1
|
Liang Y, Wang L. Inflamma-MicroRNAs in Alzheimer's Disease: From Disease Pathogenesis to Therapeutic Potentials. Front Cell Neurosci 2021; 15:785433. [PMID: 34776873 PMCID: PMC8581643 DOI: 10.3389/fncel.2021.785433] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/16/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of senile dementia. Although AD research has made important breakthroughs, the pathogenesis of this disease remains unclear, and specific AD diagnostic biomarkers and therapeutic strategies are still lacking. Recent studies have demonstrated that neuroinflammation is involved in AD pathogenesis and is closely related to other health effects. MicroRNAs (miRNAs) are a class of endogenous short sequence non-coding RNAs that indirectly inhibit translation or directly degrade messenger RNA (mRNA) by specifically binding to its 3′ untranslated region (UTR). Several broadly expressed miRNAs including miR-21, miR-146a, and miR-155, have now been shown to regulate microglia/astrocytes activation. Other miRNAs, including miR-126 and miR-132, show a progressive link to the neuroinflammatory signaling. Therefore, further studies on these inflamma-miRNAs may shed light on the pathological mechanisms of AD. The differential expression of inflamma-miRNAs (such as miR-29a, miR-125b, and miR-126-5p) in the peripheral circulation may respond to AD progression, similar to inflammation, and therefore may become potential diagnostic biomarkers for AD. Moreover, inflamma-miRNAs could also be promising therapeutic targets for AD treatment. This review provides insights into the role of inflamma-miRNAs in AD, as well as an overview of general inflamma-miRNA biology, their implications in pathophysiology, and their potential roles as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Liang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
An N, Yang J, Wang H, Sun S, Wu H, Li L, Li M. Mechanism of mesenchymal stem cells in spinal cord injury repair through macrophage polarization. Cell Biosci 2021; 11:41. [PMID: 33622388 PMCID: PMC7903655 DOI: 10.1186/s13578-021-00554-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Treatment and rehabilitation of spinal cord injury (SCI) is a major problem in clinical medicine. Modern medicine has achieved minimal progress in improving the functions of injured nerves in patients with SCI, mainly due to the complex pathophysiological changes that present after injury. Inflammatory reactions occurring after SCI are related to various functions of immune cells over time at different injury sites. Macrophages are important mediators of inflammatory reactions and are divided into two different subtypes (M1 and M2), which play important roles at different times after SCI. Mesenchymal stem cells (MSCs) are characterized by multi-differentiation and immunoregulatory potentials, and different treatments can have different effects on macrophage polarization. MSC transplantation has become a promising method for eliminating nerve injury caused by SCI and can help repair injured nerve tissues. Therapeutic effects are related to the induced formation of specific immune microenvironments, caused by influencing macrophage polarization, controlling the consequences of secondary injury after SCI, and assisting with function recovery. Herein, we review the mechanisms whereby MSCs affect macrophage-induced specific immune microenvironments, and discuss potential avenues of investigation for improving SCI treatment.
Collapse
Affiliation(s)
- Nan An
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The Second Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jiaxu Yang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hequn Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Shengfeng Sun
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hao Wu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Signal transduction associated with lead-induced neurological disorders: A review. Food Chem Toxicol 2021; 150:112063. [PMID: 33596455 DOI: 10.1016/j.fct.2021.112063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
Lead is a heavy metal pollutant that is widely present in the environment. It affects every organ system, yet the nervous system appears to be the most sensitive and primary target. Although many countries have made significant strides in controlling Pb pollution, Pb poisoning continuous to be a major public health concern. Exposure to Pb causes neurotoxicity that ranges from neurodevelopmental disorders to severe neurodegenerative lesions, leading to impairments in learning, memory, and cognitive function. Studies on the mechanisms of Pb-induced nervous system injury have convincingly shown that this metal can affect a plethora of cellular pathways affecting on cell survival, altering calcium dyshomeostasis, and inducing apoptosis, inflammation, energy metabolism disorders, oxidative stress, autophagy and glial stress. This review summarizes recent knowledge on multiple signaling pathways associated with Pb-induced neurological disorders in vivo and in vitro.
