI: a strategy to treat allergic disease? Curr Opin Allergy Clin Immunol 2009; 8:547-52. [PMID: 18978470 DOI: 10.1097/aci.0b013e32831665d2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Targeting allergens to surface receptors on antigen presenting cells may provide a therapeutic strategy for allergic disease. This article discusses the immunomodulatory capacity of a molecule (H22-Fel d 1), which targets the major cat allergen, Fel d 1, to the high affinity IgG receptor, Fc gammaRI, on human dendritic cells. RECENT FINDINGS The fusion protein, H22-Fel d 1, induced a semi-mature phenotype in dendritic cells characterized by production of inflammatory cytokines with no change in surface markers, suggesting tolerogenic capacity. At the T-cell level, H22-Fel d 1 stimulated increased proliferation coupled with amplification of T cells expressing IL-5 and IL-10. Further analysis revealed induction of diverse T cell subtypes characteristic of Th0, regulatory Th1 and regulatory Th2 cells. Notably, this effect was restricted to T cells isolated from cat-allergic patients. Despite the increase in IL-5-expressing T cells, responses induced by H22-Fel d 1 appeared to be regulated by IL-10. Comparison with nonreceptor-targeted allergens from cat and house dust mite confirmed that qualitative T-cell changes induced by H22-Fel d 1 were unique. SUMMARY H22-Fel d 1 induces a novel variation of the Th2 response, which incorporates elements of a protective T-cell response. Exploiting Fc gammaRI-mediated pathways for allergen delivery may offer a new approach for treatment.
Collapse
|
36
|
Acosta-Iborra B, Elorza A, Olazabal IM, Martín-Cofreces NB, Martin-Puig S, Miró M, Calzada MJ, Aragonés J, Sánchez-Madrid F, Landázuri MO. Macrophage oxygen sensing modulates antigen presentation and phagocytic functions involving IFN-gamma production through the HIF-1 alpha transcription factor. THE JOURNAL OF IMMUNOLOGY 2009; 182:3155-64. [PMID: 19234213 DOI: 10.4049/jimmunol.0801710] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Low oxygen tension areas are found in inflamed or diseased tissues where hypoxic cells induce survival pathways by regulating the hypoxia-inducible transcription factor (HIF). Macrophages are essential regulators of inflammation and, therefore, we have analyzed their response to hypoxia. Murine peritoneal elicited macrophages cultured under hypoxia produced higher levels of IFN-gamma and IL-12 mRNA and protein than those cultured under normoxia. A similar IFN-gamma increment was obtained with in vivo models using macrophages from mice exposed to atmospheric hypoxia. Our studies showed that IFN-gamma induction was mediated through HIF-1alpha binding to its promoter on a new functional hypoxia response element. The requirement of HIF-alpha in the IFN-gamma induction was confirmed in RAW264.7 cells, where HIF-1alpha was knocked down, as well as in resident HIF-1alpha null macrophages. Moreover, Ag presentation capacity was enhanced in hypoxia through the up-regulation of costimulatory and Ag-presenting receptor expression. Hypoxic macrophages generated productive immune synapses with CD8 T cells that were more efficient for activation of TCR/CD3epsilon, CD3zeta and linker for activation of T cell phosphorylation, and T cell cytokine production. In addition, hypoxic macrophages bound opsonized particles with a higher efficiency, increasing their phagocytic uptake, through the up-regulated expression of phagocytic receptors. These hypoxia-increased immune responses were markedly reduced in HIF-1alpha- and in IFN-gamma-silenced macrophages, indicating a link between HIF-1alpha and IFN-gamma in the functional responses of macrophages to hypoxia. Our data underscore an important role of hypoxia in the activation of macrophage cytokine production, Ag-presenting activity, and phagocytic activity due to an HIF-1alpha-mediated increase in IFN-gamma levels.
