1
|
Rady M, Mostafa M, Dida G, Sabet F, Abou-Aisha K, Watzl C. Adoptive NK cell therapy in AML: progress and challenges. Clin Exp Med 2025; 25:41. [PMID: 39820676 PMCID: PMC11748472 DOI: 10.1007/s10238-025-01559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Adoptive cell therapy (ACT) using natural killer (NK) cells has emerged as a promising therapeutic strategy for acute myeloid leukemia (AML), addressing challenges such as chemotherapy resistance and high relapse rates. Over the years, clinical trials and studies have explored various sources of NK cells, including ex vivo expanded NK cell lines, CAR-NK cells, peripheral blood-derived NK cells, and umbilical cord blood-derived NK cells. These therapies have demonstrated varying degrees of therapeutic efficacy, ranging from transient anti-leukemia activity to sustained remission in select patient groups. Toxicity profiles have generally shown favorable safety outcomes, with minimal incidence of severe adverse effects such as cytokine release syndrome (CRS) or graft-versus-host disease (GVHD). However, persistent challenges remain, including limited NK cell persistence, relapse, and heterogeneity in patient responses. This review provides a comprehensive analysis of clinical outcomes and toxicity profiles provided from clinical trials, clinical studies and case reports conducted in the last 15 years to judge on the efficacy, safety and applicability of using NK cells for ACT of AML. Our review highlights the significant potential of NK cell-based therapies for AML, while addressing the technical and biological challenges that must be overcome to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt.
- Faculty of Biotechnology, German International University, New Administrative Capital, Egypt.
| | - Maha Mostafa
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Gabriel Dida
- University of South Wales, Pontypridd, Wales, UK
- Department of Health Systems Management and Public Health, Technical University of Kenya, Nairobi, Kenya
| | - Fatima Sabet
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Khaled Abou-Aisha
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Carsten Watzl
- Immunology Department, Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
2
|
Mahalleh M, Shabani M, Rayzan E, Rezaei N. Reinforcing the primary immunotherapy modulators against acute leukemia; monoclonal antibodies in AML. Immunotherapy 2019; 11:1583-1600. [PMID: 31841068 DOI: 10.2217/imt-2019-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent therapeutic advances in cancer treatment recruit immune system potentiation against malignant cells. Numerous ongoing clinical trials on immunotherapy methods, either monotherapy or combination therapy, are investigating the impeding factors on the way of acute myeloid leukemia (AML) treatment. Due to the genetic diversity in AML progenitors, combining various strategies is more likely to be useful for improving patient outcomes. This review describes the details of applying monoclonal antibodies against AML, focusing on CD33, CD123, FLT3, CD45 and CD66 targeting. Furthermore, it clarifies the importance of immunotoxins, bispecific antibodies, chimeric antigen receptor (CAR)-T cells and T cell receptor-modified cells as reinforcing agents for monoclonal antibodies.
Collapse
Affiliation(s)
- Mehrdad Mahalleh
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsima Shabani
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ma YY, Zhao M, Liu Y, Zhao DF, Wang LX, Chen XP, Li L. Use of decitabine for patients with refractory or relapsed acute myeloid leukemia: a systematic review and meta-analysis. Hematology 2019; 24:507-515. [PMID: 31242832 DOI: 10.1080/16078454.2019.1632407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yuan-yuan Ma
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Min Zhao
- Department of Nutrition, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yi Liu
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - De-feng Zhao
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Li-xin Wang
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiao-ping Chen
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Li Li
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Maimaitili Y, Inase A, Miyata Y, Kitao A, Mizutani Y, Kakiuchi S, Shimono Y, Saito Y, Sonoki T, Minami H, Matsuoka H. An mTORC1/2 kinase inhibitor enhances the cytotoxicity of gemtuzumab ozogamicin by activation of lysosomal function. Leuk Res 2018; 74:68-74. [PMID: 30300823 DOI: 10.1016/j.leukres.2018.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 11/18/2022]
Abstract
