1
|
Prasad V, Abdullah M, Nordin F, Subha ST. Prevalence, causes and treatments of allergic rhinitis in Malaysia: a literature review. THE EGYPTIAN JOURNAL OF OTOLARYNGOLOGY 2022. [DOI: 10.1186/s43163-022-00361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractRecently, allergic rhinitis (AR) cases have been surging rapidly in many developing countries. However, the prevalence, risk factors and treatment modalities for AR within the Malaysian population have not been thoroughly evaluated. The present study aimed to provide a complete review of literature on allergic rhinitis in Malaysia. Available data indicated that the prevalence of AR varied across different age groups and regions in Malaysia, but there is an increasing trend among the younger population. The key contributing factor is exposure and sensitization towards several airborne allergens, mainly house dust mites, cat fur and fungi, with possible genetic predispositions. In addition, variations in the symptom severity may be associated with racial orientations. For management of the disease, standard prescriptions of conventional drugs (antihistamines, intranasal corticosteroids and nasal decongestants) remain as the treatment of choice. A small proportion of the native residents tend to resort to alternative approaches of self-healing through aromatherapy and natural food consumption such as tiger’s milk mushroom and Tualang honey. In conclusion, the increase in the cases of AR in Malaysia is due to environmental and genetic factors which requires proper medical intervention as treatment strategies. The utilization of holistic approaches requires further studies and clear understanding prior to their integration into the standard of care. There are still many gaps in the knowledge and management of allergic rhinitis which demands further attention from the research community.
Collapse
|
2
|
Association of HLA-DR1, HLA-DR13, and HLA-DR16 Polymorphisms with Systemic Lupus Erythematosus: A Meta-Analysis. J Immunol Res 2022; 2022:8140982. [PMID: 35469345 PMCID: PMC9034954 DOI: 10.1155/2022/8140982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives The principal purpose of this meta-analysis was to assess the association between HLA-DRB1 (HLA-DR1, HLA-DR13, and HLA-DR16) polymorphisms and SLE susceptibility. Methods We searched published case-control studies on the association between HLA-DRB1 polymorphisms and SLE susceptibility from PubMed and Web of Science databases. The pooled ORs with 95% CIs were utilized to estimate the strength of association of HLA-DR1, HLA-DR13, and HLA-DR16 polymorphisms and SLE susceptibility by fixed effect models. We also performed sensitivity analysis, trial sequential analysis, Begg's test, and Egg's test in this meta-analysis. Results A total of 18 studies were included in this meta-analysis. Overall analysis showed that HLA-DR1 and HLA-DR13 polymorphisms were associated with a decreased risk of SLE (OR = 0.76, 95% CI: 0.65-0.90, P < 0.01; OR = 0.58, 95% CI: 0.50-0.68, P < 0.01), and HLA-DR16 polymorphism was associated with an increased risk of SLE (OR = 1.70, 95% CI: 1.24-2.33, P < 0.01). In subgroup analysis of ethnicity, the results were as follows: HLA-DR1 polymorphism in Caucasians (OR = 0.76, 95% CI: 0.58-0.98,P = 0.04) and North Americans (OR = 0.64, 95% CI: 0.42-0.96,P = 0.03); HLA-DR13 polymorphism in Caucasians (OR = 0.62, 95% CI: 0.47-0.82,P < 0.01) and East Asians (OR = 0.44, 95% CI: 0.34-0.57,P < 0.01); and HLA-DR16 polymorphism in East Asians (OR = 2.62, 95% CI: 1.71-4.03,P < 0.01). Conclusions This meta-analysis showed that HLA-DR1 and HLA-DR13 are protective factors for SLE, and HLA-DR16 is a risk factor. Due to the limitations of this meta-analysis, the association between HLA-DRB1 polymorphisms and SLE susceptibility needs to be further researched before definitive conclusions are proved.