Collapse
Affiliation(s)
- Bárbara Acosta-Iborra
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Flores-Langarica A, Sebti Y, Mitchell DA, Sim RB, MacPherson GG. Scrapie pathogenesis: the role of complement C1q in scrapie agent uptake by conventional dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:1305-13. [PMID: 19155476 DOI: 10.4049/jimmunol.182.3.1305] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice lacking complement components show delayed development of prion disease following peripheral inoculation. The delay could relate to reduced scrapie prion protein (PrP(Sc)) accumulation on follicular dendritic cells (DCs). However conventional DCs (cDCs) play a crucial role in the early pathogenesis of prion diseases and complement deficiency could result in decreased PrP(Sc) uptake by cDCs in the periphery. To explore this possibility, we cultured murine splenic or gut-associated lymph node cDCs with scrapie-infected whole brain homogenate in the presence or absence of complement. Uptake decreased significantly if the serum in the cultures was heat-inactivated. Because heat inactivation primarily denatures C1q, we used serum from C1q(-/-) mice and showed that PrP(Sc) uptake was markedly decreased. PrP(Sc) internalization was saturable and temperature-dependent, suggesting receptor-mediated uptake. Furthermore, uptake characteristics differed from fluid-phase endocytosis. Immunofluorescence showed colocalization of C1q and PrP(Sc), suggesting interaction between these molecules. We evaluated the expression of several complement receptors on cDCs and confirmed that cDCs that take up PrP(Sc) express one of the C1q receptors, calreticulin. Our results show that C1q participates in PrP(Sc) uptake by cDCs, revealing a critical role for cDCs in initial prion capture, an event that takes place before the PrP(Sc) accumulation within the follicular DC network.
Collapse
Affiliation(s)
- Adriana Flores-Langarica
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | | | | | | | | |
Collapse
|
38
|
Hellman P, Andersson L, Eriksson H. Ligand surface density is important for efficient capture of immunoglobulin and phosphatidylcholine coated particles by human peripheral dendritic cells. Cell Immunol 2009; 258:123-30. [DOI: 10.1016/j.cellimm.2009.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
|
39
|
Monrad SU, Rea K, Thacker S, Kaplan MJ. Myeloid dendritic cells display downregulation of C-type lectin receptors and aberrant lectin uptake in systemic lupus erythematosus. Arthritis Res Ther 2008; 10:R114. [PMID: 18811944 PMCID: PMC2592801 DOI: 10.1186/ar2517] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 11/18/2022] Open
Abstract
Introduction There is a growing body of evidence implicating aberrant dendritic cell function as a crucial component in the immunopathogenesis of systemic lupus erythematosus. The purpose of the present study was to characterize the phagocytic capacity and expression of receptors involved in pathogen recognition and self-nonself discrimination on myeloid dendritic cells from patients with lupus. Methods Unstimulated or stimulated monocyte-derived dendritic cells were obtained from lupus patients and healthy control individuals, and expression of C-type lectin receptors (mannose receptor and dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin), complement-receptor 3 and Fcγ receptors was determined by flow cytometry. Dextran uptake by lupus and control dendritic cells was also assessed by flow cytometry. Serum IFNγ was quantified by ELISA, and uptake of microbial products was measured using fluorescently labeled zymosan. Results When compared with dendritic cells from healthy control individuals, unstimulated and stimulated lupus dendritic cells displayed significantly decreased dextran uptake and mannose receptor and dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin expression. Decreased expression of the mannose receptor was associated with high serum IFNγ levels, but not with maturation status or medications. Diminished dextran uptake and mannose receptor expression correlated with lupus disease activity. There were no differences between control and lupus dendritic cells in the expression of other pattern recognition receptors or in the capacity to uptake zymosan particles Conclusions Lupus dendritic cells have diminished endocytic capacity, which correlates with decreased mannose receptor expression. While this phenomenon appears primarily intrinsic to dendritic cells, modulation by serum factors such as IFNγ could play a role. These abnormalities may be relevant to the aberrant immune homeostasis and the increased susceptibility to infections described in lupus.
Collapse
Affiliation(s)
- Seetha U Monrad
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, 1150 West Medical Center Drive, 5520 MSRBI, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
40
|
Maglione PJ, Xu J, Casadevall A, Chan J. Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:3329-38. [PMID: 18292558 DOI: 10.4049/jimmunol.180.5.3329] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The critical role of cellular immunity during tuberculosis (TB) has been extensively studied, but the impact of Abs upon this infection remains poorly defined. Previously, we demonstrated that B cells are required for optimal protection in Mycobacterium tuberculosis-infected mice. FcgammaR modulate immunity by engaging Igs produced by B cells. We report that C57BL/6 mice deficient in inhibitory FcgammaRIIB (RIIB-/-) manifested enhanced mycobacterial containment and diminished immunopathology compared with wild-type controls. These findings corresponded with enhanced pulmonary Th1 responses, evidenced by increased IFN-gamma-producing CD4+ T cells, and elevated expression of MHC class II and costimulatory molecules B7-1 and B7-2 in the lungs. Upon M. tuberculosis infection and immune complex engagement, RIIB-/- macrophages produced more of the p40 component of the Th1-promoting cytokine IL-12. These data strongly suggest that FcgammaRIIB engagement can dampen the TB Th1 response by attenuating IL-12p40 production or activation of APCs. Conversely, C57BL/6 mice lacking the gamma-chain shared by activating FcgammaR had enhanced susceptibility and exacerbated immunopathology upon M. tuberculosis challenge, associated with increased production of the immunosuppressive cytokine IL-10. Thus, engagement of distinct FcgammaR can divergently affect cytokine production and susceptibility during M. tuberculosis infection.