Gemtuzumab ozogamicin (GO), the first antibody-drug conjugate (ADC), has attracted the interest of hematologists because more than 90% of acute myeloid leukemia (AML) blasts express its target, CD33. Although GO and subsequently developed ADCs depend on lysosomes for activation, lysosome number and activity in tumor cells has not been well elucidated. In this study, we investigated whether an mTORC1/2 kinase inhibitor, PP242, which was reported to activate lysosomal function, potentiates the cytotoxicity of GO in AML cells. Eight AML cell lines (U937, THP-1, SKM-1, SKK-1, SKNO-1, HL-60, MARIMO and KO52) were treated with GO and PP242. The cytotoxic effect of GO was enhanced by concurrent treatment with a non-cytotoxic concentration (500 nM) of PP242 in most cell lines, except MARIMO and KO52 cells. We then used LysoTracker to label acidic lysosomes in U937, THP-1, SKM-1, MARIMO and KO52 cells. LysoTracker fluorescence was dramatically increased by treatment with PP242 in U937, THP-1 and SKM-1 cells, and the intensified fluorescence was retained with PP242 + GO. In contrast, PP242 did not induce a significant increase in fluorescence in MARIMO cells, consistent with the lack of combinatory cytotoxicity. LysoTracker fluorescence was also increased by PP242 in KO52 cells, which have been reported to strongly express multidrug resistance (MDR). Further, PP242 suppressed GO-induced Chk1 activation and G2/M cell cycle arrest, which in turn triggered cell cycle promotion and cell death. These results indicate that inhibition of mTORC1/2 kinase by PP242 enhanced the cytotoxicity of GO by increasing lysosomal compartments and promoting the cell cycle via suppression of GO-induced Chk1 activation. This combination may represent an attractive new therapeutic strategy for the treatment of leukemia.
Collapse
Affiliation(s)
- Yimamu Maimaitili
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Aki Inase
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiharu Miyata
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihito Kitao
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu Mizutani
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seiji Kakiuchi
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Shimono
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Sonoki
- Division of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
5
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
6
|
Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A, Kraft DO, Feldman M, Wasik MA, June CH, Gill S. Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells. Cancer Discov 2017; 7:1154-1167. [PMID: 28576927 PMCID: PMC5628114 DOI: 10.1158/2159-8290.cd-16-0850] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/19/2017] [Accepted: 05/31/2017] [Indexed: 01/03/2023]
Abstract
Patients with otherwise treatment-resistant Hodgkin lymphoma could benefit from chimeric antigen receptor T-cell (CART) therapy. However, Hodgkin lymphoma lacks CD19 and contains a highly immunosuppressive tumor microenvironment (TME). We hypothesized that in Hodgkin lymphoma, CART should target both malignant cells and the TME. We demonstrated CD123 on both Hodgkin lymphoma cells and TME, including tumor-associated macrophages (TAM). In vitro, Hodgkin lymphoma cells convert macrophages toward immunosuppressive TAMs that inhibit T-cell proliferation. In contrast, anti-CD123 CART recognized and killed TAMs, thus overcoming immunosuppression. Finally, we showed in immunodeficient mouse models that CART123 eradicated Hodgkin lymphoma and established long-term immune memory. A novel platform that targets malignant cells and the microenvironment may be needed to successfully treat malignancies with an immunosuppressive milieu.Significance: Anti-CD123 chimeric antigen receptor T cells target both the malignant cells and TAMs in Hodgkin lymphoma, thereby eliminating an important immunosuppressive component of the tumor microenvironment. Cancer Discov; 7(10); 1154-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.
Collapse
Affiliation(s)
- Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Klichinsky
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saad S Kenderian
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel O Kraft
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Saar Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Patient-derived antibody recognizes a unique CD43 epitope expressed on all AML and has antileukemia activity in mice. Blood Adv 2017; 1:1551-1564. [PMID: 29296797 DOI: 10.1182/bloodadvances.2017008342] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has proven beneficial in many hematologic and nonhematologic malignancies, but immunotherapy for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) is hampered by the lack of tumor-specific targets. We took advantage of the tumor-immunotherapeutic effect of allogeneic hematopoietic stem cell transplantation and searched the B-cell repertoire of a patient with a lasting and potent graft-versus-AML response for the presence of AML-specific antibodies. We identified an antibody, AT1413, that was of donor origin and that specifically recognizes a novel sialylated epitope on CD43 (CD43s). Strikingly, CD43s is expressed on all World Health Organization 2008 types of AML and MDS. AT1413 induced antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity of AML cells in vitro. Of note, AT1413 was highly efficacious against AML cells in a humanized mouse model without affecting nonmalignant human myeloid cells, suggesting AT1413 has potential as a therapeutic antibody.