Collapse
|
3
|
Cao L, Zhang R, Wang Y, Hu X, Yong L, Li B, Ge H, Chen W, Zhen Q, Yu Y, Mao Y, Li Z, Fan W, Sun L. Fine Mapping Analysis of the MHC Region to Identify Variants Associated With Chinese Vitiligo and SLE and Association Across These Diseases. Front Immunol 2022; 12:758652. [PMID: 35082778 PMCID: PMC8784546 DOI: 10.3389/fimmu.2021.758652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
The important role of MHC in the pathogenesis of vitiligo and SLE has been confirmed in various populations. To map the most significant MHC variants associated with the risk of vitiligo and SLE, we conducted fine mapping analysis using 1117 vitiligo cases, 1046 SLE cases and 1693 healthy control subjects in the Han-MHC reference panel and 1000 Genomes Project phase 3. rs113465897 (P=1.03×10-13, OR=1.64, 95%CI =1.44–1.87) and rs3129898 (P=4.21×10-17, OR=1.93, 95%CI=1.66–2.25) were identified as being most strongly associated with vitiligo and SLE, respectively. Stepwise conditional analysis revealed additional independent signals at rs3130969(p=1.48×10-7, OR=0.69, 95%CI=0.60–0.79), HLA-DPB1*03:01 (p=1.07×10-6, OR=1.94, 95%CI=1.49–2.53) being linked to vitiligo and HLA-DQB1*0301 (P=4.53×10-7, OR=0.62, 95%CI=0.52-0.75) to SLE. Considering that epidemiological studies have confirmed comorbidities of vitiligo and SLE, we used the GCTA tool to analyse the genetic correlation between these two diseases in the HLA region, the correlation coefficient was 0.79 (P=5.99×10-10, SE=0.07), confirming their similar genetic backgrounds. Our findings highlight the value of the MHC region in vitiligo and SLE and provide a new perspective for comorbidities among autoimmune diseases.
Collapse
Affiliation(s)
- Lu Cao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Ruixue Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Yirui Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Xia Hu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Liang Yong
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Bao Li
- The Comprehensive Lab, College of Basic Medicine, Anhui Medical University, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Qi Zhen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Yafen Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Yiwen Mao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Zhuo Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Wencheng Fan
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Liangdan Sun
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Selvaraja M, Too CL, Tan LK, Koay BT, Abdullah M, Shah AM, Arip M, Amin-Nordin S. Human leucocyte antigens profiling in Malay female patients with systemic lupus erythematosus: are we the same or different? Lupus Sci Med 2022; 9:9/1/e000554. [PMID: 35105721 PMCID: PMC8808435 DOI: 10.1136/lupus-2021-000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE SLE is a heterogeneous autoimmune disease, in terms of clinical presentation, incidence and severity across diverse ethnic populations. We investigated the human leucocyte antigens (HLA) profile (ie, HLA-A, HLA-B and HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1) in Malaysian Malay female patients with SLE and determined the generalisability of the published HLA risk factors across different ethnic populations globally including Malaysia. METHODS One hundred Malay female patients with SLE were recruited between January 2016 and October 2017 from a nephrology clinic. All patients were genotyped for HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1 alleles using PCR sequence-specific oligonucleotides method on Luminex platform. A total of 951 HLA genotyped population-based Malay control subjects was used for association testing by means of OR with 95% CIs. RESULTS Our findings convincingly validated common associations between HLA-A*11 (OR=1.65, p=3.36×10-3, corrected P (Pc)=4.03×10-2) and DQB1*05:01 (OR=1.56, p=2.02×10-2, Pc=non-significant) and SLE susceptibility in the Malay population. In contrast, DQB1*03:01 (OR=0.51, p=4.06×10-4, Pc=6.50×10-3) were associated with decreased risk of SLE in Malay population. Additionally, we also detected novel associations of susceptibility HLA genes (ie, HLA-B*38:02, DPA1*02:02, DPB1*14:01) and protective HLA genes (ie, DPA1*01:03). When comparing the current data with data from previously published studies from Caucasian, African and Asian populations, DRB1*15 alleles, DQB1*03:01 and DQA1*01:02 were corroborated as universal susceptibility and protective genes. CONCLUSIONS This study reveals multiple HLA alleles associated with susceptibility and protection against risk of developing SLE in Malay female population with renal disorders. In addition, the published data from different ethnic populations together with our study further support the notion that the genetic effects from association with DRB1*15:01/02, DQB1*03:01 and DQA1*01:02 alleles are generalised to multiple ethnic populations of Caucasian, African and Asian descents.
