1
|
Frese AJ, Greenlee MHW, Bian J, Greenlee JJ. Transmission of classical scrapie using lymph node inoculum. Res Vet Sci 2024; 176:105348. [PMID: 38970868 DOI: 10.1016/j.rvsc.2024.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Scrapie is a fatal, transmissible neurodegenerative disease that affects sheep and goats. Replication of PrPSc in the lymphoid tissue allows for the scrapie agent to be shed into the environment. Brain and retropharyngeal lymph node (RPLN) from a sheep inoculated with the classical scrapie agent was used to compare infectivity of these tissues. Nine Cheviot sheep were used in this study, randomly assigned into two groups based on inocula. Group one (n = 4) received 1 mL of 10% brain homogenate and consisted of all VRQ/VRQ PRNP genotypes. Group two (n = 5) had three sheep receive 1 mL of a 10% RPLN homogenate (13-7), and two sheep receive 0.5 mL of a 10% RPLN homogenate (13-7) because of availability. Sheep in group two were also VRQ/VRQ genotyped. Brain and lymph tissues were tested by histopathology, immunohistochemistry, western blot, enzyme immunoassay, and conformational stability for PrPSc accumulation. Both groups displayed clinical signs of ataxia, moribund, head tremors, circling, and lethargy prior to euthanizing at an average of 16.2 mpi (months post inoculation) (group one) or 19.56 mpi (group two). Additionally, brainstem tissue from both groups displayed the same apparent molecular mass by western blot examination. Spongiform lesion profiling and PrPSc accumulation in brain and lymph tissues were similar in both groups. Conformational stability results displayed no significant difference in obex or RPLN tissue. Overall, these data suggest lymph nodes containing the classical scrapie agent are infectious to sheep, aiding in the understanding of sheep scrapie transmission.
Collapse
Affiliation(s)
- Alexis J Frese
- Department of Biomedical Sciences, Iowa State University, College of Veterinary Medicine, Ames, IA, USA; Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, IA, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA.
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University, College of Veterinary Medicine, Ames, IA, USA.
| | - Jifeng Bian
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, IA, USA.
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, IA, USA.
| |
Collapse
|
2
|
Gallardo MJ, Delgado FO. Animal prion diseases: A review of intraspecies transmission. Open Vet J 2021; 11:707-723. [PMID: 35070868 PMCID: PMC8770171 DOI: 10.5455/ovj.2021.v11.i4.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Animal prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. The causative agent, prion, is a misfolded isoform of normal cellular prion protein, which is found in cells with higher concentration in the central nervous system. This review explored the sources of infection and different natural transmission routes of animal prion diseases in susceptible populations. Chronic wasting disease in cervids and scrapie in small ruminants are prion diseases capable of maintaining themselves in susceptible populations through horizontal and vertical transmission. The other prion animal diseases can only be transmitted through food contaminated with prions. Bovine spongiform encephalopathy (BSE) is the only animal prion disease considered zoonotic. However, due to its inability to transmit within a population, it could be controlled. The emergence of atypical cases of scrapie and BSE, even the recent report of prion disease in camels, demonstrates the importance of understanding the transmission routes of prion diseases to take measures to control them and to assess the risks to human and animal health.
Collapse
Affiliation(s)
- Mauro Julián Gallardo
- Instituto de Patobiología Veterinaria, IPVet, UEDD INTA-CONICET, Hurlingham, Argentina
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Oscar Delgado
- Instituto de Patobiología Veterinaria, IPVet, UEDD INTA-CONICET, Hurlingham, Argentina
- Facultad de Cs. Agrarias y Veterinarias, Universidad del Salvador, Pilar, Argentina
| |
Collapse
|
3
|
Classical and Atypical Scrapie in Sheep and Goats. Review on the Etiology, Genetic Factors, Pathogenesis, Diagnosis, and Control Measures of Both Diseases. Animals (Basel) 2021; 11:ani11030691. [PMID: 33806658 PMCID: PMC7999988 DOI: 10.3390/ani11030691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Prion diseases, such as scrapie, are neurodegenerative diseases with a fatal outcome, caused by a conformational change of the cellular prion protein (PrPC), originating with the pathogenic form (PrPSc). Classical scrapie in small ruminants is the paradigm of prion diseases, as it was the first transmissible spongiform encephalopathy (TSE) described and is the most studied. It is necessary to understand the etiological properties, the relevance of the transmission pathways, the infectivity of the tissues, and how we can improve the detection of the prion protein to encourage detection of the disease. The aim of this review is to perform an overview of classical and atypical scrapie disease in sheep and goats, detailing those special issues of the disease, such as genetic factors, diagnostic procedures, and surveillance approaches carried out in the European Union with the objective of controlling the dissemination of scrapie disease.
