1
|
Bakinowska E, Bratborska AW, Kiełbowski K, Ćmil M, Biniek WJ, Pawlik A. The Role of Mesenchymal Stromal Cells in the Treatment of Rheumatoid Arthritis. Cells 2024; 13:915. [PMID: 38891047 PMCID: PMC11171813 DOI: 10.3390/cells13110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterised by the formation of a hyperplastic pannus, as well as cartilage and bone damage. The pathogenesis of RA is complex and involves broad interactions between various cells present in the inflamed synovium, including fibroblast-like synoviocytes (FLSs), macrophages, and T cells, among others. Under inflammatory conditions, these cells are activated, further enhancing inflammatory responses and angiogenesis and promoting bone and cartilage degradation. Novel treatment methods for RA are greatly needed, and mesenchymal stromal cells (MSCs) have been suggested as a promising new regenerative and immunomodulatory treatment. In this paper, we present the interactions between MSCs and RA-FLSs, and macrophages and T cells, and summarise studies examining the use of MSCs in preclinical and clinical RA studies.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | | | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Wojciech Jerzy Biniek
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| |
Collapse
|
2
|
Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol 2022; 18:415-429. [PMID: 35705856 DOI: 10.1038/s41584-022-00793-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by inflammation and destruction of bone and cartilage in affected joints. Autoimmune responses lead to increased osteoclastic bone resorption and impaired osteoblastic bone formation, the imbalance of which underlies bone loss in RA, which includes bone erosion, periarticular bone loss and systemic osteoporosis. The crucial role of osteoclasts in bone erosion has been demonstrated in basic studies as well as by the clinical efficacy of antibodies targeting RANKL, an important mediator of osteoclastogenesis. Synovial fibroblasts contribute to joint damage by stimulating both pro-inflammatory and tissue-destructive pathways. New technologies, such as single-cell RNA sequencing, have revealed the heterogeneity of synovial fibroblasts and of immune cells including T cells and macrophages. To understand the mechanisms of bone damage in RA, it is important to clarify how the immune system promotes the tissue-destructive properties of synovial fibroblasts and influences bone cells. The interaction between immune cells and fibroblasts underlies the imbalance between regulatory T cells and T helper 17 cells, which in turn exacerbates not only inflammation but also bone destruction, mainly by promoting RANKL expression on synovial fibroblasts. An improved understanding of the immune mechanisms underlying joint damage and the interplay between the immune system, synovial fibroblasts and bone will contribute to the identification of novel therapeutic targets in RA.
Collapse
Affiliation(s)
- Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Sisto M, Ribatti D, Lisi S. Cadherin Signaling in Cancer and Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413358. [PMID: 34948155 PMCID: PMC8704376 DOI: 10.3390/ijms222413358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cadherins mediate cell–cell adhesion through a dynamic process that is strongly dependent on the cellular context and signaling. Cadherin regulation reflects the interplay between fundamental cellular processes, including morphogenesis, proliferation, programmed cell death, surface organization of receptors, cytoskeletal organization, and cell trafficking. The variety of molecular mechanisms and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of clarifying the functions mediated by these versatile proteins. Altered cadherins expression is closely connected with tumorigenesis, epithelial–mesenchymal transition (EMT)-dependent fibrosis, and autoimmunity. We review the current understanding of how cadherins contribute to human health and disease, considering the mechanisms of cadherin involvement in diseases progression, as well as the clinical significance of cadherins as therapeutic targets.
