1
|
Angal A, Shidture S, Syed J, Tiwari DP, Dubey AK, Bhaduri A, Pujari R. In vitro adhesion and anti-inflammatory properties of Limosilactobacillus fermentum FS-10 isolated from infant fecal sample. Int Microbiol 2024; 27:227-238. [PMID: 37269431 DOI: 10.1007/s10123-023-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
In this study, seven strains of Limosilactobacillus fermentum were isolated from an infant fecal sample and characterized using in vitro studies. Lactobacillus rhamnosus GG was used as a comparison because it is a well-documented commercial probiotic. The isolates were tested for attributes such as acid and phenol tolerance, bile salt hydrolase (BSH) activity, and antibiotic sensitivity. One isolate, L. fermentum FS-10, displayed enhanced cell surface hydrophobicity (> 85%) and mucin adhesion. Mucin-binding helps colonization in the gut. The immunomodulatory property of L. fermentum FS-10 was evaluated by determining the modulation of pro- and anti-inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, and nitric oxide (NO) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions induced by lipopolysaccharide (LPS). L. fermentum FS-10 potently downregulated the expression of TNF-α and nitric oxide and upregulated IL-10 levels, indicating an anti-inflammatory response. Safety assessment of the strain revealed the absence of genes for virulence factors, toxin production, and antibiotic resistance, potentiating application as a probiotic strain.
Collapse
Affiliation(s)
- Ashvini Angal
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Shubham Shidture
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Jaserah Syed
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Deepika Pandey Tiwari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Ashok Kumar Dubey
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Anirban Bhaduri
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Radha Pujari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India.
| |
Collapse
|
2
|
Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation 2022; 128:67-82. [DOI: 10.1016/j.diff.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
3
|
Hegde P, B R S, Ballal S, Swamy BM, Inamdar SR. Rhizoctonia bataticola lectin induces apoptosis and inhibits metastasis in ovarian cancer cells by interacting with CA 125 antigen differentially expressed on ovarian cells. Glycoconj J 2021; 38:669-688. [PMID: 34748163 DOI: 10.1007/s10719-021-10027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
A N-glycan specific lectin from Rhizoctonia bataticola [RBL] was shown to induce growth inhibitory and apoptotic effect in human ovarian, colon and leukemic cells but mitogenic effect on normal PBMCs as reported earlier, revealing its clinical potential. RBL has unique specificity for high mannose tri and tetra antennary N-glycans, expressed in ovarian cancer and also recognizes glycans which are part of CA 125 antigen, a well known ovarian cancer marker. Hence, in the present study diagnostic and therapeutic potential of RBL was investigated using human ovarian epithelial cancer SKOV3 and OVCAR3 cells known for differentially expressing CA 125. RBL binds differentially to human ovarian normal, cyst and cancer tissues. Flow cytometry, western blot analysis of membrane proteins showed the competitive binding of RBL and CA 125 antibody for the same binding sites on SKOV3 and OVCAR3 cells. RBL has strong binding to both SKOV3 and OVCAR3 cells with MFI of 173 and 155 respectively. RBL shows dose and time dependent growth inhibitory effect with IC50 of 2.5 and 8 μg/mL respectively for SKOV3 and OVCAR3 cells. RBL induces reproductive cell death, morphological changes, nuclear degradation and increased release of ROS in SKOV3 and OVCAR3 cells leading to cell death. This is also supported by increase in hypodiploid population, altered MMP leading to apoptosis possibly involving intrinsic pathway. Adhesion, wound healing, invasion and migration assays demonstrated anti-metastasis effect of RBL apart from its growth inhibitory effect. These results show the promising potential of RBL both as a diagnostic and therapeutic agent.
Collapse
Affiliation(s)
- Prajna Hegde
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Sindhura B R
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Suhas Ballal
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India.
| |
Collapse
|
4
|
Singh RS, Walia AK, Kennedy JF. Structural aspects and biomedical applications of microfungal lectins. Int J Biol Macromol 2019; 134:1097-1107. [DOI: 10.1016/j.ijbiomac.2019.05.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
5
|
Liu Y, Ou Y, Sun L, Li W, Yang J, Zhang X, Hu Y. Alcohol dehydrogenase of Candida albicans triggers differentiation of THP-1 cells into macrophages. J Adv Res 2019; 18:137-145. [PMID: 30923636 PMCID: PMC6424053 DOI: 10.1016/j.jare.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Candida albicans proteins located on the cell wall and in the cytoplasm have gained great attention because they are not only involved in cellular metabolism and the maintenance of integrity but also interact with host immune systems. Previous research has reported that enolase from C. albicans exhibits high immunogenicity and effectively protects mice against disseminated candidiasis. In this study, alcohol dehydrogenase (ADH) of C. albicans was cloned and purified for the first time, and this study focused on evaluating its effects on the differentiation of the human monocytic cell line THP-1. The morphological features of THP-1 cells exposed to ADH were similar to those of phorbol-12-myristate acetate-differentiated (PMA-differentiated) macrophages. Functionally, ADH enhanced the adhesion, phagocytosis, and killing capacities of THP-1 cells. A flow cytometric assay demonstrated that ADH-induced THP-1 cells significantly increased CD86 and CD11b expression. The production of IL-1β, IL-6, and TNF-α by cells increased in the presence of ADH. As expected, after pretreatment with a MEK inhibitor (U0126), ADH-induced THP-1 cells exhibited unaltered morphological features, eliminated ERK1/2 phosphorylation, prevented CD86/CD11b upregulation and inhibited pro-inflammatory cytokine increase. Collectively, these results suggest that ADH enables THP-1 cells to differentiate into macrophages via the ERK pathway, and it may play an important role in the immune response against fungal invasion.
