1
|
Zhou Y, Richmond A, Yan C. Harnessing the potential of CD40 agonism in cancer therapy. Cytokine Growth Factor Rev 2024; 75:40-56. [PMID: 38102001 PMCID: PMC10922420 DOI: 10.1016/j.cytogfr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.
Collapse
Affiliation(s)
- Yang Zhou
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA.
| |
Collapse
|
2
|
Liu C, Zhou Y, Guo D, Huang Y, Ji X, Li Q, Chen N, Fan C, Song H. Reshaping Intratumoral Mononuclear Phagocytes with Antibody-Opsonized Immunometabolic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303298. [PMID: 37867225 PMCID: PMC10700695 DOI: 10.1002/advs.202303298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Mononuclear phagocytes (MPs) are vital components of host immune defenses against cancer. However, tumor-infiltrating MPs often present tolerogenic and pro-tumorigenic phenotypes via metabolic switching triggered by excessive lipid accumulation in solid tumors. Inspired by viral infection-mediated MP modulation, here enveloped immunometabolic nanoparticles (immeNPs) are designed to co-deliver a viral RNA analog and a fatty acid oxidation regulator for synergistic reshaping of intratumoral MPs. These immeNPs are camouflaged with cancer cell membranes for tumor homing and opsonized with anti-CD163 antibodies for specific MP recognition and uptake. It is found that internalized immeNPs coordinate lipid metabolic reprogramming with innate immune stimulation, inducing M2-to-M1 macrophage repolarization and tolerogenic-to-immunogenic dendritic cell differentiation for cytotoxic T cell infiltration. The authors further demonstrate that the use of immeNPs confers susceptibility to anti-PD-1 therapy in immune checkpoint blockade-resistant breast and ovarian tumors, and thereby provide a promising strategy to expand the potential of conventional immunotherapy.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Daoxia Guo
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yan Huang
- College of Chemistry and Materials ScienceThe Education Ministry Key Lab of Resource ChemistryJoint International Research Laboratory of Resource Chemistry of Ministry of EducationShanghai Key Laboratory of Rare Earth Functional Materialsand Shanghai Frontiers Science Center of Biomimetic CatalysisShanghai Normal UniversityShanghai200234China
| | - Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Nan Chen
- College of Chemistry and Materials ScienceThe Education Ministry Key Lab of Resource ChemistryJoint International Research Laboratory of Resource Chemistry of Ministry of EducationShanghai Key Laboratory of Rare Earth Functional Materialsand Shanghai Frontiers Science Center of Biomimetic CatalysisShanghai Normal UniversityShanghai200234China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
3
|
Alahyari S, Rajaeinejad M, Jalaeikhoo H, Chegini L, Almasi Aghdam M, Asgari A, Nasiri M, Khoshdel A, Faridfar A. Immunological evaluation of patients with 2019 novel coronavirus pneumonia: CD4+ and CD16+ cells may predict severity and prognosis. PLoS One 2022; 17:e0268712. [PMID: 35930526 PMCID: PMC9355202 DOI: 10.1371/journal.pone.0268712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Available but insufficient evidence shows that changes may occur in the immune system following coronavirus disease 2019 (COVID-19). The present study aimed at evaluating immunological changes in patients with severe acute respiratory syndrome coronavirus‐2 (SARS-CoV-2) pneumonia compared with the control group. Method The present study was performed on 95 patients with COVID-19 (32 severe and 63 moderate cases) and 22 healthy controls. Relationship between immune cells, disease severity and lung involvement was assessed. Binary logistic regression and ROC curve tests were used for statistical analysis. Results A significant decrease was observed in CD20+ cell counts of the patients. To differentiate patients from healthy individuals, the cutoff point for the CD4+ cell count was 688 /μL, sensitivity 0.96, and specificity 0.84. An increase in CD4+ cells reduces the odds of severe disease (odds ratio = 0.82, P = 0.047) and death (odds ratio = 0.74, P = 0.029). CD4+ cells play a pivotal role in the severity of lung involvement (P = 0.03). In addition to CD4+ cells, Fc gamma receptor III (FcγRIII) (CD16) also played a significant prognosis (odds ratio = 0.55, P = 0.047). In severe cases, C-reactive protein, Blood urea nitrogen, and Creatine phosphokinase levels, as well as neutrophil counts, were significantly higher than those of moderate ones whereas lymphocyte count in severe cases was lower than that of moderate ones. Conclusion The number of total T-cells and B-cells in patients with COVID-19 was lower than that of controls; however, their NK cells increased. FcγRIII and CD4+ cells are of great importance due to their association with COVID-19 prognosis.
