1
|
Bastos-Amador P, Duarte EL, Torres J, Caldeira AT, Silva I, Salvador C, Assunção R, Alvito P, Ferreira M. Maternal dietary exposure to mycotoxin aflatoxin B 1 promotes intestinal immune alterations and microbiota modifications increasing infection susceptibility in mouse offspring. Food Chem Toxicol 2023; 173:113596. [PMID: 36603704 DOI: 10.1016/j.fct.2022.113596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi occurring in food that are toxic to animals and humans. Early-life mycotoxins exposure has been linked to diverse pathologies. However, how maternal exposure to mycotoxins impacts on the intestinal barrier function of progeny has not been explored. Here, exposure of pregnant and lactating C57Bl/6J female mice to aflatoxin B1 (AFB1; 400 μg/kg body weight/day; 3 times a week) in gelatine pellets, from embryonic day (E)11.5 until weaning (postnatal day 21), led to gut immunological changes in progeny. The results showed an overall increase of lymphocyte number in intestine, a reduction of expression of epithelial genes related to microbial defence, as well as a decrease in cytokine production by intestinal type 2 innate lymphoid cells (ILC2). While susceptibility to chemically induced colitis was not worsened, immune alterations were associated with changes in gut microbiota and with a higher vulnerability to infection by the protozoan Eimeria vermiformis at early-life. Together these results show that maternal dietary exposure to AFB1 can dampen intestinal barrier homeostasis in offspring decreasing their capability to tackle intestinal pathogens. These data provide insights to understand AFB1 potential harmfulness in early-life health in the context of intestinal infections.
Collapse
Affiliation(s)
- Patricia Bastos-Amador
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Elsa Leclerc Duarte
- University of Évora, School of Science and Technology, 7000-671, Évora, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, 7006-554, Évora, Portugal
| | - Júlio Torres
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal
| | | | - Inês Silva
- University of Évora, School of Science and Technology, 7000-671, Évora, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, 7006-554, Évora, Portugal; HERCULES Laboratory, Universidade de Évora, 7000-809, Évora, Portugal
| | - Cátia Salvador
- HERCULES Laboratory, Universidade de Évora, 7000-809, Évora, Portugal
| | - Ricardo Assunção
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829 - 511, Caparica, Portugal; University of Aveiro, CESAM - Centre for Environmental and Marine Studies, 3810-193, Aveiro, Portugal
| | - Paula Alvito
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; University of Aveiro, CESAM - Centre for Environmental and Marine Studies, 3810-193, Aveiro, Portugal
| | - Manuela Ferreira
- Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal.
| |
Collapse
|
2
|
Lu Y, Zhang X, Bouladoux N, Kaul SN, Jin K, Sant'Angelo D, Belkaid Y, Kovalovsky D. Zbtb1 controls NKp46 + ROR-gamma-T + innate lymphoid cell (ILC3) development. Oncotarget 2017; 8:55877-55888. [PMID: 28915559 PMCID: PMC5593530 DOI: 10.18632/oncotarget.19645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 11/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) play a central role conferring protection at the mucosal frontier. In this study, we have identified a requirement of the transcription factor Zbtb1 for the development of RORγt+ ILCs (ILC3s). Zbtb1-deficient mice lacked NKp46+ ILC3 cells in the lamina propria of the small and large intestine. This requirement of Zbtb1 was cell intrinsic, as NKp46+ ILC3s were not generated from Zbtb1-deficient progenitors in bone marrow chimeras and Zbtb1-deficient RORγt+ CCR6−NKp46− ILC3s didn't generate NKp46+ ILC3s in co-cultures with OP9-DL1 stroma. In correlation with this impairment, Zbtb1-deficient ILC3 cells failed to upregulate T-bet expression, and to acquire IFN-γ production characteristic of NKp46+ cells. Finally, absence of NKp46+ILC3 cells combined with the absence of T-cells in Zbtb1-deficient mice, led to a transient susceptibility to C. rodentium infections. Altogether, these results establish that Zbtb1 is essential for the development of NKp46+ ILC3 cells.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA
| | - Xianyu Zhang
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA
| | - Nicolas Bouladoux
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | | | - Kangxin Jin
- Zhongshan Ophthalmic Center, State Key Laboratory for Ophthalmic Researches, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Derek Sant'Angelo
- Cancer Metabolism and Growth Program, Rutgers, Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Damian Kovalovsky
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA.,Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Barone F, Gardner DH, Nayar S, Steinthal N, Buckley CD, Luther SA. Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation. Front Immunol 2016; 7:477. [PMID: 27877173 PMCID: PMC5100680 DOI: 10.3389/fimmu.2016.00477] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are organized aggregates of lymphocytes, myeloid, and stromal cells that provide ectopic hubs for acquired immune responses. TLS share phenotypical and functional features with secondary lymphoid organs (SLO); however, they require persistent inflammatory signals to arise and are often observed at target sites of autoimmune disease, chronic infection, cancer, and organ transplantation. Over the past 10 years, important progress has been made in our understanding of the role of stromal fibroblasts in SLO development, organization, and function. A complex and stereotyped series of events regulate fibroblast differentiation from embryonic life in SLOs to lymphoid organ architecture observed in adults. In contrast, TLS-associated fibroblasts differentiate from postnatal, locally activated mesenchyme, predominantly in settings of inflammation and persistent antigen presentation. Therefore, there are critical differences in the cellular and molecular requirements that regulate SLO versus TLS development that ultimately impact on stromal and hematopoietic cell function. These differences may contribute to the pathogenic nature of TLS in the context of chronic inflammation and malignant transformation and offer a window of opportunity for therapeutic interventions in TLS associated pathologies.
Collapse
Affiliation(s)
- Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Nathalie Steinthal
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|