1
|
Kryvalap Y, Czyzyk J. The Role of Proteases and Serpin Protease Inhibitors in β-Cell Biology and Diabetes. Biomolecules 2022; 12:biom12010067. [PMID: 35053215 PMCID: PMC8774208 DOI: 10.3390/biom12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Regulation of the equilibrium between proteases and their inhibitors is fundamental to health maintenance. Consequently, developing a means of targeting protease activity to promote tissue regeneration and inhibit inflammation may offer a new strategy in therapy development for diabetes and other diseases. Specifically, recent efforts have focused on serine protease inhibitors, known as serpins, as potential therapeutic targets. The serpin protein family comprises a broad range of protease inhibitors, which are categorized into 16 clades that are all extracellular, with the exception of Clade B, which controls mostly intracellular proteases, including both serine- and papain-like cysteine proteases. This review discusses the most salient, and sometimes opposing, views that either inhibition or augmentation of protease activity can bring about positive outcomes in pancreatic islet biology and inflammation. These potential discrepancies can be reconciled at the molecular level as specific proteases and serpins regulate distinct signaling pathways, thereby playing equally distinct roles in health and disease development.
Collapse
Affiliation(s)
| | - Jan Czyzyk
- Correspondence: ; Tel.: +1-(612)-273-3495; Fax: +1-(612)-273-1142
| |
Collapse
|
2
|
Maicas N, van der Vlag J, Bublitz J, Florquin S, Bakker-van Bebber M, Dinarello CA, Verweij V, Masereeuw R, Joosten LA, Hilbrands LB. Human Alpha-1-Antitrypsin (hAAT) therapy reduces renal dysfunction and acute tubular necrosis in a murine model of bilateral kidney ischemia-reperfusion injury. PLoS One 2017; 12:e0168981. [PMID: 28235038 PMCID: PMC5325207 DOI: 10.1371/journal.pone.0168981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 12/11/2016] [Indexed: 11/18/2022] Open
Abstract
Several lines of evidence have demonstrated the anti-inflammatory and cytoprotective effects of alpha-1-antitrypsin (AAT), the major serum serine protease inhibitor. The aim of the present study was to investigate the effects of human AAT (hAAT) monotherapy during the early and recovery phase of ischemia-induced acute kidney injury. Mild renal ischemia-reperfusion (I/R) injury was induced in male C57Bl/6 mice by bilateral clamping of the renal artery and vein for 20 min. hAAT (80 mg/kg, Prolastin®) was administered daily intraperitoneally (i.p.) from day -1 until day 7 after surgery. Control animals received the same amount of human serum albumin (hAlb). Plasma, urine and kidneys were collected at 2h, 1, 2, 3, 8 and 15 days after reperfusion for histological and biochemical analysis. hAAT partially preserved renal function and tubular integrity after induction of bilateral kidney I/R injury, which was accompanied with reduced renal influx of macrophages and a significant decrease of neutrophil gelatinase-associated lipocalin (NGAL) protein levels in urine and plasma. During the recovery phase, hAAT significantly decreased kidney injury molecule-1 (KIM-1) protein levels in urine but showed no significant effect on renal fibrosis. Although the observed effect size of hAAT administration was limited and therefore the clinical relevance of our findings should be evaluated carefully, these data support the potential of this natural protein to ameliorate ischemic and inflammatory conditions.