Collapse
Affiliation(s)
- Sam Alahyari
- Science and Research branch, AJA University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA‐ CERTC), AJA University of Medical Sciences, Tehran, Iran
- * E-mail:
| | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA‐ CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Leila Chegini
- Resident of Internal Medicine, Faculty of Medicine Aja University of Medical Sciences, Tehran, Iran
| | - Maryam Almasi Aghdam
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asgari
- Infectious Diseases Research Center, AJA University of Medical Science, Tehran, Iran
| | - Malihe Nasiri
- Department of biostatics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Khoshdel
- Modern Epidemiology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA‐ CERTC), AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
CD40-CD154: A perspective from type 2 immunity. Semin Immunol 2021; 53:101528. [PMID: 34810089 DOI: 10.1016/j.smim.2021.101528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
The interaction between CD40 and CD154 (CD40 ligand) is central in immunology, participating in CD4+ T cell priming by dendritic cells (DC), CD4+ T cell help to B cells and classical macrophage activation by CD4+ T cells. However, its role in the Th2 side of immunology including helminth infection remains incompletely understood. Contrary to viral and bacterial stimuli, helminth products usually do not cause CD40 up-regulation in DC, and exogenous CD40 ligation drives Th2-biased systems towards Th1. On the other hand, CD40 and CD154 are necessary for induction of most Th2 responses. We attempt to reconcile these observations, mainly by proposing that (i) CD40 up-regulation in DC in Th2 systems is mostly induced by alarmins, (ii) the Th2 to Th1 shift induced by exogenous CD40 ligation is related to the capacity of such ligation to enhance IL-12 production by myeloid cells, and (iii) signals elicited by endogenous CD154 available in Th2 contexts and by exogenous CD40 ligation are probably different. We stress that CD40-CD154 is important beyond cognate cellular interactions. In such a context, we argue that the proliferation response of B-cells to IL-4 plus CD154 reflects a Th2-specific mechanism for polyclonal B-cell amplification and IgE production at infection sites. Finally, we argue that CD154 is a general immune activation signal across immune polarization including Th2, and propose that competition for CD154 at tissue sites may provide negative feedback on response induction at each site.
Collapse
|
5
|
Son YM, Sun J. Co-Ordination of Mucosal B Cell and CD8 T Cell Memory by Tissue-Resident CD4 Helper T Cells. Cells 2021; 10:cells10092355. [PMID: 34572004 PMCID: PMC8471972 DOI: 10.3390/cells10092355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Adaptive cellular immunity plays a major role in clearing microbial invasion of mucosal tissues in mammals. Following the clearance of primary pathogens, memory lymphocytes are established both systemically and locally at pathogen entry sites. Recently, resident memory CD8 T and B cells (TRM and BRM respectively), which are parked mainly in non-lymphoid mucosal tissues, were characterized and demonstrated to be essential for protection against secondary microbial invasion. Here we reviewed the current understanding of the cellular and molecular cues regulating CD8 TRM and BRM development, maintenance and function. We focused particularly on elucidating the role of a novel tissue-resident helper T (TRH) cell population in assisting TRM and BRM responses in the respiratory mucosa following viral infection. Finally, we argue that the promotion of TRH responses by future mucosal vaccines would be key to the development of successful universal influenza or coronavirus vaccines, providing long-lasting immunity against a broad spectrum of viral strains.