Collapse
|
4
|
Thiriot JD, Martinez-Martinez YB, Endsley JJ, Torres AG. Hacking the host: exploitation of macrophage polarization by intracellular bacterial pathogens. Pathog Dis 2020; 78:5739920. [PMID: 32068828 DOI: 10.1093/femspd/ftaa009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages play an integral role in host defenses against intracellular bacterial pathogens. A remarkable plasticity allows for adaptation to the needs of the host to orchestrate versatile innate immune responses to a variety of microbial threats. Several bacterial pathogens have adapted to macrophage plasticity and modulate the classical (M1) or alternative (M2) activation bias towards a polarization state that increases fitness for intracellular survival. Here, we summarize the current understanding of the host macrophage and intracellular bacterial interface; highlighting the roles of M1/M2 polarization in host defense and the mechanisms employed by several important intracellular pathogens to modulate macrophage polarization to favor persistence or proliferation. Understanding macrophage polarization in the context of disease caused by different bacterial pathogens is important for the identification of targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D Thiriot
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Yazmin B Martinez-Martinez
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Janice J Endsley
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA.,Department of Pathology, University of Texas Medical Branch , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| |
Collapse
|
5
|
Cui W, Sun C, Ma Y, Wang S, Wang X, Zhang Y. Inhibition of TLR4 Induces M2 Microglial Polarization and Provides Neuroprotection via the NLRP3 Inflammasome in Alzheimer's Disease. Front Neurosci 2020; 14:444. [PMID: 32508567 PMCID: PMC7251077 DOI: 10.3389/fnins.2020.00444] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence has indicated that activation of microglia and neuroinflammation reaction play a prominent role in Alzheimer’s disease (AD). Inhibition of toll-like receptor 4 (TLR4) has been shown to be associated with immune responses and brain damage, but its effects on AD remain unclear. This study mainly aimed to investigate the protective effect of TAK-242 (TLR4-specific inhibitor) on microglial polarization and neuroprotection in an AD mouse model and the underlying mechanisms. We found that APP/PS1 transgenic AD mice exhibited a dramatic increase in TLR4 levels concomitant with a significantly higher expression of inflammatory microglia compared to C57BL/6 wild-type mice. Furthermore, inhibition of TLR4 by TAK-242 administration significantly improved neurological function, decreased the level of Bax, and caused a significant reduction in the levels of M1-markers (iNOS and TNFα), while the expressions of M2-phenotype markers (Trem-2 and Arg-1) were increased both in vivo and in vitro. Furthermore, TAK-242 treatment enhanced BV2 microglial phagocytosis. Moreover, Aβ25–35 caused the upregulation of inflammatory cytokine production, MyD88, NF-kappaB-p65, and NLRP3, which could be ameliorated by NLRP3-siRNA or TAK-242. These findings indicated that TLR4 inhibition provided neuroprotection and promoted a microglial switch from the inflammatory M1 phenotype to the protective M2 phenotype in AD. The mechanism involved may be related to modulation of the MyD88/NF-kappaB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Weigang Cui
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Chunli Sun
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang, China
| | - Yuqi Ma
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, China
| | - Songtao Wang
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yinghua Zhang
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
Shen P, Li Q, Ma J, Tian M, Hong F, Zhai X, Li J, Huang H, Shi C. IRAK-M alters the polarity of macrophages to facilitate the survival of Mycobacterium tuberculosis. BMC Microbiol 2017; 17:185. [PMID: 28835201 PMCID: PMC5569470 DOI: 10.1186/s12866-017-1095-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Background Intracellular bacterium, Mycobacterium tuberculosis (M. tb), infects specifically macrophages as host cells. IRAK-M, a member of IRAK family, is a negative regulator in TLR signaling and specifically expresses in monocytes and macrophages. The role of IRAK-M in intracellular growth of M. tb and macrophage polarization was explored, for deeply understanding the pathogenesis of M. tb, the significance of IRAK-M to innate immunity and pathogen-host interaction. Methods IRAK-M expression was detected in M. tb infected macrophages and in human lung tissue of pulmonary tuberculosis with immunofluorescence staining, Western blot and immunohistochemistry. IRAK-M knock-down and over-expressing cell strains were constructed and intracellular survival of M. tb was investigated by acid-fast staining and colony forming units. Molecular markers of M1-type (pSTAT1 and iNOS) and M2-type (pSTAT6 and Arg-1) macrophages were detected using Western blot in IRAK-M knockdown U937 cells infected with M. tb H37Rv. U937 cells were stimulated with immunostimulant CpG7909 into M1 status and then infected with M. tb H37Rv. Expression of IRAK-M, IRAK-4 and iNOS was detected with immunofluorescence staining and Western blot, to evaluate the effect of IRAK-M to CpG directed M1-type polarization of macrophages during M. tb infection. Molecules related with macrophage’s bactericidal ability such as Hif-1 and phosphorylated ERK1/2 were detected with immunohistochemistry and Western blot. Results IRAK-M increased in M. tb infected macrophage cells and also in human lung tissue of pulmonary tuberculosis. IRAK-M over-expression resulted in higher bacterial load, while IRAK-M interference resulted in lower bacterial load in M. tb infected cells. During M. tb infection, IRAK-M knockdown induced M1-type, while inhibited M2-type polarization of macrophage. M1-type polarization of U937 cells induced by CpG7909 was inhibited by M. tb infection, which was reversed by IRAK-M knockdown in U937 cells. IRAK-M affected Hif-1 and MAPK signaling cascade during M. tb infection. Conclusions Conclusively, IRAK-M might alter the polarity of macrophages, to facilitate intracellular survival of M. tb and affect Th1-type immunity of the host, which is helpful to understanding the pathogenesis of M. tb.