Collapse
Affiliation(s)
- Paul J Maglione
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
41
|
Andersson LIM, Hellman P, Eriksson H. Receptor-mediated endocytosis of particles by peripheral dendritic cells. Hum Immunol 2008; 69:625-33. [PMID: 18703103 DOI: 10.1016/j.humimm.2008.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/25/2008] [Accepted: 07/15/2008] [Indexed: 11/26/2022]
Abstract
Human peripheral dendritic cells (DCs) are antigen-presenting cells with the ability to internalize antigen and present antigen-derived peptides to T cells. Human DCs express several receptors on the surface for endocytosis and other recognition receptors that bind to microbes or microbial products, which are internalized and processed. Here, we report the use of nanometer-size zeolite particles as a tool to study receptor-mediated endocytosis by the two subsets of immature DCs, myeloid (mDC) and plasmacytoid (pDC) dendritic cells. A major difference in receptor-mediated endocytosis was observed between the two populations of peripheral DCs. The pDC population demonstrated an almost complete lack of receptor-mediated endocytosis of zeolite particles, whereas the mDC population demonstrated a clear receptor-mediated endocytosis. Fc receptors are expressed by both peripheral DC populations and lipoteichoic acid (LTA) and lipopolysaccharide (LPS) are known ligands of the Toll-like receptor (TLR)-2 and TLR4, respectively, both TLRs expressed by human mDCs. An efficient receptor-mediated endocytosis of immunoglobulin G-, LTA-, and LPS-coated zeolite particles was observed by the mDC population and their endocytosing capacity depended strongly on the density of the ligand adsorbed onto the zeolite particles. In conclusion, an efficient receptor-mediated endocytosis was observed from the mDC population, whereas the pDCs demonstrated an almost complete lack of receptor-mediated endocytosis and nanometer-size dealuminated zeolite particles were a useful tool for studying receptor-mediated endocytosis in human peripheral DCs.
Collapse
Affiliation(s)
- Linda I M Andersson
- Department of Biomedical Laboratory Science, Faculty of Health and Society, Malmö University, S-205 06 Malmö, Sweden
| | | | | |
Collapse
|
42
|
Cartron G, Zhao-Yang L, Baudard M, Kanouni T, Rouillé V, Quittet P, Klein B, Rossi JF. Granulocyte-macrophage colony-stimulating factor potentiates rituximab in patients with relapsed follicular lymphoma: results of a phase II study. J Clin Oncol 2008; 26:2725-31. [PMID: 18427151 DOI: 10.1200/jco.2007.13.7729] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We hypothesized that granulocyte-macrophage colony-stimulating factor (GM-CSF) could potentiate the clinical activity of rituximab given its individual and cooperative effects on Fc gamma RIIa- and Fc gamma RIIIa-expressing cells. A phase II clinical study combining GM-CSF and rituximab was initiated in patients with relapsed follicular lymphoma (FL) to determine the clinical and biologic responses, as well as safety of the combination. PATIENTS AND METHODS Thirty three patients with relapsed FL were treated with GM-CSF 5 microg/kg/d on days 1 to 8 and rituximab 375 mg/m(2) on day 5 of each 21-day cycle for four cycles. Clinical response and tolerability were examined according to international criteria. Biologic monitoring included evaluation of immune cells involved in rituximab activity. RESULTS Of 33 evaluated patients, a 70% overall response rate (complete response plus complete response unconfirmed, 45%) and a median progression-free survival (PFS) of 16.5 months were achieved. Outcome was influenced by the quality of response and the Follicular Lymphoma International Prognostic Index (FLIPI), where low- and intermediate-risk FLIPI groups were associated with significantly better PFS. After treatment there was a significant increase in granulocyte and monocyte counts. Examination of dendritic cell response showed an overall increase in plasmacytoid dendritic cells, especially in non-complete response patients, after treatment. Addition of GM-CSF did not impair tolerance to rituximab, and adverse events were rare and mild. DISCUSSION GM-CSF plus rituximab results in high response rates, along with a tolerable safety profile in patients with relapsed or progressive FL. The improved efficacy over rituximab monotherapy may be due to increases seen in monocyte, granulocyte, and dendritic cell populations.