Collapse
|
8
|
Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J, Klichinsky M, Aikawa V, Nazimuddin F, Kozlowski M, Scholler J, Lacey SF, Melenhorst JJ, Morrissette JJD, Christian DA, Hunter CA, Kalos M, Porter DL, June CH, Grupp SA, Gill S. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest 2016; 126:3814-3826. [PMID: 27571406 DOI: 10.1172/jci87366] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022] Open
Abstract
Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies.
Collapse
|
9
|
González B, Bueno D, Rubio P, San Román S, Plaza D, Sastre A, García-Miguel P, Fernández L, Valentín J, Martínez I, Pérez-Martínez A. An immunological approach to acute myeloid leukaemia. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.anpede.2015.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
[An immunological approach to acute myeloid leukaemia]. An Pediatr (Barc) 2016; 84:195-202. [PMID: 26776165 DOI: 10.1016/j.anpedi.2015.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/12/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Acute myeloid leukaemia (AML) is the second haematological malignancy in the paediatric population, and one of the leading causes of childhood cancer mortality. Survival is currently around 60%, with no improvement in last decades, suggesting that new therapeutic approaches are needed. The anti-leukaemia effect mediated by the lymphocytes and natural killer (NK) cells of the immune system has been established in haematopoietic stem cell transplantation, and also as adoptive immunotherapy after consolidation chemotherapy schemes. PATIENTS AND METHODS A retrospective study was conducted on the clinical characteristics of patients diagnosed and treated for AML in our centre during 1996-2014. The mean fluorescence intensities of HLA-I, MICA/B and ULBP1-4, ligands for NK cell receptors, were also analysed in ten new diagnosed leukaemia cases, five myeloid and five lymphoid. RESULTS A total of 67 patients were used in this analysis. With a median follow up of 25 months, the event-free survival was 62% (95% CI: 55-67). Secondary AML, non-M3 phenotype, and the absence of favourable cytogenetic markers had a lower survival. The probability of relapse was 38% (95% CI: 31-45). The expression of HLA-I and ULBP-4 was significantly lower in myeloid than in lymphoid blast cells. CONCLUSIONS Our clinical results are similar to those described in the literature. Survival did not significantly change in recent decades, and the likelihood of relapse remains high. Myeloid blasts might be more susceptible to the cytotoxicity of NK cells through their lower expression of HLA-I. NK therapy strategies in minimal disease situation could be effective, as reported by other groups.
Collapse
|
11
|
Sinha C, Cunningham LC, Liu PP. Core Binding Factor Acute Myeloid Leukemia: New Prognostic Categories and Therapeutic Opportunities. Semin Hematol 2015; 52:215-22. [PMID: 26111469 DOI: 10.1053/j.seminhematol.2015.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Core binding factor (CBF) is a heterodimeric protein complex involved in the transcriptional regulation of normal hematopoiesis. Mutations in CBF-encoding genes result in leukemogenic proliferative advantages and impaired differentiation of the hematopoietic progenitors. CBF molecular aberrations are responsible for approximately 20% of all adult acute myeloid leukemia (AML). Although CBF-AMLs are considered to have relatively good prognosis compared to other leukemia subtypes, they are a heterogeneous group of disorders and modern therapy frequently leads to relapse and the associated morbidity and mortality. Improvements in risk stratification and development of targeted therapies are needed for better outcomes. In this review we provide a brief overview of the molecular basis, prognostic categories and the advanced treatment strategies for CBF leukemias.
Collapse
Affiliation(s)
- Chandrima Sinha
- Bone Marrow Transplant & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN
| | - Lea C Cunningham
- Bone Marrow Transplant & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN.
| | - Paul P Liu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
12
|
Abstract
Despite longstanding efforts in basic research and clinical studies, the prognosis for patients with acute myeloid leukemia (AML) remains poor. About half of the patients are not medically fit for intensive induction therapy to induce a complete remission and are treated with palliative treatment concepts. The patients medically fit for intensive induction therapy have a high complete remission rate but the majority suffers from relapse due to chemo-refractory leukemic cells. Allogeneic stem cell transplantation as post-remission therapy can significantly reduce the likelihood of relapse, but it is associated with a high rate of morbidity and mortality. Novel therapeutic concepts are therefore urgently sought after. During recent years, the focus has shifted towards the development of novel immunotherapeutic strategies. Some of the most promising are drug-conjugated monoclonal antibodies, T-cell engaging antibody constructs, adoptive transfer with chimeric antigen receptor (CAR) T cells, and dendritic cell vaccination. Here, we review recent progress in these four fields and speculate about the optimal time points during the course of AML treatment for their application.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Christina Krupka
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Thomas Köhnke
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Marion Subklewe
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany.