Collapse
Affiliation(s)
- Nuria Maicas
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janin Bublitz
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandrine Florquin
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Charles A Dinarello
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Medicine, University of Colorado Health Sciences Center Denver, Colorado, United States of America
| | - Vivienne Verweij
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Roos Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Leo A Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Yang XF, Chen T, Ren LW, Yang L, Qi H, Li FR. Immunogenicity of insulin-producing cells derived from human umbilical cord mesenchymal stem cells. Exp Ther Med 2017; 13:1456-1464. [PMID: 28413492 PMCID: PMC5377284 DOI: 10.3892/etm.2017.4096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been considered as hypo-immunogenic and immunosuppressive. However, a thorough understanding of the immunological properties after MSC differentiation in vitro and in vivo has not been reached. We asked whether it would be immunogenic after differentiation or influenced by the immune microenvironment after transplantation. In different disease models, the immunological changes of MSCs after differentiation greatly varied, with contradicting results. In order to clarify this, we used a modified four-step induction method to induce human umbilical cord MSCs (hUCMSCs) to differentiate into insulin-producing cells (IPCs), and investigate the immunological changes after differentiation and immune reactions after transplantation into diabetic mice. We found that the induced IPCs are hypo-immunogenic, lacking HLA-DR, CD40 and CD80 expression. Of note, we observed immune cell infiltration to peritoneal cavity and left kidney capsule after local transplantation of induced IPCs. This indicated that hUCMSC-derived IPCs maintained hypo-immunogenic in vitro, but became immunogenic after transplanting to the host, possibly due to the changes of immune microenvironment and thereafter immunological enhancement and immune cell infiltration.
Collapse
Affiliation(s)
- Xiao-Fei Yang
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China.,School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, Guangdong 518020, P.R. China
| | - Tao Chen
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China.,School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, Guangdong 518020, P.R. China
| | - Li-Wei Ren
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China.,School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, Guangdong 518020, P.R. China
| | - Lu Yang
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China.,School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, Guangdong 518020, P.R. China
| | - Hui Qi
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, Guangdong 518020, P.R. China
| | - Fu-Rong Li
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong 518020, P.R. China.,School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
4
|
Surmiak M, Sanak M. Different forms of alpha-1 antitrypsin and neutrophil activation mediated by human anti-PR3 IgG antibodies. Pharmacol Rep 2016; 68:1276-1284. [PMID: 27689755 DOI: 10.1016/j.pharep.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/22/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND One of characteristic findings in granulomatosis with polyangiitis (GPA) is the presence of proteinase-3 (anti-PR3) specific antibodies. These antibodies can cause neutrophil activation, degranulation and generation of reactive oxygen species (ROS). Each of these inflammatory events can be suppressed by circulating alpha-1 antitrypsin (A1AT). A1AT is an acute phase protein increasing during inflammation, however, it may circulate as an inactive polymeric protein. The aim was to analyze how different types of A1AT can affect anti-PR3 mediated neutrophil activation. METHODS Granulocytes were obtained from the blood of healthy volunteers and purified by density gradient centrifugation. Effects of A1AT on IgG anti-PR3-mediated neutrophil activation were evaluated by stimulation of the cells with native IgG anti-PR3 antibodies in the presence of native or polymerized A1AT. Analyses of selected proinflammatory genes expression were performed using quantitative real-time. Flow cytometry was used to study the cell membrane PR3, its binding by anti-PR3 IgG, and production of ROS at presence A1AT. Neutrophil elastase complexes with A1AT were measured by ELISA. RESULTS Native A1AT inhibited formation of the immune complex of PR3 with anti-PR3 and anti-PR3-mediated neutrophil activation/ROS production. Protective effect of polymerized A1AT against these events was diminished at least fivefold. CONCLUSIONS Native A1AT can prevent pivotal events of neutrophils' activation by anti-PR3 IgG, the main autoantibody in anti-PR3 dependent vasculitis. Inhibitory properties of polymerized A1AT, decreased plausibly due to a loss of anti-protease function, can explain more severe course of the disease in subjects with deficiency of A1AT.
Collapse
Affiliation(s)
- Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
5
|
Wanner A, Sandhaus RA. Alpha-1 Antitrypsin as a Therapeutic Agent for Conditions not Associated with Alpha-1 Antitrypsin Deficiency. ALPHA-1 ANTITRYPSIN 2016. [PMCID: PMC7121596 DOI: 10.1007/978-3-319-23449-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alpha-1 antitrypsin is a positive acute phase reactant whose serum level rises in response to inflammatory stress, presumably to balance pro-inflammatory processes. In addition to its serine protease inhibitory action, alpha-1 antitrypsin exhibits broader anti-inflammatory and immunomodulatory activity, and increasing its serum concentration by the administration of exogenous alpha-1 antitrypsin to above-normal levels potentially could be therapeutic in conditions other than alpha-1 antitrypsin deficiency. In vitro observations, studies in animal models and in some instances early human trials suggest that intravenous or inhaled alpha-1 antitrypsin has beneficial effects in type 1 diabetes, viral infections, graft-versus-host disease, cystic fibrosis, and alpha-1 antitrypsin-replete chronic obstructive pulmonary disease among others. While the results of pivotal clinical trials have not been reported to date, new indications for alpha-1 antitrypsin therapy are likely to emerge in the future based on currently available scientific data.