Collapse
Affiliation(s)
- Malarvili Selvaraja
- Faculty of Pharmaceutical Sciences, No 1, Jalan Gading, UCSI Heights, Taman Connaught, UCSI University, Cheras, Kuala Lumpur, Malaysia.,Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chun Lai Too
- Immunogenetic Unit, Allergy and Immunology Research Centre, Ministry of Health Malaysia, National Institutes of Health Complex, Institute for Medical Research, Shah Alam, Selangor, Malaysia .,Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Lay Kim Tan
- Immunogenetic Unit, Allergy and Immunology Research Centre, Ministry of Health Malaysia, National Institutes of Health Complex, Institute for Medical Research, Shah Alam, Selangor, Malaysia
| | - Bee Tee Koay
- Transplantation Immunology Unit, Allergy and Immunology Research Centre, Ministry of Health Malaysia, National Institutes of Health Complex, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Maha Abdullah
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anim Md Shah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Masita Arip
- Allergy and Immunology Research Centre, Ministry of Health. National Institutes of Health Complex, Institute for Medical Research, Shah Alam, Selangor, Malaysia
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Hernández-Doño S, Jakez-Ocampo J, Márquez-García JE, Ruiz D, Acuña-Alonzo V, Lima G, Llorente L, Tovar-Méndez VH, García-Silva R, Granados J, Zúñiga J, Vargas-Alarcón G. Heterogeneity of Genetic Admixture Determines SLE Susceptibility in Mexican. Front Genet 2021; 12:701373. [PMID: 34413879 PMCID: PMC8369992 DOI: 10.3389/fgene.2021.701373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune inflammatory disorder for which Major Histocompatibility Complex (MHC) genes are well identified as risk factors. SLE patients present different clinical phenotypes, which are partly explained by admixture patterns variation among Mexicans. Population genetic has insight into the high genetic variability of Mexicans, mainly described through HLA gene studies with anthropological and biomedical importance. A prospective, case-control study was performed. In this study, we recruited 146 SLE patients, and 234 healthy individuals were included as a control group; both groups were admixed Mexicans from Mexico City. The HLA typing methods were based on Next Generation Sequencing and Sequence-Based Typing (SBT). The data analysis was performed with population genetic programs and statistical packages. The admixture estimations based on HLA-B and -DRB1 revealed that SLE patients have a higher Southwestern European ancestry proportion (48 ± 8%) than healthy individuals (30 ± 7%). In contrast, Mexican Native American components are diminished in SLE patients (44 ± 1%) and augmented in Healthy individuals (63 ± 4%). HLA alleles and haplotypes' frequency analysis found variants previously described in SLE patients from Mexico City. Moreover, a conserved extended haplotype that confers risk to develop SLE was found, the HLA-A∗29:02∼C∗16:01∼B∗44:03∼DRB1∗07:01∼DQB1∗02:02, pC = 0.02, OR = 1.41. Consistent with the admixture estimations, the origin of all risk alleles and haplotypes found in this study are European, while the protection alleles are Mexican Native American. The analysis of genetic distances supported that the SLE patient group is closer to the Southwestern European parental populace and farthest from Mexican Native Americans than healthy individuals. Heterogeneity of genetic admixture determines SLE susceptibility and protection in Mexicans. HLA sequencing is helpful to determine susceptibility alleles and haplotypes restricted to some populations.
Collapse
Affiliation(s)
- Susana Hernández-Doño
- Immunogenetics Division, Department of Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Jakez-Ocampo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Eduardo Márquez-García
- Molecular Biology Core Facility, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Daniela Ruiz
- Department of Dermatology, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Víctor Acuña-Alonzo
- Laboratory of Physiology, Biochemistry, and Genetics, Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Guadalupe Lima
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Víctor Hugo Tovar-Méndez
- Department of Endocrinology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rafael García-Silva
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julio Granados
- Immunogenetics Division, Department of Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | | |
Collapse
|
6
|
Singh B, Chamlagai D, Gurung J. HLA Profile of Kami Population Refutes the Earlier Proposition of Exclusive Closer Genetic Affinity of All the Gorkhas to Mongoloids. Hum Hered 2021; 85:1-6. [PMID: 33592612 DOI: 10.1159/000514220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Based on the HLA profile of Indian Gorkhas, Debnath and Chaudhuri (2006) proposed that Gorkhas are genetically closer to Mongoloids, and they may have originated from Mongolians or Tibetan stocks. However, the major limitation of the earlier study was that Gorkhas comprise 2 broad groups, i.e. Tibeto-Burmans and Indo-Aryans. Besides, Gorkhas have an assemblage of many sociocultural and linguistically distinct populations such as Rai, Magar, Limbu, Tamang, Newar, Bahun, Kami, and so on. Thus, the generalization of the findings on Gorkhas by considering them as a single homogenous population may not be free from biases. Therefore, the present study aims to understand the genetic affinity of a constituent population from the Gorkha community, i.e. Kami, based on HLA polymorphism. METHODS First field HLA typing was performed among 158 Kami individuals by PCR-SSP methods. RESULTS The most frequent genes observed were HLA-A*11, HLA-B*15, HLA-DRB1*15. The frequency of HLA-DRB1*15 reported here is the highest recorded among the North Indian population to date, which is a noteworthy finding of the study. The hierarchical cluster analysis and principal component analysis showed that the Kami population lies within the cluster of the Indian subcontinental population. CONCLUSION The study refutes the earlier proposition of exclusive belongingness of all the Gorkhas to Mongoloids.