Collapse
Affiliation(s)
- Guillaume Cartron
- Centre Hospitalier Universitaire (CHU), Service d'Hématologie et d'Oncologie Médicale, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cummings KL, Waggoner SN, Tacke R, Hahn YS. Role of complement in immune regulation and its exploitation by virus. Viral Immunol 2008; 20:505-24. [PMID: 18158725 DOI: 10.1089/vim.2007.0061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Complement is activated during the early phase of viral infection and promotes destruction of virus particles as well as the initiation of inflammatory responses. Recently, complement and complement receptors have been reported to play an important role in the regulation of innate as well as adaptive immune responses during infection. The regulation of host immune responses by complement involves modulation of dendritic cell activity in addition to direct effects on T-cell function. Intriguingly, many viruses encode homologs of complement regulatory molecules or proteins that interact with complement receptors on antigen-presenting cells and lymphocytes. The evolution of viral mechanisms to alter complement function may augment pathogen persistence and limit immune-mediated tissue destruction. These observations suggest that complement may play an important role in both innate and adaptive immune responses to infection as well as virus-mediated modulation of host immunity.
Collapse
Affiliation(s)
- Kara L Cummings
- Beirne Carter Center for Immunology Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia
| | | | | | | |
Collapse
|
44
|
Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol 2008; 82:3939-51. [PMID: 18272578 DOI: 10.1128/jvi.02484-07] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dengue viruses (DV), composed of four distinct serotypes (DV1 to DV4), cause 50 to 100 million infections annually. Durable homotypic immunity follows infection but may predispose to severe subsequent heterotypic infections, a risk conferred in part by the immune response itself. Antibody-dependent enhancement (ADE), a process best described in vitro, is epidemiologically linked to complicated DV infections, especially in Southeast Asia. Here we report for the first time the ADE phenomenon in primary human dendritic cells (DC), early targets of DV infection, and human cell lines bearing Fc receptors. We show that ADE is inversely correlated with surface expression of DC-SIGN (DC-specific intercellular adhesion molecule-3-grabbing nonintegrin) and requires Fc gamma receptor IIa (FcgammaRIIa). Mature DC exhibited ADE, whereas immature DC, expressing higher levels of DC-SIGN and similar FcgammaRIIa levels, did not undergo ADE. ADE results in increased intracellular de novo DV protein synthesis, increased viral RNA production and release, and increased infectivity of the supernatants in mature DC. Interestingly, tumor necrosis factor alpha and interleukin-6 (IL-6), but not IL-10 and gamma interferon, were released in the presence of dengue patient sera but generally only at enhancement titers, suggesting a signaling component of ADE. FcgammaRIIa inhibition with monoclonal antibodies abrogated ADE and associated downstream consequences. DV versatility in entry routes (FcgammaRIIa or DC-SIGN) in mature DC broadens target options and suggests additional ways for DC to contribute to the pathogenesis of severe DV infection. Studying the cellular targets of DV infection and their susceptibility to ADE will aid our understanding of complex disease and contribute to the field of vaccine development.
Collapse
|
45
|
Olazabal IM, Martín-Cofreces NB, Mittelbrunn M, Martínez del Hoyo G, Alarcón B, Sánchez-Madrid F. Activation outcomes induced in naïve CD8 T-cells by macrophages primed via "phagocytic" and nonphagocytic pathways. Mol Biol Cell 2007; 19:701-10. [PMID: 18077558 DOI: 10.1091/mbc.e07-07-0650] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKC. At the same doses of loaded antigen (1 microM), "phagocytic" macrophages were more efficient than peptide-antigen-loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3-30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy.
Collapse
Affiliation(s)
- Isabel María Olazabal
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Dendritic cells (DC) in nonlymphoid organs function at the crossroads of innate and adaptive immunity, self-tolerance, and tissue homeostasis. This review provides an overview of the study of DC in the kidney, tracing its history leading to the current knowledge of the origins, migration, and function of renal DC. Together, these studies suggest that renal DC play a critical role in the health and disease of the kidney, opening the way to direct targeting of renal DC for therapeutic benefit.