Collapse
|
4
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
5
|
Effect of co-infection with a small intestine-restricted helminth pathogen on oral prion disease pathogenesis in mice. Sci Rep 2019; 9:6674. [PMID: 31040320 PMCID: PMC6491469 DOI: 10.1038/s41598-019-42900-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 11/24/2022] Open
Abstract
The early replication of some orally-acquired prion strains upon stromal-derived follicular dendritic cells (FDC) within the small intestinal Peyer’s patches is essential to establish host infection, and for the disease to efficiently spread to the brain. Factors that influence the early accumulation of prions in Peyer’s patches can directly influence disease pathogenesis. The host’s immune response to a gastrointestinal helminth infection can alter susceptibility to co-infection with certain pathogenic bacteria and viruses. Here we used the natural mouse small intestine-restricted helminth pathogen Heligmosomoides polygyrus to test the hypothesis that pathology specifically within the small intestine caused by a helminth co-infection would influence oral prion disease pathogenesis. When mice were co-infected with prions on d 8 after H. polygyrus infection the early accumulation of prions within Peyer’s patches was reduced and survival times significantly extended. Natural prion susceptible hosts such as sheep, deer and cattle are regularly exposed to gastrointestinal helminth parasites. Our data suggest that co-infections with small intestine-restricted helminth pathogens may be important factors that influence oral prion disease pathogenesis.
Collapse
|
6
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
7
|
Mabbott NA. Immunology of Prion Protein and Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:203-240. [PMID: 28838662 DOI: 10.1016/bs.pmbts.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
8
|
Abstract
Individuals infected with prions succumb to brain damage, and prion infections continue to be inexorably lethal. However, many crucial steps in prion pathogenesis occur in lymphatic organs and precede invasion of the central nervous system. In the past two decades, a great deal has been learnt concerning the cellular and molecular mechanisms of prion lymphoinvasion. These properties are diagnostically useful and have, for example, facilitated preclinical diagnosis of variant Creutzfeldt-Jakob disease in the tonsils. Moreover, the early colonization of lymphoid organs can be exploited for post-exposure prophylaxis of prion infections. As stromal cells of lymphoid organs are crucial for peripheral prion infection, the dedifferentiation of these cells offers a powerful means of hindering prion spread in infected individuals. In this Review, we discuss the current knowledge of the immunobiology of prions with an emphasis on how basic discoveries might enable translational strategies.
Collapse
|
9
|
Bradford BM, Mabbott NA. Prion disease and the innate immune system. Viruses 2012; 4:3389-419. [PMID: 23342365 PMCID: PMC3528271 DOI: 10.3390/v4123389] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 02/06/2023] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies are a unique category of infectious protein-misfolding neurodegenerative disorders. Hypothesized to be caused by misfolding of the cellular prion protein these disorders possess an infectious quality that thrives in immune-competent hosts. While much has been discovered about the routing and critical components involved in the peripheral pathogenesis of these agents there are still many aspects to be discovered. Research into this area has been extensive as it represents a major target for therapeutic intervention within this group of diseases. The main focus of pathological damage in these diseases occurs within the central nervous system. Cells of the innate immune system have been proven to be critical players in the initial pathogenesis of prion disease, and may have a role in the pathological progression of disease. Understanding how prions interact with the host innate immune system may provide us with natural pathways and mechanisms to combat these diseases prior to their neuroinvasive stage. We present here a review of the current knowledge regarding the role of the innate immune system in prion pathogenesis.