Collapse
|
4
|
José Alcaraz M. New potential therapeutic approaches targeting synovial fibroblasts in rheumatoid arthritis. Biochem Pharmacol 2021; 194:114815. [PMID: 34715065 DOI: 10.1016/j.bcp.2021.114815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Synovial cells play a key role in joint destruction during chronic inflammation. In particular, activated synovial fibroblasts (SFs) undergo intrinsic alterations leading to an aggressive phenotype mediating cartilage destruction and bone erosion in rheumatoid arthritis (RA). Recent research has revealed a number of targets to control arthritogenic changes in SFs. Therefore, identification of SF phenotypes, control of epigenetic changes, modulation of cellular functions, or regulation of the activity of cation channels and different signaling pathways has been investigated. Although many of these approaches have shown efficacy in vitro and in animal models of RA, further research is needed to select the most relevant targets for drug development. This review is focused on the role of SFs as a potential strategy to discover novel therapeutic targets in RA aimed at preserving joint architecture and function.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, and Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
5
|
Cheng L, Wang Y, Wu R, Ding T, Xue H, Gao C, Li X, Wang C. New Insights From Single-Cell Sequencing Data: Synovial Fibroblasts and Synovial Macrophages in Rheumatoid Arthritis. Front Immunol 2021; 12:709178. [PMID: 34349767 PMCID: PMC8326910 DOI: 10.3389/fimmu.2021.709178] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology can analyze the transcriptome expression level of cells with high-throughput from the single cell level, fully show the heterogeneity of cells, and provide a new way for the study of multicellular biological heterogeneity. Synovitis is the pathological basis of rheumatoid arthritis (RA). Synovial fibroblasts (SFs) and synovial macrophages are the core target cells of RA, which results in the destruction of articular cartilage, as well as bone. Recent scRNA-seq technology has made breakthroughs in the differentiation and development of two types of synovial cells, identification of subsets, functional analysis, and new therapeutic targets, which will bring remarkable changes in RA treatment.
Collapse
Affiliation(s)
- Liyun Cheng
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Ding
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Chen X, Xiang H, Yu S, Lu Y, Wu T. Research progress in the role and mechanism of Cadherin-11 in different diseases. J Cancer 2021; 12:1190-1199. [PMID: 33442417 PMCID: PMC7797656 DOI: 10.7150/jca.52720] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cadherin is an important cell-cell adhesion molecule, which mediates intercellular adhesion through calcium dependent affinity interaction. Cadherin-11 (CDH11, OB-cadherin) is a member of cadherin family, and its gene is situated on chromosome 16q22.1. Increasing lines of researches have proved that CDH11 plays important roles in the occurrence and development of a lot of diseases, such as tumors, arthritis and so on. CDH11 often leads to promoter methylation inactivation, which can induce cancer cell apoptosis, suppress cell motility and invasion, and can inhibit cancer through Wnt/β-catenin, AKT/Rho A and NF-κB signaling pathways. This review focused on the current knowledge of CDH11, including its function and mechanism in different diseases. In this article, we aimed to have a more comprehensive and in-depth understanding of CDH11 and to provide new ideas for the treatment of some diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyu Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
Abstract
Tendons connect muscles to bones to transfer the forces necessary for movement. Cell-cell junction proteins, cadherins and connexins, may play a role in tendon development and injury. In this review, we begin by highlighting current understanding of how cell-cell junctions may regulate embryonic tendon development and differentiation. We then examine cell-cell junctions in postnatal tendon, before summarizing the role of cadherins and connexins in adult tendons. More information exists regarding the role of cell-cell junctions in the formation and homeostasis of other musculoskeletal tissues, namely cartilage and bone. Therefore, to inform future tendon studies, we include a brief survey of cadherins and connexins in chondrogenesis and osteogenesis, and summarize how cell-cell junctions are involved in some musculoskeletal tissue pathologies. An enhanced understanding of how cell-cell junctions participate in tendon development, maintenance, and disease will benefit future regenerative strategies.
Collapse
Affiliation(s)
| | - Jett B Murray
- Biological Engineering, University of Idaho, Moscow, ID
| | | |
Collapse
|
8
|
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F. Tertiary Lymphoid Structures: Autoimmunity Goes Local. Front Immunol 2018; 9:1952. [PMID: 30258435 PMCID: PMC6143705 DOI: 10.3389/fimmu.2018.01952] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.