Collapse
Affiliation(s)
- Bisu Singh
- Department of Zoology, School of Life Sciences, Sikkim University, Gangtok, India,
| | - Dependra Chamlagai
- Department of Zoology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Jiwan Gurung
- Department of Zoology, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
7
|
Selvaraja M, Chin VK, Abdullah M, Arip M, Amin-Nordin S. HLA-DRB1 *04 as a Risk Allele to Systemic Lupus Erythematosus and Lupus Nephritis in the Malay Population of Malaysia. Front Med (Lausanne) 2021; 7:598665. [PMID: 33644084 PMCID: PMC7902771 DOI: 10.3389/fmed.2020.598665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease afflicting multiple organs. Lupus nephritis (LN) is a serious complication of SLE and remains a major cause of mortality and morbidity. Curative therapy remains unavailable as etiology from genetic and environmental factors is still unclear. The present study was conducted to elucidate the link between HLA-DRB1 gene polymorphisms with SLE and LN through clinical and laboratory/biological presentations in a population of Malaysian Malay females with SLE. A total of 100 Malay female SLE patients inclusive of 70 SLE patients without LN and 30 patients with LN were included in this study. HLA-DRB1 allele examination in SLE patients was performed using PCR-SSO, and the alleles' frequencies were compared with 951 publicly available datasets representing Malay healthy controls in Malaysia. Cytokines and free radical levels were detected by ELISA and bead-based multiplexed Luminex assays. The association between HLA-DRB1 alleles with clinical and serological manifestations and immune mediators was analyzed using different statistical approaches whenever applicable. Our study showed that HLA-DRB1*0405, HLA-DRB1*1502, and HLA-DRB1*1602 were associated with the increased risk of SLE while HLA-DRB1*1201 and HLADRB1*1202 alleles were associated with a lower risk of SLE development. Furthermore, HLA-DRB1*04 showed significant association to LN and arthritis while HLA-DRB1*15 was significantly associated with oral ulcer in Malay SLE patients. Association analysis of HLA-DRB1*04 with clinical and biological factors revealed that HLA-DRB1*04 was significantly associated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) scores, anti-nuclear antibody (ANA), C-reactive protein (CRP) in the blood, and total protein in the urine. SLE carriers with the HLA-DRB1*04 allele were significantly correlated to the increased levels of cytokines (IFN-y, GM-CSF, IL-17F, IL-18, IL-21, and VEGF) and were significantly showing negative correlation to IL-5 and free radicals (LPO and catalase enzyme) levels compared to SLE carriers without HLA-DRB1*04 allele. The results suggested that disease severity in SLE may be determined by HLA-DRB1 alleles. The risk of HLA-DRB1*04 allele with LN was supported by the demonstration of an intense inflammatory response in Malay SLE patients in Malaysia. More studies inclusive of a larger and multiple SLE cohorts in the future are warranted to validate these findings.