Collapse
Affiliation(s)
- Barry M Bradford
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | | |
Collapse
|
10
|
Mok SWF, Proia RL, Brinkmann V, Mabbott NA. B cell-specific S1PR1 deficiency blocks prion dissemination between secondary lymphoid organs. THE JOURNAL OF IMMUNOLOGY 2012; 188:5032-40. [PMID: 22504650 DOI: 10.4049/jimmunol.1200349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many prion diseases are peripherally acquired (e.g., orally or via lesions to skin or mucous membranes). After peripheral exposure, prions replicate first upon follicular dendritic cells (FDC) in the draining lymphoid tissue before infecting the brain. However, after replication upon FDC within the draining lymphoid tissue, prions are subsequently propagated to most nondraining secondary lymphoid organs (SLO), including the spleen, by a previously underdetermined mechanism. The germinal centers in which FDC are situated produce a population of B cells that can recirculate between SLO. Therefore, we reasoned that B cells were ideal candidates by which prion dissemination between SLO may occur. Sphingosine 1-phosphate receptor (S1PR)1 stimulation controls the egress of T and B cells from SLO. S1PR1 signaling blockade sequesters lymphocytes within SLO, resulting in lymphopenia in the blood and lymph. We show that, in mice treated with the S1PR modulator FTY720 or with S1PR1 deficiency restricted to B cells, the dissemination of prions from the draining lymph node to nondraining SLO is blocked. These data suggest that B cells interacting with and acquiring surface proteins from FDC and recirculating between SLO via the blood and lymph mediate the initial propagation of prions from the draining lymphoid tissue to peripheral tissues.
Collapse
Affiliation(s)
- Simon W F Mok
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | | | | | | |
Collapse
|
11
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurological diseases that can be transmitted through a number of different routes. A wide range of mammalian species are affected by the disease. After peripheral exposure, some TSE agents accumulate in lymphoid tissues at an early stage of disease prior to spreading to the nerves and the brain. Much research has focused on identifying the cells and molecules involved in the transmission of TSE agents from the site of exposure to the brain and several crucial cell types have been associated with this process. The identification of the key cells that influence the different stages of disease transmission might identify targets for therapeutic intervention. This review highlights the involvement of mononuclear phagocytes in TSE disease. Current data suggest these cells may exhibit a diverse range of roles in TSE disease from the transport or destruction of TSE agents in lymphoid tissues, to mediators or protectors of neuropathology in the brain.
Collapse
|
12
|
Wathne GJ, Kissenpfennig A, Malissen B, Zurzolo C, Mabbott NA. Determining the role of mononuclear phagocytes in prion neuroinvasion from the skin. J Leukoc Biol 2012; 91:817-28. [PMID: 22389312 DOI: 10.1189/jlb.1211633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many prion diseases are acquired by peripheral exposure, and skin lesions are an effective route of transmission. Following exposure, early prion replication, upon FDCs in the draining LN is obligatory for the spread of disease to the brain. However, the mechanism by which prions are conveyed to the draining LN is uncertain. Here, transgenic mice were used, in which langerin(+) cells, including epidermal LCs and langerin(+) classical DCs, were specifically depleted. These were used in parallel with transgenic mice, in which nonepidermal CD11c(+) cells were specifically depleted. Our data show that prion pathogenesis, following exposure via skin scarification, occurred independently of LC and other langerin(+) cells. However, the depletion of nonepidermal CD11c(+) cells impaired the early accumulation of prions in the draining LN, implying a role for these cells in the propagation of prions from the skin. Therefore, together, these data suggest that the propagation of prions from the skin to the draining LN occurs via dermal classical DCs, independently of langerin(+) cells.
Collapse
|
13
|
Abstract
While chronic wasting disease (CWD) prion transmission, entry, and trafficking remain incompletely elucidated, natural exposure of the oral and/or nasal mucous membranes seems certain. Cervids commonly sustain minor lesions on oral mucous membranes that could have an impact on susceptibility to prion infection. To explore this potential cofactor, we studied cohorts of cervid PrP transgenic mice with or without superficial abrasions on the lingual mucosa to determine whether minor oral mucosa lesions may enhance susceptibility to CWD infections. Results demonstrated that minor lingual abrasions substantially facilitate CWD transmission, revealing a cofactor that may be significant in cervids and perhaps other species.
