1
|
Yan SLS, Hwang IY, Kamenyeva O, Kabat J, Kim JS, Park C, Kehrl JH. Unrestrained Gα i2 Signaling Disrupts Neutrophil Trafficking, Aging, and Clearance. Front Immunol 2021; 12:679856. [PMID: 34135907 PMCID: PMC8202015 DOI: 10.3389/fimmu.2021.679856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/11/2021] [Indexed: 01/13/2023] Open
Abstract
Neutrophil trafficking, homeostatic and pathogen elicited, depends upon chemoattractant receptors triggering heterotrimeric G-protein Gαiβγ signaling, whose magnitude and kinetics are governed by RGS protein/Gαi interactions. RGS proteins typically limit Gαi signaling by reducing the duration that Gαi subunits remain GTP bound and able to activate downstream effectors. Yet how in totality RGS proteins shape neutrophil chemoattractant receptor activated responses remains unclear. Here, we show that C57Bl/6 mouse neutrophils containing a genomic knock-in of a mutation that disables all RGS protein-Gαi2 interactions (G184S) cannot properly balance chemoattractant receptor signaling, nor appropriately respond to inflammatory insults. Mutant neutrophils accumulate in mouse bone marrow, spleen, lung, and liver; despite neutropenia and an intrinsic inability to properly mobilize from the bone marrow. In vitro they rapidly adhere to ICAM-1 coated plates, but in vivo they poorly adhere to blood vessel endothelium. Those few neutrophils that cross blood vessels and enter tissues migrate haphazardly. Following Concanavalin-A administration fragmented G184S neutrophils accumulate in liver sinusoids leading to thrombo-inflammation and perivasculitis. Thus, neutrophil Gαi2/RGS protein interactions both limit and facilitate Gαi2 signaling thereby promoting normal neutrophil trafficking, aging, and clearance.
Collapse
Affiliation(s)
- Serena Li-Sue Yan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Il-Young Hwang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Olena Kamenyeva
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Juraj Kabat
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ji Sung Kim
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Jayachandran R, Gumienny A, Bolinger B, Ruehl S, Lang MJ, Fucile G, Mazumder S, Tchang V, Woischnig AK, Stiess M, Kunz G, Claudi B, Schmaler M, Siegmund K, Li J, Dertschnig S, Holländer G, Medina E, Karrer U, Moshous D, Bumann D, Khanna N, Rossi SW, Pieters J. Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity. Immunity 2019; 50:152-165.e8. [PMID: 30611611 DOI: 10.1016/j.immuni.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts.
Collapse
Affiliation(s)
| | | | | | | | | | - Geoffrey Fucile
- Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, Basel, Switzerland
| | | | | | - Anne-Kathrin Woischnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | | | - Mathias Schmaler
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | - Simone Dertschnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - George Holländer
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eva Medina
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Urs Karrer
- Division of Infectious Diseases and Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France and APHP Hôpital Universitaire Necker-Enfants Malades, Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Paris, France
| | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Division of Infectious Diseases, University and University Hospital of Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Mori M, Mode R, Pieters J. From Phagocytes to Immune Defense: Roles for Coronin Proteins in Dictyostelium and Mammalian Immunity. Front Cell Infect Microbiol 2018; 8:77. [PMID: 29623258 PMCID: PMC5874285 DOI: 10.3389/fcimb.2018.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Microbes have interacted with eukaryotic cells for as long as they have been co-existing. While many of these interactions are beneficial for both the microbe as well as the eukaryotic cell, several microbes have evolved into pathogenic species. For some of these pathogens, host cell invasion results in irreparable damage and thus host cell destruction, whereas others use the host to avoid immune detection and elimination. One of the latter pathogens is Mycobacterium tuberculosis, arguably one of the most notorious pathogens on earth. In mammalian macrophages, M. tuberculosis manages to survive within infected macrophages by avoiding intracellular degradation in lysosomes using a number of different strategies. One of these is based on the recruitment and phagosomal retention of the host protein coronin 1, that is a member of the coronin protein family and a mammalian homolog of coronin A, a protein identified in Dictyostelium. Besides mediating mycobacterial survival in macrophages, coronin 1 is also an important regulator of naïve T cell homeostasis. How, exactly, coronin 1 mediates its activity in immune cells remains unclear. While in lower eukaryotes coronins are involved in cytoskeletal regulation, the functions of the seven coronin members in mammals are less clear. Dictyostelium coronins may have maintained multiple functions, whereas the mammalian coronins may have evolved from regulators of the cytoskeleton to modulators of signal transduction. In this minireview, we will discuss the different studies that have contributed to understand the molecular and cellular functions of coronin proteins in mammals and Dictyostelium.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Coronin 1A, a novel player in integrin biology, controls neutrophil trafficking in innate immunity. Blood 2017; 130:847-858. [PMID: 28615221 DOI: 10.1182/blood-2016-11-749622] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/11/2017] [Indexed: 12/21/2022] Open
Abstract
Trafficking of polymorphonuclear neutrophils (PMNs) during inflammation critically depends on the β2 integrins lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18) and macrophage-1 antigen (CD11b/CD18). Here, we identify coronin 1A (Coro1A) as a novel regulator of β2 integrins that interacts with the cytoplasmic tail of CD18 and is crucial for induction of PMN adhesion and postadhesion events, including adhesion strengthening, spreading, and migration under flow conditions. Transition of PMN rolling to firm adhesion critically depends on Coro1A by regulating the accumulation of high-affinity LFA-1 in focal zones of adherent cells. Defective integrin affinity regulation in the genetic absence of Coro1A impairs leukocyte adhesion and extravasation in inflamed cremaster muscle venules in comparison with control animals. In a Helicobacter pylori mouse infection model, PMN infiltration into the gastric mucosa is dramatically reduced in Coro1A-/- mice, resulting in an attenuated gastric inflammation. Thus, Coro1A represents an important novel player in integrin biology, with key functions in PMN trafficking during innate immunity.