Collapse
Affiliation(s)
- Malarvili Selvaraja
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Voon Kin Chin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Masita Arip
- Allergy and Immunology Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
8
|
Pang X, Qian J, Jin H, Zhang L, Lin L, Wang Y, Lei Y, Zhou Z, Li M, Zhang H. Durable benefit from immunotherapy and accompanied lupus erythematosus in pancreatic adenocarcinoma with DNA repair deficiency. J Immunother Cancer 2020; 8:jitc-2019-000463. [PMID: 32636238 PMCID: PMC7342819 DOI: 10.1136/jitc-2019-000463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Clinical trials showed limited benefit of anti-PD-1 (programmed cell death 1) monotherapy in pancreatic adenocarcinoma patients and immune-related adverse events caused by immune checkpoint inhibitors were rarely reported in pancreatic adenocarcinoma. Here, we report the first case of durable benefit along with systemic lupus erythematosus following immunotherapy in mismatch repair-proficient pancreatic cancer. Case presentation We describe a 57-year-old woman with resected stage ⅢB pancreatic cancer who underwent several lines of conventional chemotherapy after multiple lymph node metastases. When the disease progressed again, the patient received an off-label treatment with pembrolizumab (100 mg every 3 weeks). After four cycles of immunotherapy treatment, CA19-9 level rapidly decreased to normal and the lymph node metastases reduced dramatically in volume, demonstrating a partial response to the therapy by RECIST 1.1 criteria. She continued on pembrolizumab and a total of eight cycles of administration she had received. Her lesions showed consistent reduction in size even when the medication had been stopped. Actually the patient experienced durable benefit from anti-PD-1 therapy for more than 4 years and she is still in good condition without tumor relapses to date. Besides, she was diagnosed with systemic lupus erythematosus 2 months after the last dose of pembrolizumab. Molecular profiling identified two deleterious PALB2 alterations including a germline mutation (PALB2 c.3114–1G>A) and a somatic mutation (PALB2 c.2514+1G>C) in this patient, suggesting the potential of DNA homologous recombination deficiency. Multiplex immunohistochemistry and RNA-seq results revealed a brisk immune cell infiltration in her resected primary lesion. Additionally, humanleukocyte antigen (HLA) typing assay identified two previously reported systemic lupus erythematosus risk alleles HLA-DRB1*15:01 and HLA-DQB1*06:02 in this patient. Conclusions The deleterious mutations of PALB2 closely related to homologous recombination deficiency or alterations of DNA damage response and repair genes might be promising biomarkers for predicting efficacy of immune checkpoint inhibitors in pancreatic adenocarcinoma. Genetic correlation behind immunotherapy-induced systemic lupus erythematosus and associated mechanism remain to be elucidated.
Collapse
Affiliation(s)
- Xionghao Pang
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Juanjuan Qian
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Hua Jin
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lei Zhang
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Lin Lin
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yuli Wang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zeqiang Zhou
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Meixiang Li
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Henghui Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Xue K, Niu WQ, Cui Y. Association of HLA-DR3 and HLA-DR15 Polymorphisms with Risk of Systemic Lupus Erythematosus. Chin Med J (Engl) 2019; 131:2844-2851. [PMID: 30511687 PMCID: PMC6278195 DOI: 10.4103/0366-6999.246058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease under genetic control. Growing evidences support the genetic predisposition of HLA-DRB1 gene polymorphisms to SLE, yet the results are not often reproducible. The purpose of this study was to assess the association of two polymorphisms of HLA-DRB1 gene (HLA-DR3 and HLA-DR15) with the risk of SLE via a comprehensive meta-analysis. Methods: This study complied with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Case-control studies on HLA-DRB1 and SLE were searched from PubMed, Elsevier Science, Springer Link, Medline, and Cochrane Library database as of June 2018. Analysis was based on the random-effects model using STATA software version 14.0. Results: A total of 23 studies were retained for analysis, including 5261 cases and 9838 controls. Overall analysis revealed that HLA-DR3 and HLA-DR15 polymorphisms were associated with the significant risk of SLE (odds ratio [OR]: 1.60, 95% confidence interval (CI): 1.316–1.934, P = 0.129 and OR: 1.68, 95% CI: 1.334–2.112, P = 0.001, respectively). Subgroup analyses demonstrated that for both HLA-DR3 and HLA-DR15 polymorphisms, ethnicity was a possible source of heterogeneity. Specifically, HLA-DR3 polymorphism was not associated with SLE in White populations (OR: 1.60, 95% CI: 1.320–1.960, P = 0.522) and HLA-DR15 polymorphism in East Asian populations (OR: 1.65, 95% CI: 1.248–2.173, P = 0.001). In addition, source of control was another possible source for both HLA-DR3 and HLA-DR15 polymorphisms, with observable significance for HLA-DR3 in only population-based studies (OR: 1.65, 95% CI: 1.370–1.990, P = 0.244) and for HLA-DR15 in both population-based and hospital-based studies (OR: 1.38, 95% CI: 1.078–1.760, P = 0.123 and OR: 2.08, 95% CI: 1.738–2.490, P = 0.881, respectively). Conclusions: HLA-DRB1 gene may be a SLE-susceptibility gene, and it shows evident ethnic heterogeneity. Further prospective validations across multiple ethnical groups are warranted.