Collapse
Affiliation(s)
- Yanglan Liu
- Department of Oral Biology, School of Stomatology, Sun Yat-sen University, China
| | - Yuxue Ou
- Department of Oral Biology, School of Stomatology, Sun Yat-sen University, China
| | - Luping Sun
- Department of Oral Biology, School of Stomatology, Sun Yat-sen University, China
| | - Wenqing Li
- Department of Oral Biology, School of Stomatology, Sun Yat-sen University, China
| | - Jinghong Yang
- Department of Oral Biology, School of Stomatology, Sun Yat-sen University, China
| | - Xiaohuan Zhang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Hu
- Department of Oral Biology, School of Stomatology, Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
|
7
|
Ponraj T, Paulpandi M, Vivek R, Vimala K, Kannan S. Protein regulation and Apoptotic induction in human breast carcinoma cells (MCF-7) through lectin from G. beauts. Int J Biol Macromol 2016; 95:1235-1245. [PMID: 27840218 DOI: 10.1016/j.ijbiomac.2016.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/08/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022]
Abstract
Lectins are proteins that show a variety of biological activities. Nevertheless, information on lectin from Gluttonous beauts and their anticancer activities are very limited. In this study, we purified a lectin from hemolymph of G. beauts and identified its molecular weight to be 66kDa. The effect of lectin at different concentrations (μg/mL) on the cell growth and apoptosis were evaluated against MCF-7 and MCF-10A cells, whereas cytotoxicity to the MCF-7 cells mediated by lectin was observed and the mechanism of action of the lectin in including apoptosis in cancer cells via the intrinsic pathway was also proposed. The MCF-7 cells were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation. In MCF-10A cells lectin did not show any adverse effect even at higher concentration. Cell cycle analysis also showed a significant cell cycle arrest on selected cells after lectin treatment. Western blotting suggested that lectin up regulates the apoptotic protein expression in MCF-7 cells while it down regulates the level of Bcl-2 expression.
Collapse
Affiliation(s)
- Thondhi Ponraj
- Proteomics and Molecular Cell Physiology Lab, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, TN, India.
| | - Manickam Paulpandi
- Proteomics and Molecular Cell Physiology Lab, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, TN, India
| | - Raju Vivek
- Biomaterial Laboratory, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karuppaiya Vimala
- Proteomics and Molecular Cell Physiology Lab, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, TN, India
| | - Soundarapandian Kannan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, TN, India.
| |
Collapse
|
8
|
Torres-Castro I, Arroyo-Camarena ÚD, Martínez-Reyes CP, Gómez-Arauz AY, Dueñas-Andrade Y, Hernández-Ruiz J, Béjar YL, Zaga-Clavellina V, Morales-Montor J, Terrazas LI, Kzhyshkowska J, Escobedo G. Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett 2016; 176:81-9. [DOI: 10.1016/j.imlet.2016.06.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022]
|
9
|
Wu J, Wang J, Wang S, Rao P. Lunatin, a novel lectin with antifungal and antiproliferative bioactivities from Phaseolus lunatus billb. Int J Biol Macromol 2016; 89:717-24. [PMID: 27164500 DOI: 10.1016/j.ijbiomac.2016.04.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 02/08/2023]
Abstract
A novel lectin with a molecular mass of 24.3kDa, designated Lunatin, was isolated from edible seeds of Phaseolus lunatus billb. The purification scheme consisted of ammonium sulfate precipitation, affinity chromatography, ion exchange chromatography, and gel filtration chromatography. The lectin is a glycoprotein, as determined by staining with periodic acid-Schiff (PAS), and its N-terminal amino acid sequence was determined to be DAVIYRGPGDLHTGS. Lunatin exhibited hemagglutinating activity towards human blood group A erythrocytes, which was mostly preserved up to 50°C and retained at ambient temperature at pH 2.0-11.0. d-fructose, d-galactose, d-glucose, and mannitol were capable of inhibiting its hemagglutinating activity. Lunatin was found to be a metal-dependent protein, as its activity was inhibited by the metallic compounds K2Cr2O7, SnCl2, and LiCl, though it was unaffected by MgCl2, ZnCl2, BaCl2, CuCl2, FeCl3, or CaCl2. In addition, Lunatin exerted potent antifungal activity toward a variety of fungal species, including Sclerotium rolfsii, Physalospora piricola, Fusarium oxysporum, and Botrytis cinerea. Finally, proliferation of K562 leukemia cells was strongly inhibited by Lunatin, with an IC50 of 13.7μM, whereas HeLa and HepG2 cells were only weakly affected. These findings further the identification and understanding of functional factors in edible plant seeds.
Collapse
Affiliation(s)
- Jinhong Wu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Minhou District, Fuzhou 350108, China; Department of Food Science and Engineering, Shanghai Food Safety and Engineering Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jun Wang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Minhou District, Fuzhou 350108, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Minhou District, Fuzhou 350108, China.
| | - Pingfan Rao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Minhou District, Fuzhou 350108, China
| |
Collapse
|