Collapse
Affiliation(s)
- Rohan John
- Division of Nephrology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
47
|
Li K, Sacks SH, Zhou W. The relative importance of local and systemic complement production in ischaemia, transplantation and other pathologies. Mol Immunol 2007; 44:3866-74. [PMID: 17768105 DOI: 10.1016/j.molimm.2007.06.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Indexed: 10/22/2022]
Abstract
Besides a critical role in innate host defence, complement activation contributes to inflammatory and immunological responses in a number of pathological conditions. Many tissues outside the liver (the primary source of complement) synthesise a variety of complement proteins, either constitutively or response to noxious stimuli. The significance of this local synthesis of complement has become clearer as a result of functional studies. It revealed that local production not only contributes to the systemic pool of complement but also influences local tissue injury and provides a link with the antigen-specific immune response. Extravascular production of complement seems particularly important at locations with poor access to circulating components and at sites of tissue stress responses, notably portals of entry of invasive microbes, such as interstitial spaces and renal tubular epithelial surfaces. Understanding the relative importance of local and systemic complement production at such locations could help to explain the differential involvement of complement in organ-specific pathology and inform the design of complement-based therapy. Here, we will describe the lessons we have learned over the last decade about the local synthesis of complement and its association with inflammatory and immunological diseases, placing emphasis on the role of local synthesis of complement in organ transplantation.
Collapse
Affiliation(s)
- Ke Li
- MRC Centre for Transplantation and Department of Nephrology and Transplantation, King's College London School of Medicine at Guy's Hospital, London, UK
| | | | | |
Collapse
|
48
|
Garg R, Trudel N, Tremblay MJ. Consequences of the natural propensity of Leishmania and HIV-1 to target dendritic cells. Trends Parasitol 2007; 23:317-24. [PMID: 17531536 DOI: 10.1016/j.pt.2007.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 03/20/2007] [Accepted: 05/14/2007] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that both Leishmania and HIV type-1 (HIV-1) hijack dendritic cell (DC) functions to escape immune surveillance using an array of elaborate strategies. Leishmania has developed a variety of adaptations to disrupt cellular defense mechanisms, whereas HIV-1 targets DCs to achieve a more efficient dissemination. The capacity of Leishmania and HIV-1 to target DCs through a common cell-surface molecule, namely DC-SIGN (dendritic cell specific ICAM-3-grabbing non-integrin), points to a possible dangerous liaison between these two pathogens. This review explores our knowledge of how Leishmania and HIV-1 interact dynamically with DCs, and how they exploit this cell type for their reciprocal benefit.
Collapse
Affiliation(s)
- Ravendra Garg
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, 2705 Boulevard Laurier, RC-709, Université Laval, Québec, G1V 4G2, Canada
| | | | | |
Collapse
|
49
|
Tu LN, Jeong HY, Kwon HY, Ogunniyi AD, Paton JC, Pyo SN, Rhee DK. Modulation of adherence, invasion, and tumor necrosis factor alpha secretion during the early stages of infection by Streptococcus pneumoniae ClpL. Infect Immun 2007; 75:2996-3005. [PMID: 17403879 PMCID: PMC1932908 DOI: 10.1128/iai.01716-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heat shock proteins (HSPs) play a pivotal role as chaperones in the folding of native and denatured proteins and can help pathogens penetrate host defenses. However, the underlying mechanism(s) of modulation of virulence by HSPs has not been fully determined. In this study, the role of the chaperone ClpL in the pathogenicity of Streptococcus pneumoniae was assessed. A clpL mutant adhered to and invaded nasopharyngeal or lung cells much more efficiently than the wild type adhered to and invaded these cells in vitro, as well as in vivo, although it produced the same amount of capsular polysaccharide. However, the level of secretion of tumor necrosis factor alpha (TNF-alpha) from macrophages infected with the clpL mutant was significantly lower than the level of secretion elicited by the wild type during the early stages of infection. Interestingly, treatment of the human lung epithelial carcinoma A549 and murine macrophage RAW 264.7 cell lines with cytochalasin D, an inhibitor of actin polymerization, increased adherence of the mutant to the host cells. In contrast, cytochalasin D treatment of RAW 264.7 cells decreased TNF-alpha secretion after infection with either the wild type or the mutant. However, pretreatment of cell lines with the actin polymerization activator jasplakinolide reversed these phenotypes. These findings indicate, for the first time, that the ClpL chaperone represses adherence of S. pneumoniae to host cells and induces secretion of TNF-alpha via a mechanism dependent upon actin polymerization during the initial infection stage.
Collapse
Affiliation(s)
- Le Nhat Tu
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea.
| | | | | | | | | | | | | |
Collapse
|
50
|
Tripodo C, Porcasi R, Guarnotta C, Ingrao S, Campisi V, Florena AM, Franco V. C1q Production by Bone Marrow Stromal Cells. Scand J Immunol 2007; 65:308-9. [PMID: 17309786 DOI: 10.1111/j.1365-3083.2006.01871.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|