Collapse
Affiliation(s)
- Ke Xue
- Department of Dermatology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wen-Quan Niu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
10
|
Sun J, Yang C, Fei W, Zhang X, Sheng Y, Zheng X, Tang H, Yang W, Yang S, Fan X, Zhang X. HLA-DQβ1 amino acid position 87 and DQB1*0301 are associated with Chinese Han SLE. Mol Genet Genomic Med 2018; 6:541-546. [PMID: 29676044 PMCID: PMC6081216 DOI: 10.1002/mgg3.403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/06/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Several susceptibility loci have been identified associated with Chinese Han systemic lupus erythematosus (SLE). METHODS We carried out imputation of classical HLA alleles, amino acids and Single Nucleotide Polymorphisms (SNPs) across the MHC region in Chinese Han SLE genome-wide association study (GWAS) of mainland and Hong Kong populations for the first time using newly constructed Han-MHC reference panel followed by stepwise conditional analysis. RESULTS We mapped the most significant independent association to HLA-DQβ1 at amino acid position (Phe87, p = 7.807 × 10-17 ) and an independent association at HLA-DQB1*0301 (Pcondiational = 1.43 × 10-7 ). CONCLUSION Our study illustrates the value of population-specific HLA reference panel for fine-mapping causal variants in the MHC.
Collapse
Affiliation(s)
- Jingying Sun
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
| | - Chao Yang
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
| | - Wenmin Fei
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
| | - Xuelei Zhang
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
| | - Yujun Sheng
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefeiChina
| | - Xiaodong Zheng
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
| | - Huayang Tang
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefeiChina
| | - Wanling Yang
- LKS Faculty of MedicineDepartment of Paediatrics and Adolescent MedicineThe University of Hong KongPokfulamHong Kong
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefeiChina
| | - Xing Fan
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefeiChina
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at NO. 1 HospitalAnhui Medical UniversityHefeiChina
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefeiChina
- Department of DermatologyNo. 2 HospitalAnhui Medical UniversityHefeiChina
| |
Collapse
|
11
|
Niu Z, Zhang P, Tong Y. Value of HLA-DR genotype in systemic lupus erythematosus and lupus nephritis: a meta-analysis. Int J Rheum Dis 2014; 18:17-28. [PMID: 25546242 DOI: 10.1111/1756-185x.12528] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Human leukocyte antigen (HLA)-DRB1 allele polymorphisms have been reported to be associated with systemic lupus erythematosus (SLE) susceptibility, but the results of these previous studies have been inconsistent. The purpose of the present study was to systematically summarize and explore whether specific HLA-DRB1 alleles confer susceptibility or resistance to SLE and lupus nephritis. METHODS This review was guided by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach. A comprehensive search was made for articles from PubMed, Medline, Elsevier Science, Springer Link and Cochrane Library database. A total of 25 case-control studies on the relationship between gene polymorphism of HLA-DRB l and SLE were performed and data were analyzed and processed using Review Manager 5.2 and Stata 11.0. RESULTS At the allelic level, HLA-DR4, DR11 and DR14 were identified as protective factors for SLE (0.79 [0.69,0.91], P < 0.001; 0.72 [0.60, 0.85], P < 0.0001; 0.47 [0.59, 0.95], P < 0.05, respectively). HLA-DR3, DR9, DR15 were potent risk factors for SLE (1.88 [1.58, 2.23], P < 0.001; 1.24 [1.07, 1.45], P < 0.05; 1.25 [1.10, 1.43], P < 0.001, respectively). However, HLA-DR8 was not statistically significant between the SLE group and control group (OR, 1.11 [0.96, 1.30], P > 0.05). DR4 and 11 (OR, 0.55 [0.39, 0.79], P < 0.01; 0.60 [0.37, 0.96], P < 0.05, respectively) conferred a significant protective effect for lupus nephritis. DR3 and DR15 (OR, 2.00 [1.49, 2.70], P < 0.05; 1.60 [1.21, 2.12], P < 0.001, respectively) were at a high risk of developing lupus nephritis. HLA-DR8, DR9 and DR14 (OR, 1.47 [0.9, 2.33], P > 0.05; 0.90 [0.64, 1.27], P > 0.05; 0.61 [0.36, 1.03], P > 0.05, respectively) were not statistically significant between the lupus nephritis and control groups. CONCLUSIONS The HLA-DR4, DR11, DR14 alleles might be protective factors for SLE and HLA-DR3, DR9, DR15 were potent risk factors. In addition, HLA-DR4 and DR11 alleles might be protective factors for lupus nephritis and DR3 and DR15 suggest a risk role. These results proved that HLA-DR3, DR15, DR4 and DR11 might be identified as predictors for lupus nephritis and SLE.