Collapse
Affiliation(s)
- Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | | | - Charlotte Smith
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Sfikakis PP, Vlachogiannis NI, Christopoulos PF. Cadherin-11 as a therapeutic target in chronic, inflammatory rheumatic diseases. Clin Immunol 2017; 176:107-113. [DOI: 10.1016/j.clim.2017.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/17/2022]
|
10
|
Ganesan R, Rasool M. Fibroblast-like synoviocytes-dependent effector molecules as a critical mediator for rheumatoid arthritis: Current status and future directions. Int Rev Immunol 2017; 36:20-30. [PMID: 28102734 DOI: 10.1080/08830185.2016.1269175] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic-autoimmune-mediated disease characterized by synovial hyperplasia and progressive destruction of joint. Currently available biological agents and inhibitor therapy that specifically target tumor necrosis factor-α, interleukin 1β (IL-1β), IL-6, T cells, B cells, and subcellular molecules (p38 mitogen-activated protein kinase and janus kinase) cannot facilitate complete remission in all patients and are unable to cure the disease. Therefore, further potent therapeutic targets need to be identified for effective treatment and successful clinical outcomes in patients with RA. Scientific breakthroughs have brought new insights regarding fibroblast-like synoviocytes (FLS), a major constituent of the synovial hyperplasia. These play a pivotal role in RA invading cartilage and bone tissue. Currently there are no effective therapies available that specifically target these aggressive cells. Recent evidences indicate that FLS-dependent effector molecules (toll-like receptors, nodal effector molecules, hypoxia-inducible factor, and IL-17) have emerged as important mediators of RA. In this review, we discuss the pathological features and recent advances in understanding the role of FLS-dependent effector molecules in the disease onset of RA. Pharmacological inhibition of FLS-dependent effector molecules might be a promising option for FLS-targeted therapy in RA.
Collapse
Affiliation(s)
- Ramamoorthi Ganesan
- a Immunopathology Lab, School of Biosciences and Technology, VIT University , Vellore , Tamilnadu , India
| | - Mahaboobkhan Rasool
- a Immunopathology Lab, School of Biosciences and Technology, VIT University , Vellore , Tamilnadu , India
| |
Collapse
|
11
|
Barone F, Gardner DH, Nayar S, Steinthal N, Buckley CD, Luther SA. Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation. Front Immunol 2016; 7:477. [PMID: 27877173 PMCID: PMC5100680 DOI: 10.3389/fimmu.2016.00477] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are organized aggregates of lymphocytes, myeloid, and stromal cells that provide ectopic hubs for acquired immune responses. TLS share phenotypical and functional features with secondary lymphoid organs (SLO); however, they require persistent inflammatory signals to arise and are often observed at target sites of autoimmune disease, chronic infection, cancer, and organ transplantation. Over the past 10 years, important progress has been made in our understanding of the role of stromal fibroblasts in SLO development, organization, and function. A complex and stereotyped series of events regulate fibroblast differentiation from embryonic life in SLOs to lymphoid organ architecture observed in adults. In contrast, TLS-associated fibroblasts differentiate from postnatal, locally activated mesenchyme, predominantly in settings of inflammation and persistent antigen presentation. Therefore, there are critical differences in the cellular and molecular requirements that regulate SLO versus TLS development that ultimately impact on stromal and hematopoietic cell function. These differences may contribute to the pathogenic nature of TLS in the context of chronic inflammation and malignant transformation and offer a window of opportunity for therapeutic interventions in TLS associated pathologies.
Collapse
Affiliation(s)
- Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Nathalie Steinthal
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
12
|
Du Y, Tong Y, Mei W, Jia J, Niu M, Cao W, Lou W, Li S, Li Z, Stinson WA, Yuan H, Zhao W. A Truncated IL-17RC Peptide Ameliorates Synovitis and Bone Destruction of Arthritic Mice. Adv Healthc Mater 2016; 5:2911-2921. [PMID: 27709830 DOI: 10.1002/adhm.201600668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/07/2016] [Indexed: 01/11/2023]
Abstract
Peptide-based therapy, such as modified peptides, has attracted increased attention. IL-17 is a promising therapeutic target for autoimmune diseases, and levels of circulating bioactive IL-17 are associated with rheumatoid arthritis severity. In this study, a modified truncated IL-17RC is generated to ameliorate inflammation and bone destruction in arthritis. The truncated IL-17RC binds to both IL-17A and IL-17F with higher binding capacity compared to nonmodified IL-17RC. In addition, the truncated IL-17RC reduces the secretion of inflammatory and osteoclastogenic factors induced by IL-17A/F in vitro. Moreover, the administration of truncated IL-17RC dramatically improves symptoms of inflammation and inhibited bone destruction in collagen-induced arthritis mice. Collectively, these data demonstrate that modified truncated IL-17RC peptide may be a more effective treatment strategy in the simultaneous inhibition of both IL-17A and IL-17F signaling, whereas the existing agents neutralize IL-17A or IL-17F alone. These suggest that the truncated IL-17RC may be a potential candidate in the treatment of inflammatory associated bone diseases.