Collapse
Affiliation(s)
- Adam Wanner
- University of Miami Miller School of Medicine, Miami, Florida USA
| | | |
Collapse
|
6
|
Xia F, Cao H, Du J, Liu X, Liu Y, Xiang M. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model. J Leukoc Biol 2015; 99:1131-40. [PMID: 26667474 DOI: 10.1189/jlb.3a0815-371rrr] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022] Open
Abstract
The regenerating islet-derived gene was first isolated in regenerated pancreas tissues, greatly contributing to β cell regeneration. It is an anti-inflammatory in response to cellular stress. This encouraged us to investigate the exact role of a novel member of Reg family, regenerating islet-derived gene γ, in type 1 diabetes of nonobese-diabetic mice. For this, Reg3g gene was overexpressed in pancreatic islets, and conferred beneficial effects on β cell regeneration through activating the Janus kinase 2/signal transducer and activator of transcription 3/nuclear factor κB signaling pathway. Lentiviral vector-encoding regenerating islet-derived gene γ treatment also decreased lymphocyte infiltrates of the intra-islet and peri-islet by inducing both differentiation of regulatory T cell and immature dendritic cells of tolerogenic properties, which attenuated autoimmunity. This treatment further contributed to rebalanced levels of type 1/2 helper T cell cytokines and elevated α1-antitrypsin levels in the serum. These results were not observed in phosphate-buffered saline-treated mice or in lentivirus-control mice. We have shown, for the first time, to our knowledge, that regenerating islet-derived gene γ promotes β cell regeneration and preserves β cells from autoimmunity damage by increasing regulatory T cell differentiation and inducing tolerated dendritic cells. This regenerating islet-derived gene γ infusion could probably be developed into an optimal gene therapy for the prevention and reversal of type 1 diabetes.
Collapse
Affiliation(s)
- Fei Xia
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Hui Cao
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jiao Du
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Xiulan Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yang Liu
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
7
|
Interaction of dendritic cells and T lymphocytes for the therapeutic effect of Dangguiliuhuang decoction to autoimmune diabetes. Sci Rep 2015; 5:13982. [PMID: 26358493 PMCID: PMC4566122 DOI: 10.1038/srep13982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022] Open
Abstract
In traditional Chinese medicine (TCM), Dangguiliuhuang decoction (DGLHD) is an effective treatment of autoimmune diabetes. Here, we studied potential anti-diabetic mechanisms of DGLHD in a non-obese diabetic (NOD) mouse model. In vitro, DGLHD and individual active ingredients enhanced glucose uptake in HepG2 cells, inhibited T lymphocyte proliferation, and suppressed dendritic cells (DCs) function. In vivo, DGLHD significantly inhibited insulitis, delayed the onset and development of diabetes, promoted insulin secretion and sensitivity, and balanced partially normalized Th1 and Th2 cytokines in NOD mice. In addition, DGLHD increased α1-antitrypsin (AAT-1), Bcl-2, and CyclinD1, and decreased Bax levels in pancreas, spleen, thymus, DCs, and a NIT-1 cell line, all consistent with protecting and repairing islet β cell. More detailed studies indicated that DGLHD regulated the maturation and function of DCs, decreased the percentage of merocytic dendritic cells (mcDCs) subset, and increased programmed death ligand-1 (PD-L1) expression in DCs. DGLHD also impeded T lymphocyte proliferation and promoted regulatory T cells (Tregs) differentiation in vivo. A JAK2-STAT3-dependent pathway was involved in the suppression by DGLHD of interactions between DCs and T lymphocyte. The experiments implicated five active ingredients in specific anti-diabetic actions of DGLHD. The results demonstrated the reasonable composition of the formula.