Collapse
|
14
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are inevitably lethal neurodegenerative diseases that affect humans and a large variety of animals. The infectious agent responsible for TSEs is the prion, an abnormally folded and aggregated protein that propagates itself by imposing its conformation onto the cellular prion protein (PrPC) of the host. PrPCis necessary for prion replication and for prion-induced neurodegeneration, yet the proximal causes of neuronal injury and death are still poorly understood. Prion toxicity may arise from the interference with the normal function of PrPC, and therefore, understanding the physiological role of PrPCmay help to clarify the mechanism underlying prion diseases. Here we discuss the evolution of the prion concept and how prion-like mechanisms may apply to other protein aggregation diseases. We describe the clinical and the pathological features of the prion diseases in human and animals, the events occurring during neuroinvasion, and the possible scenarios underlying brain damage. Finally, we discuss potential antiprion therapies and current developments in the realm of prion diagnostics.
Collapse
|
15
|
Eaton SL, Anderson MJ, Hamilton S, González L, Sales J, Jeffrey M, Reid HW, Rocchi MS, Chianini F. CD21 B cell populations are altered following subcutaneous scrapie inoculation in sheep. Vet Immunol Immunopathol 2009; 131:105-9. [PMID: 19327845 DOI: 10.1016/j.vetimm.2009.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/27/2009] [Accepted: 02/16/2009] [Indexed: 11/15/2022]
Abstract
In order to gain a better understanding of the pathogenesis of scrapie in sheep an experimental model was developed to characterise immune system cells in the minutes following inoculation with scrapie-brain homogenate. Four 1-year-old susceptible (ARQ/ARQ) sheep were inoculated via the subcutaneous route at four different peripheral lymph node (LNs) drainage sites, at specific time points, prior to euthanasia of the sheep. The LNs were removed post-mortem at 30, 90, 180 and 300min after inoculation. Flow cytometric triple-labelling was carried out on the LN cells and indicated that inoculation of scrapie-brain homogenate adjacent to a lymph node may delay or even inhibit the number of host CD21(+) B cells expressed within the first 5h. Immunohistochemistry was used to attempt detection of the abnormal form of prion protein (PrP(sc)) in draining LNs adjacent to inoculation sites, with negative results at those time points.
Collapse
|
16
|
Kratzel C, Krüger D, Beekes M. Relevance of the regional lymph node in scrapie pathogenesis after peripheral infection of hamsters. BMC Vet Res 2007; 3:22. [PMID: 17894852 PMCID: PMC2092421 DOI: 10.1186/1746-6148-3-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 09/25/2007] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The exact role of the lymphoreticular system in the spread of peripheral prion infections to the central nervous system still needs further elucidation. Against this background, the influence of the regional lymph node (Ln. popliteus) on the pathogenesis of scrapie was monitored in a hamster model of prion infection via the footpad. METHODS Surgical lymphadenectomy was carried out at different time points after infection, or prior to inoculation, in order to elucidate the impact of the lymph node on lethal neuroinvasion. RESULTS The Ln. popliteus did not show an influence on pathogenesis when a high dose of infectivity was administered. However, it was found to modulate the interval of time until the development of terminal scrapie in a subset of animals lymphadenectomized after low-dose infection. In additon, lymphadenectomy performed four weeks before inoculation prevented cerebral PrP(TSE) deposition and development of disease during the period of observation (314 days) in the majority of hamsters challenged with a very low dose of scrapie agent. CONCLUSION Our findings suggest the regional lymph node as a potentially facilitating or even essential factor for invasion of the brain after peripheral challenge with low doses of infectious scrapie agent. The invasive in vivo approach pursued in this study may be applied also to other animal species for further elucidating the involvement of lymphoid tissue in the pathogenesis of experimental and natural TSEs.
Collapse
Affiliation(s)
- Christine Kratzel
- Robert Koch-Institut, P24 – Transmissible Spongiforme Enzephalopathien Nordufer 20, D-Berlin 13353, Germany
| | - Dominique Krüger
- Robert Koch-Institut, P24 – Transmissible Spongiforme Enzephalopathien Nordufer 20, D-Berlin 13353, Germany
| | - Michael Beekes
- Robert Koch-Institut, P24 – Transmissible Spongiforme Enzephalopathien Nordufer 20, D-Berlin 13353, Germany
| |
Collapse
|