| |
Collapse
|
13
|
Abstract
Natural killer (NK) cells are normal white blood cells capable of killing malignant cells without prior sensitization. Allogeneic NK cell infusions are attractive for cancer therapy because of non-cross-resistant mechanisms of action and minimal overlapping toxicities with standard cancer treatments. Although NK therapy is promising, many obstacles will need to be overcome, including insufficient cell numbers, failure of homing to tumor sites, effector dysfunction, exhaustion, and tumor cell evasion. Capitalizing on the wealth of knowledge generated by recent NK cell biology studies and the advancements in biotechnology, substantial progress has been made recently in improving therapeutic efficiency and reducing side effects. A multipronged strategy is essential, including immunogenetic-based donor selection, refined NK cell bioprocessing, and novel augmentation techniques, to improve NK function and to reduce tumor resistance. Although data from clinical trials are currently limited primarily to hematologic malignancies, broader applications to a wide spectrum of adult and pediatric cancers are under way. The unique properties of human NK cells open up a new arena of novel cell-based immunotherapy against cancers that are resistant to contemporary therapies.
Collapse
Affiliation(s)
- Wing Leung
- Author's Affiliations: Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital; and Department of Pediatrics, University of Tennessee, Memphis, Tennessee
| |
Collapse
|
14
|
|
15
|
McGill CM, Alba-Rodriguez EJ, Li S, Benson CJ, Ondrasik RM, Fisher LN, Claxton DF, Barth BM. Extracts of Devil's club (Oplopanax horridus) exert therapeutic efficacy in experimental models of acute myeloid leukemia. Phytother Res 2014; 28:1308-14. [PMID: 25340187 DOI: 10.1002/ptr.5129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia (AML) is a group of hematological malignancies defined by expanded clonal populations of immature progenitors (blasts) of myeloid phenotype in blood and bone marrow. Given a typical poor prognostic outlook, there is great need for novel agents with anti-AML activity. Devil’s club (Oplopanax horridus) is one of the most significant medicinal plants used among the indigenous people of Southeast Alaska and the coastal Pacific Northwest, with different linguistic groups utilizing various parts of the plant to treat many different conditions including cancer. Studies identifying medically relevant components in Devil’s club are limited. For this research study, samples were extracted in 70% ethanol before in vitro analysis, to assess effects on AML cell line viability as well as to study regulation of tyrosine phosphorylation and cysteine oxidation. The root extract displayed better in vitro anti-AML efficacy in addition to a noted anti-tyrosine kinase activity independent of an antioxidant effect. In vivo therapeutic studies using an immunocompetent murine model of AML further demonstrated that Devil’s club root extract improved the murine survival while decreasing immunosuppressive regulatory T cells and improving CD8+ T-cell functionality. This study defines for the first time an anti-AML efficacy for extracts of Devil’s club.
Collapse
|
16
|
Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther 2014; 23:184-91. [PMID: 25174587 DOI: 10.1038/mt.2014.164] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
We conducted a clinical trial to assess the feasibility and efficacy of CD33-directed chimeric antigen receptor-modified T cells (CART-33) for the treatment of refractory acute myeloid leukemia (AML). A 41-year-old male patient with AML was enrolled and received a total of 1.12 × 10(9) autologous CART-33 cells, of which ~38% were transduced with CAR. The CART-33 infusion alone induced rigorous chills and fevers; drastic fluctuations of his preexisting pancytopenia; elevated serum cytokine levels, including interleukin (IL)-6, IL-8, tumor necrosis factor-α, and interferon-γ; slight transient hyperbilirubinemia within 2 weeks; a subsequent intermittent moderate fever; and reversed fluctuation of the pancytopenia. A marked decrease of blasts in the bone marrow was observed on examination 2 weeks after therapy, and there was a gradual increase until florid disease progression occurred at 9 weeks after the cell infusion. These observations warrant further research on CART-33 treatment in refractory AML and may spur efforts to extend the CART-33-induced tumor burden to the preparation of other intensive strategies, such as hematopoietic stem cell transplantation. This study is registered at www.ClinicalTrials.gov as NCT01864902.
Collapse
|