Collapse
|
8
|
Lockett AD, Petrusca DN, Justice MJ, Poirier C, Serban KA, Rush NI, Kamocka M, Predescu D, Predescu S, Petrache I. Scavenger receptor class B, type I-mediated uptake of A1AT by pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L425-34. [PMID: 26092999 DOI: 10.1152/ajplung.00376.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to exerting a potent anti-elastase function, α-1 antitrypsin (A1AT) maintains the structural integrity of the lung by inhibiting endothelial inflammation and apoptosis. A main serpin secreted in circulation by hepatocytes, A1AT requires uptake by the endothelium to achieve vasculoprotective effects. This active uptake mechanism, which is inhibited by cigarette smoking (CS), involves primarily clathrin- but also caveola-mediated endocytosis and may require active binding to a receptor. Because circulating A1AT binds to high-density lipoprotein (HDL), we hypothesized that scavenging receptors are candidates for endothelial uptake of the serpin. Although the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) internalizes only elastase-bound A1AT, the scavenger receptor B type I (SR-BI), which binds and internalizes HDL and is modulated by CS, may be involved in A1AT uptake. Transmission electron microscopy imaging of colloidal gold-labeled A1AT confirmed A1AT endocytosis in both clathrin-coated vesicles and caveolae in endothelial cells. SR-BI immunoprecipitation identified binding to A1AT at the plasma membrane. Pretreatment of human lung microvascular endothelial cells with SR-B ligands (HDL or LDL), knockdown of SCARB1 expression, or neutralizing SR-BI antibodies significantly reduced A1AT uptake by 30-50%. Scarb1 null mice exhibited decreased A1AT lung content following systemic A1AT administration and reduced lung anti-inflammatory effects of A1AT supplementation during short-term CS exposure. In turn, A1AT supplementation increased lung SR-BI expression and modulated circulating lipoprotein levels in wild-type animals. These studies indicate that SR-BI is an important mediator of A1AT endocytosis in pulmonary endothelium and suggest a cross talk between A1AT and lipoprotein regulation of vascular functions.
Collapse
Affiliation(s)
- Angelia D Lockett
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana;
| | - Daniela N Petrusca
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Matthew J Justice
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Christophe Poirier
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Karina A Serban
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Natalia I Rush
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Malgorzata Kamocka
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Dan Predescu
- Department of Pharmacology, Rush University, Chicago, Illinois; and
| | - Sanda Predescu
- Department of Pharmacology, Rush University, Chicago, Illinois; and
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana; The Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
9
|
Yang L, Liao YT, Yang XF, Reng LW, Qi H, Li FR. Immune protective effect of human alpha-1-antitrypsin gene during β cell transplantation in diabetic mice. Immunol Res 2015; 62:71-80. [DOI: 10.1007/s12026-015-8636-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Fleixo-Lima G, Ventura H, Medini M, Bar L, Strauss P, Lewis EC. Mechanistic evidence in support of alpha1-antitrypsin as a therapeutic approach for type 1 diabetes. J Diabetes Sci Technol 2014; 8:1193-203. [PMID: 25155845 PMCID: PMC4455465 DOI: 10.1177/1932296814547096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Utilizing endogenous molecules as a therapeutic approach is almost unequivocally superior to engineered or synthetic molecules. However, one rarely encounters an anti-inflammatory, cytoprotective, immunomodulatory and wound-healing molecule that has been available for use for decades. α1-antitrypsin (AAT), a circulating protein that rises more than 4-fold during acute-phase responses, has been administered for a rare genetic deficiency at large doses, for life. Aside from advances in insulin therapy, medical research in type 1 diabetes (T1D) has predominantly focused on autoimmunity--controlling the adaptive immune response. However, it is now appreciated that one may need to extend therapeutic targets to incorporate immune responses to cellular injury, as well as promote selective control over excessive inflammation and early tissue repair. Recent data suggest that tissue damage related to lung and renal ischemia-reperfusion injury, stroke, and ischemic heart disease is markedly reduced by AAT. AAT was also shown to protect pancreatic islet β cells at multiple levels. Unlike classic immunosuppressive and anti-inflammatory approaches, AAT exerts some antiviral and antibacterial activities. Based on these and other reports, AAT is under evaluation for treatment of T1D patients in multiple clinical trials. Initial results suggest that AAT therapy could potentially improve insulin production without adverse effects. Up to 50% of individuals displayed improved islet function. It is a rare occurrence in T1D research that a therapy is offered that holds a safety profile equal or superior to that of insulin alone. While placebo-controlled trials are ongoing, the mechanism(s) behind these favorable activities of AAT are still being explored.