Collapse
Affiliation(s)
- Yuxuan Du
- Department of Immunology; School of Basic Medical Sciences; Capital Medical University; No. 10 Xitoutiao, You An Men Beijing 100069 P. R. China
| | - Yulong Tong
- Department of Immunology; School of Basic Medical Sciences; Capital Medical University; No. 10 Xitoutiao, You An Men Beijing 100069 P. R. China
| | - Wentong Mei
- Department of Immunology; School of Basic Medical Sciences; Capital Medical University; No. 10 Xitoutiao, You An Men Beijing 100069 P. R. China
| | - Junhui Jia
- Department of Blood transfusion; Aerospace Center Hospital; No.15, Yuquan Road Haidian District Beijing 100049 P. R. China
| | - Menglin Niu
- Department of Immunology; School of Basic Medical Sciences; Capital Medical University; No. 10 Xitoutiao, You An Men Beijing 100069 P. R. China
| | - Wei Cao
- Department of Immunology; School of Basic Medical Sciences; Capital Medical University; No. 10 Xitoutiao, You An Men Beijing 100069 P. R. China
| | - Weiwei Lou
- Department of Immunology; School of Basic Medical Sciences; Capital Medical University; No. 10 Xitoutiao, You An Men Beijing 100069 P. R. China
| | - Shentao Li
- Department of Immunology; School of Basic Medical Sciences; Capital Medical University; No. 10 Xitoutiao, You An Men Beijing 100069 P. R. China
| | - Zhanguo Li
- Department of Rheumatology & Immunology; Clinical Immunology Center; Peking University People's Hospital; No. 11 Xizhimen South Street Beijing 100044 P. R. China
| | - W. Alexander Stinson
- Department of Internal Medicine; Division of Rheumatology; University of Michigan; Ann Arbor MI 48109 USA
| | - Huihui Yuan
- Department of Immunology; School of Basic Medical Sciences; Capital Medical University; No. 10 Xitoutiao, You An Men Beijing 100069 P. R. China
| | - Wenming Zhao
- Department of Immunology; School of Basic Medical Sciences; Capital Medical University; No. 10 Xitoutiao, You An Men Beijing 100069 P. R. China
| |
Collapse
|
13
|
Smith MD, Wechalekar MD. The synovium. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
14
|
Sfikakis PP, Christopoulos PF, Vaiopoulos AG, Fragiadaki K, Katsiari C, Kapsimali V, Lallas G, Panayiotidis P, Korkolopoulou P, Koutsilieris M. Cadherin-11 mRNA transcripts are frequently found in rheumatoid arthritis peripheral blood and correlate with established polyarthritis. Clin Immunol 2014; 155:33-41. [PMID: 25173800 DOI: 10.1016/j.clim.2014.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023]
Abstract
Rheumatoid arthritis (RA) synovial fibroblasts hyperexpress the mesenchymal cadherin-11, which is involved also in tumor invasion/metastasis, whereas anti-cadherin-11 therapeutics prevent and reduce experimental arthritis. To test the hypothesis that cadherin-11 is aberrantly expressed in RA peripheral blood, 100 patients (15 studied serially) and 70 healthy controls were analyzed by real-time reverse transcription-PCR. Cadherin-11 mRNA transcripts were detected in 69.2% of moderately/severely active RA, versus 31.8% of remaining patients (p=0.001), versus 17.1% of controls (p<0.0001). Notably, cadherin-11 positivity correlated significantly and independently only with established (>1year) polyarthritis (>4 swollen tender joints), by multivariate logistic regression analysis including various possible clinical/laboratory factors. Rare cells of undefined nature, detected by flow cytometry following CD45(-) enrichment, strongly expressed surface cadherin-11 (estimated 10-50cells/ml of blood) in 5/6 patients with polyarticular established disease versus 1/6 patients with early RA. Studies on the potential pathogenic role of circulating cells expressing cadherin-11 in RA are warranted.