Collapse
Affiliation(s)
- Young Min Son
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: or
| |
Collapse
|
6
|
Yan Y, Yao D, Li X. Immunological Mechanism and Clinical Application of PAMP Adjuvants. Recent Pat Anticancer Drug Discov 2021; 16:30-43. [PMID: 33563182 DOI: 10.2174/1574892816666210201114712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The host innate immune system can recognize Pathogen-Associated Molecular Patterns (PAMPs) through Pattern Recognition Receptors (PRRs), thereby initiating innate immune responses and subsequent adaptive immune responses. PAMPs can be developed as a vaccine adjuvant for modulating and optimizing antigen-specific immune responses, especially in combating viral infections and tumor therapy. Although several PAMP adjuvants have been successfully developed they are still lacking in general, and many of them are in the preclinical exploration stage. OBJECTIVE This review summarizes the research progress and development direction of PAMP adjuvants, focusing on their immune mechanisms and clinical applications. METHODS PubMed, Scopus, and Google Scholar were screened for this information. We highlight the immune mechanisms and clinical applications of PAMP adjuvants. RESULTS Because of the differences in receptor positions, specific immune cells targets, and signaling pathways, the detailed molecular mechanism and pharmacokinetic properties of one agonist cannot be fully generalized to another agonist, and each PAMP should be studied separately. In addition, combination therapy and effective integration of different adjuvants can increase the additional efficacy of innate and adaptive immune responses. CONCLUSION The mechanisms by which PAMPs exert adjuvant functions are diverse. With continuous discovery in the future, constant adjustments should be made to build new understandings. At present, the goal of therapeutic vaccination is to induce T cells that can specifically recognize and eliminate tumor cells and establish long-term immune memory. Following immune checkpoint modulation therapy, cancer treatment vaccines may be an option worthy of clinical testing.
Collapse
Affiliation(s)
- Yu Yan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Dan Yao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Xiaoyu Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| |
Collapse
|
7
|
Liu D, Ford ML. CD11b is a novel alternate receptor for CD154 during alloimmunity. Am J Transplant 2020; 20:2216-2225. [PMID: 32149455 PMCID: PMC7395865 DOI: 10.1111/ajt.15835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 01/25/2023]
Abstract
Antagonism of the CD154/CD40 pathway is a highly effective means of inducing long-term graft survival in preclinical models. Using a fully allogeneic murine transplant model, we found that CD154 blockade was more effective in prolonging graft survival than was CD40 blockade, raising the possibility that CD154 binds a second receptor. To test this, we queried the impact of CD154 antagonism in the absence of CD40. Data indicated that anti-CD154 functioned to reduce graft-infiltrating CD8+ T cells in both WT and CD40-/- hosts. Because it has recently been reported that CD154 can ligate CD11b, we addressed the impact of blocking CD154-CD11b interactions during transplantation. We utilized a specific peptide antagonist that prevents CD154 binding of CD11b but has no effect on CD154-CD40 interactions. CD154:CD11b antagonism significantly increased the efficacy of anti-CD40 in prolonging allograft survival as compared to anti-CD40 plus control peptide. Mechanistically, CD154:CD11b antagonism functioned to reduce the frequency of graft-infiltrating CD8+ T cells and innate immune cells. These data therefore demonstrate that blocking CD154 interactions with both CD40 and CD11b is required for optimal inhibition of alloimmunity and provide an explanation for why CD40 blockers may be less efficacious than anti-CD154 reagents for the inhibition of allograft rejection.
Collapse
Affiliation(s)
- Danya Liu
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia
| | - Mandy L Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia
| |
Collapse
|
8
|
CD40 in Endothelial Cells Restricts Neural Tissue Invasion by Toxoplasma gondii. Infect Immun 2019; 87:IAI.00868-18. [PMID: 31109947 DOI: 10.1128/iai.00868-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/10/2019] [Indexed: 02/08/2023] Open
Abstract
Little is known about whether pathogen invasion of neural tissue is affected by immune-based mechanisms in endothelial cells. We examined the effects of endothelial cell CD40 on Toxoplasma gondii invasion of the retina and brain, organs seeded hematogenously. T. gondii circulates in the bloodstream within infected leukocytes (including monocytes and dendritic cells) and as extracellular tachyzoites. After T. gondii infection, mice that expressed CD40 restricted to endothelial cells exhibited diminished parasite loads and histopathology in the retina and brain. These mice also had lower parasite loads in the retina and brain after intravenous (i.v.) injection of infected monocytes or dendritic cells. The protective effect of endothelial cell CD40 was not explained by changes in cellular or humoral immunity, reduced transmigration of leukocytes into neural tissue, or reduced invasion by extracellular parasites. Circulating T. gondii-infected leukocytes (dendritic cells used as a model) led to infection of neural endothelial cells. The number of foci of infection in these cells were reduced if endothelial cells expressed CD40. Infected dendritic cells and macrophages expressed membrane-associated inducible Hsp70. Infected leukocytes triggered Hsp70-dependent autophagy in CD40+ endothelial cells and anti-T. gondii activity dependent on ULK1 and beclin 1. Reduced parasite load in the retina and brain not only required CD40 expression in endothelial cells but was also dependent on beclin 1 and the expression of inducible Hsp70 in dendritic cells. These studies suggest that during endothelial cell-leukocyte interaction, CD40 restricts T. gondii invasion of neural tissue through a mechanism that appears mediated by endothelial cell anti-parasitic activity stimulated by Hsp70.