Collapse
Affiliation(s)
- Zhili Niu
- Department of Laboratory Science, Renmin Hospital of Wuhan University, Wuhan, Hu Bei, China
| | | | | |
Collapse
|
12
|
Kim K, Bang SY, Lee HS, Okada Y, Han B, Saw WY, Teo YY, Bae SC. The HLA-DRβ1 amino acid positions 11–13–26 explain the majority of SLE–MHC associations. Nat Commun 2014; 5:5902. [DOI: 10.1038/ncomms6902] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/17/2014] [Indexed: 01/05/2023] Open
|
13
|
Caucasian origin of disease associated HLA haplotypes in chinese blood donors with IgA deficiency. J Clin Immunol 2014; 34:157-62. [PMID: 24402621 DOI: 10.1007/s10875-013-9983-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Caucasians with a prevalence of 1:600. However, the prevalence of IgAD is markedly lower in East Asian countries but no genetic studies have been performed on IgAD individuals in the Mongoloid population. METHODS We investigated the prevalence of IgAD in a large number of Chinese blood donors (n = 39,015) in Shanghai, China. We measured immunoglobulin class, IgG subclass and anti-IgA serum levels among the IgAD donors. These donors were subsequently tissue typed and the allele frequency was compared with the Shanghai bone marrow donor HLA registry. RESULTS Seventeen IgAD Chinese blood donors were identified, giving a prevalence of 1: 2,295. Two previously identified IgAD blood donor samples were added in the subsequent tests. Most IgAD donors had serum IgG levels above the normal range with no major IgG subclass deficiency and one donor was weakly positive for anti-IgA. Two-thirds of the Chinese IgAD donors carried Caucasian IgAD associated risk haplotypes, including DRB1*0301-DQB1*0201, DRB1*0701-DQB1*0202 and DRB1*0102-DQB1*0501, giving a significantly higher frequency of these haplotypes as compared to the Shanghai bone marrow donor HLA registry. CONCLUSIONS The prevalence of IgAD in Chinese in this study is markedly lower than in Caucasians. This is the first study to investigate the genetics of IgAD in the Mongoloid population and two-thirds of the Chinese IgAD donors showed a mixture of Caucasian IgAD risk haplotypes. The low prevalence of IgAD could potentially be due to the low frequency of the disease associated risk haplotypes in China.
Collapse
|
14
|
Jasmin R, Sockalingam S, Cheah TE, Goh KJ. Systemic lupus erythematosus in the multiethnic Malaysian population: disease expression and ethnic differences revisited. Lupus 2013; 22:967-71. [DOI: 10.1177/0961203313496299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives Ethnic differences in systemic lupus erythematosus (SLE) have been previously described in the multiethnic Malaysian population. However, there have since been many demographic and socioeconomic changes in the country. The aim of this study is to re-examine the clinical and immunological profiles of Malaysian SLE patients of different ethnic backgrounds. Methods Consecutive follow-up patients at the University Malaya Medical Centre (UMMC) from July 2010 until March 2011 were included in the study. Results The most common clinical manifestations were malar rash (61.3%), arthritis (52.3%), haematological disease (51.6%), oral ulcers (51%) and renal disease (40.6%). Ethnic Indians had fewer malar and discoid rashes but were at higher risk of arthritis, serositis, renal and neuropsychiatric disease compared to Malays and Chinese Malaysians. Antiphospholipid syndrome (APS) was less common in Chinese. A longer duration of SLE correlated with a lower SLEDAI score. Conclusion Overall, the spectrum disease expression was similar to the earlier Malaysian study but the frequency of the more severe disease manifestations, viz. renal, haematological, neuropsychiatric involvements and serositis, were lower. This study further emphasises differences primarily between ethnic Indians and the other races in Malaysia.