Collapse
|
5
|
Tchang VSY, Stiess M, Siegmund K, Karrer U, Pieters J. Role for coronin 1 in mouse NK cell function. Immunobiology 2017; 222:291-300. [PMID: 27717523 DOI: 10.1016/j.imbio.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/17/2016] [Indexed: 10/21/2022]
Abstract
Coronin 1, a member of the evolutionary conserved WD repeat protein family of coronin proteins is expressed in all leukocytes, but a role for coronin 1 in natural killer (NK) cell homeostasis and function remains unclear. Here, we have analyzed the number and functionality of NK cells in the presence and absence of coronin 1. In coronin 1-deficient mice, absolute NK cell numbers and phenotype were comparable to wild type mice in blood, spleen and liver. Following in vitro stimulation of the activating NK cell receptors NK1.1, NKp46, Ly49D and NKG2D, coronin 1-deficient NK cells were functional with respect to interferon-γ production, degranulation and intracellular Ca2+ mobilization. Also, both wild type as well as coronin 1-deficient NK cells showed comparable cytotoxic activity. Furthermore, activation and functionality of NK cells following Vesicular Stomatitis Virus (VSV) infection was similar between wild type and coronin 1-deficient mice. Taken together these data suggest that coronin 1 is dispensable for mouse NK cell homeostasis and function.
Collapse
Affiliation(s)
- Vincent Sam Yong Tchang
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Stiess
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Kerstin Siegmund
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Urs Karrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland; Department of Medicine, Cantonal Hospital of Winterthur, Brauerstrasse 15, CH-8401 Winterthur, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
6
|
Siegmund K, Klepsch V, Hermann-Kleiter N, Baier G. Proof of Principle for a T Lymphocyte Intrinsic Function of Coronin 1A. J Biol Chem 2016; 291:22086-22092. [PMID: 27566541 PMCID: PMC5063991 DOI: 10.1074/jbc.m116.748012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/19/2016] [Indexed: 11/06/2022] Open
Abstract
Coronins are evolutionarily conserved proteins that were originally identified as modulators of actin-dependent processes. Studies analyzing complete Coronin 1a knock-out mice have shown that this molecule is an important regulator of naive T cell homeostasis and it has been linked to immune deficiencies as well as autoimmune disorders. Nevertheless, because Coronin 1A is strongly expressed in all leukocyte subsets, it is not conclusive whether or not this phenotype is attributed to a T cell-intrinsic function of Coronin 1A. To address this research question, we have generated a T cell-specific Coronin 1a knock-out mouse (Coro1afl/fl × Cd4[Cre]). Deletion of Coronin 1A specifically in T cells led to a strong reduction in T cell number and a shift toward the effector/memory phenotype in peripheral lymphoid organs when compared with Cd4[Cre] mice expressing wild-type Coronin 1A. In contrast to peripheral lymphoid tissue, thymocyte number and subsets were not affected by the deletion of Coronin 1a Furthermore, T cell-specific Coronin 1a knock-out mice were largely resistant to the induction of autoimmunity when tested in the myelin oligoglycoprotein-induced EAE mouse model of multiple sclerosis. Thus, the phenotype of T cell-specific Coronin 1a deletion resembles the phenotype observed with conventional (whole body) Coronin 1a knock-out mice. In summary, our findings provide formal proof of the predominant T cell-intrinsic role of Coronin 1A.
Collapse
Affiliation(s)
- Kerstin Siegmund
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Victoria Klepsch
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Gottfried Baier
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Jayachandran R, Pieters J. Regulation of immune cell homeostasis and function by coronin 1. Int Immunopharmacol 2015; 28:825-8. [DOI: 10.1016/j.intimp.2015.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
8
|
Marques PE, Oliveira AG, Chang L, Paula-Neto HA, Menezes GB. Understanding liver immunology using intravital microscopy. J Hepatol 2015; 63:733-42. [PMID: 26055800 DOI: 10.1016/j.jhep.2015.05.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
The liver has come a long way since it was considered only a metabolic organ attached to the gastrointestinal tract. The simultaneous ascension of immunology and intravital microscopy evidenced the liver as a central axis in the immune system, controlling immune responses to local and systemic agents as well as disease tolerance. The multiple hepatic cell populations are organized in a vascular environment that promotes intimate cellular interactions, including initiation of innate and adaptive immune responses, rapid leukocyte recruitment, pathogen clearance and production of a variety of immune mediators. In this review, we focus on the advances in liver immunology supported by intravital microscopy in diseases such as isquemia/reperfusion, acute liver injury and infections.
Collapse
Affiliation(s)
- Pedro Elias Marques
- Laboratório de Imunobiofotônica, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - André Gustavo Oliveira
- Laboratório de Imunobiofotônica, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | | | - Heitor Affonso Paula-Neto
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - Gustavo Batista Menezes
- Laboratório de Imunobiofotônica, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|