Collapse
Affiliation(s)
- Gabriella Fleixo-Lima
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Hilla Ventura
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Michal Medini
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | | | - Eli C Lewis
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
11
|
Immunogenicity of allogeneic mesenchymal stem cells transplanted via different routes in diabetic rats. Cell Mol Immunol 2014; 12:444-55. [PMID: 25242276 DOI: 10.1038/cmi.2014.70] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 02/06/2023] Open
Abstract
Due to their hypoimmunogenicity and unique immunosuppressive properties, mesenchymal stem cells (MSCs) are considered one of the most promising adult stem cell types for cell therapy. Although many studies have shown that MSCs exert therapeutic effects on several acute and subacute conditions, their long-term effects are not confirmed in chronic diseases. Immunogenicity is a major limitation for cell replacement therapy, and it is not well understood in vivo. We evaluated the immunogenicity of allogeneic MSCs in vivo by transplanting MSCs into normal and diabetic rats via the tail vein or pancreas and found that MSCs exhibited low immunogenicity in normal recipients and even exerted some immunosuppressive effects in diabetic rats during the initial phase. However, during the later stage in the pancreas group, MSCs expressed insulin and MHC II, eliciting a strong immune response in the pancreas. Simultaneously, the peripheral blood mononuclear cells in the recipients in the pancreas group were activated, and alloantibodies developed in vivo. Conversely, in the tail vein group, MSCs remained immunoprivileged and displayed immunosuppressive effects in vivo. These data indicate that different transplanting routes and microenvironments can lead to divergent immunogenicity of MSCs.
Collapse
|
12
|
Wang Y, Yan HJ, Zhou SY, Wang YS, Qi H, Deng CY, Li FR. The immunoregulation effect of alpha 1-antitrypsin prolong β-cell survival after transplantation. PLoS One 2014; 9:e94548. [PMID: 24722487 PMCID: PMC3983209 DOI: 10.1371/journal.pone.0094548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
Islet transplantation has considerable potential as a cure for diabetes. However, the difficulties that arise from inflammation and the immunological rejection of transplants must be addressed for islet transplantation to be successful. Alpha 1-antitrypsin (AAT) inhibits the damage on β cells caused by inflammatory reactions and promotes β-cell survival and proliferation. This protein also induces specific immune tolerance to transplanted β cells. However, whether the expression of AAT in β cells themselves could eliminate or decrease immunological rejection of transplants is not clear. Therefore, we established a β cell line (NIT-hAAT) that stably expresses human AAT. Interestingly, in a cytotoxic T lymphocyte (CTL)-killing assay, we found that hAAT reduced apoptosis and inflammatory cytokine production in NIT-1 cells and regulated the Th1/Th2 cytokine balance in vitro. In vivo transplantation of NIT-hAAT cells into mice with diabetes showed hAAT inhibited immunological rejection for a short period of time and increased the survival of transplanted β cells. This study demonstrated that hAAT generated remarkable immunoprotective and immunoregulation effects in a model of β cell islet transplantation for diabetes model.