Collapse
Affiliation(s)
- R Jasmin
- University of Malaya, Department of Medicine, Malaysia
| | - S Sockalingam
- University of Malaya, Department of Medicine, Malaysia
| | - TE Cheah
- University of Malaya, Department of Medicine, Malaysia
| | - KJ Goh
- University of Malaya, Department of Medicine, Malaysia
| |
Collapse
|
15
|
Chai HC, Phipps ME, Othman I, Tan LP, Chua KH. HLA variants rs9271366 and rs9275328 are associated with systemic lupus erythematosus susceptibility in Malays and Chinese. Lupus 2012; 22:198-204. [PMID: 23257407 DOI: 10.1177/0961203312470183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Human leukocyte antigen (HLA) antigens and genes have long been reported associated with systemic lupus erythematosus (SLE) susceptibility in many populations. With the advance in technologies such as genome-wide association studies, many newly discovered SLE-associated single-nucleotide polymorphisms (SNPs) have been reported in recent years. These include HLA-DRB1/HLA-DQA1 rs9271366 and HLA-DQB1/HLA-DQA2 rs9275328. Our aim was to investigate these SNPs in a Malaysian SLE cohort. MATERIALS AND METHODS SNPs rs9271366 and rs9275328 were screened across 790 Malaysian citizens from three ethnic groups (360 patients and 430 healthy volunteers) by Taqman SNP genotyping assays. Allele and genotyping frequencies, Hardy-Weinberg equilibrium, Fisher's exact test and odds ratio were calculated for each SNP and ethnic group. Linkage disequilibrium and interaction between the two SNPs were also evaluated. RESULTS The minor allele G and its homozygous genotype GG of HLA-DRB1/HLA-DQA1 rs9271366 significantly increased the SLE susceptibility in Malaysian patients, including those of Malay and Chinese ethnicity (odds ratio (OR) > 1, p < 0.05). As for HLA-DQB1/HLA-DQA2 rs9275328, the minor allele T and the heterozygous genotype CT conferred protective effect to SLE in Malaysians, as well as in Malays and Chinese, by having OR < 1 and p value <0.05. Both SNPs did not show associations to SLE in Indians. D' and r (2) values for the two SNPs in LD analysis were 0.941 and 0.065, respectively, with haplotype GC and AT being significantly associated with SLE (p < 5.0 × 10(-4)) after 10,000 permutations were performed. The MDR test clustered the genotype combinations of GG and CC, and AG and CC of rs9271366 and rs9275328, accordingly, as high-risk group, and the two SNPs interacted redundantly by removing 1.96% of the entropy. CONCLUSIONS Our findings suggest that in addition to some classical HLA variants, rs9271366 and rs9275328 are additional polymorphisms worth considering in the Malaysian and possibly in a larger Asian SLE scenario.
Collapse
Affiliation(s)
- H C Chai
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University (Sunway Campus), Malaysia
| | | | | | | | | |
Collapse
|
16
|
Genetic risk factors of systemic lupus erythematosus in the Malaysian population: a minireview. Clin Dev Immunol 2011; 2012:963730. [PMID: 21941582 PMCID: PMC3176625 DOI: 10.1155/2012/963730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/20/2011] [Indexed: 12/27/2022]
Abstract
SLE is an autoimmune disease that is not uncommon in Malaysia. In contrast to Malays and Indians, the Chinese seem to be most affected. SLE is characterized by deficiency of body's immune response that leads to production of autoantibodies and failure of immune complex clearance. This minireview attempts to summarize the association of several candidate genes with risk for SLE in the Malaysian population and discuss the genetic heterogeneity that exists locally in Asians and in comparison with SLE in Caucasians. Several groups of researchers have been actively investigating genes that are associated with SLE susceptibility in the Malaysian population by screening possible reported candidate genes across the SLE patients and healthy controls. These candidate genes include MHC genes and genes encoding complement components, TNF, FcγR, T-cell receptors, and interleukins. However, most of the polymorphisms investigated in these genes did not show significant associations with susceptibility to SLE in the Malaysian scenario, except for those occurring in MHC genes and genes coding for TNF-α, IL-1β, IL-1RN, and IL-6.
Collapse
|