Collapse
Affiliation(s)
- P P Sfikakis
- Rheumatology Unit, First Department of Propaedeutic and Internal Medicine, Athens University Medical School, Greece.
| | - P F Christopoulos
- Rheumatology Unit, First Department of Propaedeutic and Internal Medicine, Athens University Medical School, Greece; Department of Physiology, Athens University Medical School, Greece
| | - A G Vaiopoulos
- Rheumatology Unit, First Department of Propaedeutic and Internal Medicine, Athens University Medical School, Greece; Department of Physiology, Athens University Medical School, Greece
| | - K Fragiadaki
- Rheumatology Unit, First Department of Propaedeutic and Internal Medicine, Athens University Medical School, Greece
| | - C Katsiari
- Rheumatology Unit, First Department of Propaedeutic and Internal Medicine, Athens University Medical School, Greece
| | - V Kapsimali
- Department of Microbiology, Athens University Medical School, Greece
| | - G Lallas
- Rheumatology Unit, First Department of Propaedeutic and Internal Medicine, Athens University Medical School, Greece
| | - P Panayiotidis
- Department of Microbiology, Athens University Medical School, Greece
| | - P Korkolopoulou
- Department of Pathology, Athens University Medical School, Greece
| | - M Koutsilieris
- Department of Physiology, Athens University Medical School, Greece
| |
Collapse
|
15
|
Agarwal SK. Integrins and cadherins as therapeutic targets in fibrosis. Front Pharmacol 2014; 5:131. [PMID: 24917820 PMCID: PMC4042084 DOI: 10.3389/fphar.2014.00131] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 01/14/2023] Open
Abstract
Fibrosis is the excessive deposition of extracellular matrix proteins into tissues leading to scar formation, disruption of normal tissue architecture and organ failure. Despite the large clinical impact of fibrosis, treatment options are limited. Adhesion molecules, in particular αvβ6 and α3β1 integrins and cadherin-11, have been demonstrated to be important mediators of tissue fibrosis. These data are reviewed here and provide the foundation for these molecules to be potential therapeutic targets for patients with fibrotic diseases.
Collapse
Affiliation(s)
- Sandeep K Agarwal
- Section of Allergy, Immunology, and Rheumatology, Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
16
|
Dou C, Yan Y, Dong S. Role of cadherin-11 in synovial joint formation and rheumatoid arthritis pathology. Mod Rheumatol 2014. [DOI: 10.3109/s10165-012-0806-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
IL-17 in the rheumatologist's line of sight. BIOMED RESEARCH INTERNATIONAL 2013; 2013:295132. [PMID: 23984335 PMCID: PMC3741932 DOI: 10.1155/2013/295132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022]
Abstract
Over the past decades, the identification of several new cytokines, including interleukin (IL)-17 and IL-23, and of new T helper cell subsets, including Th17 cells, has changed the vision of immunological processes. The IL-17/Th17 pathway plays a critical role during the development of inflammation and autoimmunity, and targeting this pathway has become an attractive strategy for a number of diseases. This review aims to describe the effects of IL-17 in the joint and its roles in the development of autoimmune and inflammatory arthritis. Furthermore, biotherapies targeting directly or indirectly IL-17 in inflammatory rheumatisms will be developed.
Collapse
|
18
|
Sun H, Xia Y, Wang L, Wang Y, Chang X. PSORS1C1 may be involved in rheumatoid arthritis. Immunol Lett 2013; 153:9-14. [PMID: 23769905 DOI: 10.1016/j.imlet.2013.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 11/26/2022]
Abstract
PSORS1C1/CDSN is a susceptibility gene for psoriasis. Both psoriasis and rheumatoid arthritis (RA) are autoimmune diseases. This study investigated whether PSORS1C1/CDSN was involved in RA. The TagSNPs rs3130983, rs3778638 and rs4959053 in the PSORS1C1/CDSN locus were shown to predict susceptibility to RA in two independent RA cohorts using a TaqMan genotyping assay and Sequenom MassARRAY. The expression of PSORS1C1/CDSN was determined with western blotting and ELISA. Cultured synovial fibroblasts from RA patients (RASF) were treated with anti-PSORS1C1 siRNA. The TaqMan genotyping assay demonstrated significant differences in the rs3130983 and rs4959053 allele frequencies (p = 0.002001 and 1.74E-07, respectively) and genotype frequencies (0.010503 and 1.07E-06, respectively) between the RA patients and controls. Sequenom MassARRAY results indicated that SNP rs3778638 allele frequency and genotype frequency were significantly associated with RA (p = 7.35E-05 and 0.000357, respectively). Western blotting revealed a significant increase in expression of PSORS1C1 in RA synovial tissues, and ELISA detected high levels of PSORS1C1 and CDSN in the blood of RA patients. PSORS1C1-siRNA treatment significantly decreased the PSORS1C1 expression, IL-17 level, Il-1β level and cell proliferation in RASF. These results suggest that PSORS1C1 might play an important role in the development of RA.