Collapse
Affiliation(s)
- Pei Shen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Clinical Microbiology, School of Public Health, Taishan Medical University, Tai'an, 271016, People's Republic of China
| | - Quan Li
- Wuhan Institute for Tuberculosis Control, Wuhan, 430030, People's Republic of China
| | - Jilei Ma
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Maopeng Tian
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fei Hong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xinjie Zhai
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianrong Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hanju Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
7
|
Liu JT, Chen BY, Zhang JQ, Kuang F, Chen LW. Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4-MyD88-NFκB signaling cascades. Toxicol Lett 2015; 239:97-107. [PMID: 26386401 DOI: 10.1016/j.toxlet.2015.09.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 12/25/2022]
Abstract
Proper proliferation and differentiation of neural stem cells or progenitors in hippocampus is critical to learn and memory functions, which might be disturbed by lead toxicity particularly in young individuals. While astroglial and microglial cells are known to play an important role in regulating neurogenesis of hippocampus, their abnormal response and influence on hippocampal neurogenesis remains unclear. In this study, therefore, glial response including microgliosis, astrogliogenesis and mediating involvement of TLR4-MyD88-NFκB signaling cascades were observed in hippocampus of young mice by animal model with lead (plumbum, Pb) exposure. It revealed that (1) significant microglial activation occurred in hippocampus soon following Pb exposure; (2) increased levels of TLR4, MyD88, NFκB expression were concomitantly detected; (3) BrdU-incorporated progenitor cells were observed in dentate gyrus with significantly-increased numbers at d28 in Pb insult group; (4) obvious astrogliogenesis was observed while these doublecortin-labeled differentiated neurons were not significantly changed in hippocampus; (5) administration of MyD88 inhibitory peptide attenuated or relieved above effects; (6) enhanced expression levels of IL-1β, TNFα, p38MAPK and ERK1/2 were also detected in hippocampus, indicating potential implication of inflammatory response and MAPK signaling activation in lead-induced microgliosis and astrogliosis. Data of this study overall have indicated that lead exposure could trigger or induce abnormal microgliosis and astrogliogenesis in the hippocampus of young mice through triggering TLR4-MyD88-NFκB signaling cascades, which might possibly thereafter disturb hippocampal neurogenesis and functional plasticity.
Collapse
Affiliation(s)
- Jin-Tao Liu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China; Department of Neurosurgery, Tangdou Hospital, Fourth Military Medical University, China.
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, China.
| | - Jie-Qiong Zhang
- Department of Occupational & Environmental Health, Fourth Military Medical University, China.
| | - Fang Kuang
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China.
| | - Liang-Wei Chen
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Aikawa T, Mogushi K, Iijima-Tsutsui K, Ishikawa K, Sakurai M, Tanaka H, Mizusawa H, Watase K. Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model. Hum Mol Genet 2015; 24:4780-91. [PMID: 26034136 PMCID: PMC4527484 DOI: 10.1093/hmg/ddv202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/26/2015] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Cav2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs. Mutant Cav2.1 confers toxicity primarily through a toxic gain-of-function mechanism; however, its molecular basis remains elusive. Here, we studied the cerebellar gene expression patterns of young Sca6-MPI(118Q/118Q) knockin (KI) mice, which expressed mutant Cav2.1 from an endogenous locus and recapitulated many phenotypic features of human SCA6. Transcriptional signatures in the MPI(118Q/118Q) mice were distinct from those in the Sca1(154Q/2Q) mice, a faithful SCA1 KI mouse model. Temporal expression profiles of the candidate genes revealed that the up-regulation of genes associated with microglial activation was initiated before PC degeneration and was augmented as the disease progressed. Histological analysis of the MPI(118Q/118Q) cerebellum showed the predominance of M1-like pro-inflammatory microglia and it was concomitant with elevated expression levels of tumor necrosis factor, interleukin-6, Toll-like receptor (TLR) 2 and 7. Genetic ablation of MyD88, a major adaptor protein conveying TLR signaling, altered expression patterns of M1/M2 microglial phenotypic markers in the MPI(118Q/118Q) cerebellum. More importantly, it ameliorated PC loss and partially rescued motor impairments in the early disease phase. These results suggest that early neuroinflammatory response may play an important role in the pathogenesis of SCA6 and its modulation could pave the way for slowing the disease progression during the early stage of the disease.
Collapse
Affiliation(s)
- Tomonori Aikawa
- Center for Brain Integration Research, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan
| | - Kaoru Mogushi
- Department of Bioinformatics, Medical Research Institute, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan, Center for Genomic and Regenerative Medicine, Juntendo University, Tokyo 113-0033, Japan
| | - Kumiko Iijima-Tsutsui
- Department of Bioinformatics, Medical Research Institute, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan, Department of Social Services and Healthcare Management, International University of Health and Welfare, Tochigi 324-8501, Japan and
| | - Kinya Ishikawa
- Department of Neurology and Neurogical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan
| | | | - Hiroshi Tanaka
- Department of Bioinformatics, Medical Research Institute, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan
| | - Hidehiro Mizusawa
- Center for Brain Integration Research, Department of Neurology and Neurogical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kei Watase
- Center for Brain Integration Research, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan,
| |
Collapse
|