Collapse
Affiliation(s)
- Yun Wang
- Department of Cardiac Surgery, General Hospital of Ningxia Medical University, Yinchuan, PR China
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China
| | - Hong-Jie Yan
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China
| | - Shu-Yan Zhou
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China
| | - Yun-Shuang Wang
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China
| | - Hui Qi
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China
| | - Chun-Yan Deng
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China
| | - Fu-Rong Li
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China
- Shenzhen Institution of Gerontology, Shenzhen, PR China
- * E-mail:
| |
Collapse
|
13
|
Vantyghem MC, Defrance F, Quintin D, Leroy C, Raverdi V, Prévost G, Caiazzo R, Kerr-Conte J, Glowacki F, Hazzan M, Noel C, Pattou F, Diamenord ASB, Bresson R, Bourdelle-Hego MF, Cazaubiel M, Cordonnier M, Delefosse D, Dorey F, Fayard A, Fermon C, Fontaine P, Gillot C, Haye S, Le Guillou AC, Karrouz W, Lemaire C, Lepeut M, Leroy R, Mycinski B, Parent E, Siame C, Sterkers A, Torres F, Verier-Mine O, Verlet E, Desailloud R, Dürrbach A, Godin M, Lalau JD, Lukas-Croisier C, Thervet E, Toupance O, Reznik Y, Westeel PF. Treating diabetes with islet transplantation: lessons from the past decade in Lille. DIABETES & METABOLISM 2014; 40:108-19. [PMID: 24507950 DOI: 10.1016/j.diabet.2013.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/29/2013] [Accepted: 10/07/2013] [Indexed: 01/10/2023]
Abstract
Type 1 diabetes (T1D) is due to the loss of both beta-cell insulin secretion and glucose sensing, leading to glucose variability and a lack of predictability, a daily issue for patients. Guidelines for the treatment of T1D have become stricter as results from the Diabetes Control and Complications Trial (DCCT) demonstrated the close relationship between microangiopathy and HbA1c levels. In this regard, glucometers, ambulatory continuous glucose monitoring, and subcutaneous and intraperitoneal pumps have been major developments in the management of glucose imbalance. Besides this technological approach, islet transplantation (IT) has emerged as an acceptable safe procedure with results that continue to improve. Research in the last decade of the 20th century focused on the feasibility of islet isolation and transplantation and, since 2000, the success and reproducibility of the Edmonton protocol have been proven, and the mid-term (5-year) benefit-risk ratio evaluated. Currently, a 5-year 50% rate of insulin independence can be expected, with stabilization of microangiopathy and macroangiopathy, but the possible side-effects of immunosuppressants, limited availability of islets and still limited duration of insulin independence restrict the procedure to cases of brittle diabetes in patients who are not overweight or have no associated insulin resistance. However, various prognostic factors have been identified that may extend islet graft survival and reduce the number of islet injections required; these include graft quality, autoimmunity, immunosuppressant regimen and non-specific inflammatory reactions. Finally, alternative injection sites and unlimited sources of islets are likely to make IT a routine procedure in the future.
Collapse
Affiliation(s)
- M-C Vantyghem
- Endocrinology and Metabolism Department, Inserm U599, Lille University Hospital, C.-Huriez Hospital, 1, rue Polonovski, 59037 Lille cedex, France; Diabetes Biotherapy, Inserm U859, Lille University Hospital, Lille, France.
| | - F Defrance
- Endocrinology and Metabolism Department, Inserm U599, Lille University Hospital, C.-Huriez Hospital, 1, rue Polonovski, 59037 Lille cedex, France
| | - D Quintin
- Endocrinology and Metabolism Department, Inserm U599, Lille University Hospital, C.-Huriez Hospital, 1, rue Polonovski, 59037 Lille cedex, France
| | - C Leroy
- Endocrinology and Metabolism Department, Inserm U599, Lille University Hospital, C.-Huriez Hospital, 1, rue Polonovski, 59037 Lille cedex, France
| | - V Raverdi
- Endocrine Surgery Department, Lille University Hospital, Lille, France
| | - G Prévost
- Endocrinology Department, Rouen University Hospital, Rouen, France
| | - R Caiazzo
- Endocrine Surgery Department, Lille University Hospital, Lille, France
| | - J Kerr-Conte
- Diabetes Biotherapy, Inserm U859, Lille University Hospital, Lille, France
| | - F Glowacki
- Nephrology Department, Lille University Hospital, Lille, France
| | - M Hazzan
- Nephrology Department, Lille University Hospital, Lille, France
| | - C Noel
- Nephrology Department, Lille University Hospital, Lille, France
| | - F Pattou
- Diabetes Biotherapy, Inserm U859, Lille University Hospital, Lille, France; Endocrine Surgery Department, Lille University Hospital, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|