Collapse
Affiliation(s)
- Hongjun Sun
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, Shandong 250014, PR China
| | | | | | | | | |
Collapse
|
19
|
Role of cadherin-11 in synovial joint formation and rheumatoid arthritis pathology. Mod Rheumatol 2012; 23:1037-44. [PMID: 23239231 DOI: 10.1007/s10165-012-0806-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Cadherin-11 is a classic cadherin adhesion molecule that mediates homophilic cell-to-cell adhesion. Cadherin-11 is involved in the function of embryonic development, tissue morphogenesis, tumor invasion and metastasis, and signal transduction. This review summarizes the function of cadherin-11 in synovial joint formation and rheumatoid arthritis (RA), including its relative function with bone and cartilage development and growth plate, synovial, and tendon formation. The role of cadherin-11 in RA is also discussed, both in fibroblasts inflammation and fibroblast-like synoviocyte (FLSs) migration and invasion. The potential of anti-cadherin-11 therapy for RA is introduced in comparison with the other current RA therapies.
Collapse
|
20
|
Dong W, Zhu P. Functional niche of inflamed synovium for Th17-cell expansion and activation in rheumatoid arthritis: Implication to clinical therapeutics. Autoimmun Rev 2012; 11:844-51. [DOI: 10.1016/j.autrev.2012.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/23/2012] [Indexed: 12/14/2022]
|
21
|
Abstract
Chronic inflammation including autoimmune disease is an important risk factor for the development of osteoporosis. Receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) play a central role in osteoclast differentiation and function, and the molecular pathways by which M-CSF and RANKL induce osteoclast differentiation have been analyzed in detail. Proinflammatory cytokines directly or indirectly regulate osteoclastogenesis and bone resorption providing a link between inflammation and osteoporosis. Tumor necrosis factor-α, interleukin (IL)-1, IL-6, and IL-17 are the most important proinflammatory cytokines triggering inflammatory bone loss. Inhibition of these cytokines has provided potent therapeutic effects in the treatment of diseases such as rheumatoid arthritis. Further investigation is needed to understand the pathophysiology and to develop new strategies to treat inflammatory bone loss. This review summarizes new data on inflammatory bone loss obtained in 2011.
Collapse
Affiliation(s)
- Tobias Braun
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054, Erlangen, Germany
| | | |
Collapse
|
22
|
Pleiotropic targets: the problem of shared signaling circuitry in rheumatoid arthritis disease progression and protection. Future Med Chem 2012; 4:735-50. [PMID: 22530638 DOI: 10.4155/fmc.12.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The immune response is replete with feedback control at many levels. These protective circuits are even functional within the arthritic joint, tempering disease to varying extents. An optimal therapy would inhibit autoimmune processes while maintaining protective circuitry. However, many of the cells and proteins that serve as important mediators of disease progression also play an active role in these protective circuits. The hypothesis considered in this review is that the inadvertent inhibition of protective circuitry adversely affects efficacy. Conversely, if therapeutics can be designed, which avoid inhibiting known regulatory circuits, efficacy will be improved. Understanding where these processes share signaling molecules will be crucial to the development of the next generation of therapeutics. This review discusses three well-defined signal transduction cascades; IL-2, IFNγ and TNF-α, and demonstrate within two cell types, T cells and macrophages, how these cytokines may contribute both to protection and to disease progression.
Collapse
|