1
|
Identification and in silico functional prediction of lineage-specific SNPs distributed in DosR-related proteins and resuscitation-promoting factor proteins of Mycobacterium tuberculosis. Heliyon 2020; 6:e05744. [PMID: 33364506 PMCID: PMC7753917 DOI: 10.1016/j.heliyon.2020.e05744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
One-third of the world population is infected by Mycobacterium tuberculosis, which may persist in the latent or dormant state. Bacteria can shift to dormancy when encountering harsh conditions such as low oxygen, nutrient starvation, high acidity and host immune defenses. Genes related to the dormancy survival regulator (DosR) regulon are responsible for the inhibition of aerobic respiration and replication, which is required to enter dormancy. Conversely, resuscitation-promoting factor (rpf) proteins participate in reactivation from dormancy and the development of active tuberculosis (TB). Many DosR regulon and rpf proteins are immunodominant T cell antigens that are highly expressed in latent TB infection. They could serve as TB vaccine candidates and be used for diagnostic development. We explored the genetic polymorphisms of 50 DosR-related genes and 5 rpf genes among 1,170 previously sequenced clinical M. tuberculosis genomes. Forty-three lineage- or sublineage-specific nonsynonymous single nucleotide polymorphisms (nsSNPs) were identified. Ten nsSNPs were specific to all Mtb isolates belonging to lineage 1 (L1). Two common sublineages, the Beijing family (L2.2) and EAI2 (L1.2.1), differed at as many as 26 lineage- or sublineage-specific SNPs. DosR regulon genes related to membrane proteins and the rpf family possessed mean dN/dS ratios greater than one, suggesting that they are under positive selection. Although the T cell epitope regions of DosR-related and rpf antigens were quite conserved, we found that the epitopes in L1 had higher rates of genetic polymorphisms than the other lineages. Some mutations in immunogenic epitopes of the antigens were specific to particular M. tuberculosis lineages. Therefore, the genetic diversity of the DosR regulon and rpf proteins might impact the adaptation of M. tuberculosis to the dormant state and the immunogenicity of latency antigens, which warrants further investigation.
Collapse
|
2
|
Liu YY, Sha W, Xu S, Gui XW, Xia L, Ji P, Wang S, Zhao GP, Zhang X, Chen Y, Wang Y. Identification of HLA-A2-Restricted Mycobacterial Lipoprotein Z Peptides Recognized by T CellsFrom Patients With ActiveTuberculosis Infection. Front Microbiol 2018; 9:3131. [PMID: 30622521 PMCID: PMC6308912 DOI: 10.3389/fmicb.2018.03131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Identification of HLA-restricted peptides derived from mycobacterial antigens that are endowed with high affinity and strong antigenicity is not only of interest in tuberculosis (TB) diagnostics and treatment efficacy evaluation, but might also provide potential candidates for the development of therapeutic vaccines against drug-resistant TB. Our previous work demonstrated that lipoprotein Z (LppZ) displayed high immunogenicity and antigenicity in active TB patients. In the present study, ten HLA-A2-restricted LppZ peptides (LppZp1-10) were predicted by bioinformatics, among which LppZp7 and LppZp10 were verified to possess high affinity to HLA-A2 molecules using T2 cell-based affinity binding assay. Moreover, results from ELISpot assay showed that both LppZp7 and LppZp10 peptides were able to induce more IFN-γ producing cells upon ex vivo stimulation of PBMC from HLA-A2+ active TB (ATB) patients as compared to those from healthy controls (HCs). Also, the numbers of LppZp7 and LppZp10-specific IFN-γ producing cells exhibited positive correlations with those of ESAT-6 peptide (E6p) or CFP-10 peptide (C10p) in ATB. Interestingly, stimulation with LppZp7/p10 mixture was able to induce higher intracellular expression of IFN-γ and IL-2 cytokines in CD8+ and CD4+ T cells from ATB as compared to HC, associated with lower expression of TNF-α in both CD8+ and CD4+ T cells. Taken together, HLA-A2-restricted LppZp7 and LppZp10 peptides display high immunoreactivity in HLA-matched ATB patients demonstrated by high responsiveness in both CD8+ and CD4+ T cells. With the ability to induce strong antigen-specific cellular responses, LppZp7 and LppZp10 are of potential value for the future applications in the prevention and control of TB.
Collapse
Affiliation(s)
- Yuan-Yong Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China.,Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiqiang Xu
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu-Wei Gui
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liliang Xia
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Ji
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujun Wang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Ping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Xiao Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yingying Chen
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|