Collapse
|
9
|
Selection and expression of CD40 single chain variable fragment by phage display and evaluation of tumor specific immune activation. Int Immunopharmacol 2019; 71:224-232. [DOI: 10.1016/j.intimp.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 01/27/2019] [Accepted: 03/08/2019] [Indexed: 01/27/2023]
|
10
|
Kumar S, Jeong Y, Ashraf MU, Bae YS. Dendritic Cell-Mediated Th2 Immunity and Immune Disorders. Int J Mol Sci 2019; 20:ijms20092159. [PMID: 31052382 PMCID: PMC6539046 DOI: 10.3390/ijms20092159] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells that recognize and present antigens to naïve T cells to induce antigen-specific adaptive immunity. Among the T-cell subsets, T helper type 2 (Th2) cells produce the humoral immune responses required for protection against helminthic disease by activating B cells. DCs induce a Th2 immune response at a certain immune environment. Basophil, eosinophil, mast cells, and type 2 innate lymphoid cells also induce Th2 immunity. However, in the case of DCs, controversy remains regarding which subsets of DCs induce Th2 immunity, which genes in DCs are directly or indirectly involved in inducing Th2 immunity, and the detailed mechanisms underlying induction, regulation, or maintenance of the DC-mediated Th2 immunity against allergic environments and parasite infection. A recent study has shown that a genetic defect in DCs causes an enhanced Th2 immunity leading to severe atopic dermatitis. We summarize the Th2 immune-inducing DC subsets, the genetic and environmental factors involved in DC-mediated Th2 immunity, and current therapeutic approaches for Th2-mediated immune disorders. This review is to provide an improved understanding of DC-mediated Th2 immunity and Th1/Th2 immune balancing, leading to control over their adverse consequences.
Collapse
Affiliation(s)
- Sunil Kumar
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yideul Jeong
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Muhammad Umer Ashraf
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yong-Soo Bae
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
11
|
Levin N, Weinstein-Marom H, Pato A, Itzhaki O, Besser MJ, Eisenberg G, Peretz T, Lotem M, Gross G. Potent Activation of Human T Cells by mRNA Encoding Constitutively Active CD40. THE JOURNAL OF IMMUNOLOGY 2018; 201:2959-2968. [PMID: 30305327 DOI: 10.4049/jimmunol.1701725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
New strategies for augmenting the actual performance of therapeutic T cells in vivo are needed for improving clinical outcome of adoptive cell therapy. Cumulative findings suggest that CD40 plays an intrinsic role in T cell costimulation. Recently, we demonstrated the ability of truncated, auto-oligomerizing CD40 derivatives to induce strong activation of APCs in a ligand-independent manner. We reasoned that constitutively active CD40 (caCD40) can similarly exert enhancing effects on human antitumor T cells. To test this assumption, we transfected human T cells with in vitro-transcribed caCD40 mRNA. In polyclonal T cells, caCD40 triggered IFN-γ secretion and upregulated CD25 and 4-1BB. In antimelanoma tumor-infiltrating lymphocytes (TILs), caCD40 induced massive production of IFN-γ, exerting a pronounced synergistic effect when coexpressed with constitutively active TLR4 devoid of its extracellular ligand binding. In unselected "young" TILs, caCD40 reproducibly increased surface expression of CD25, OX40, 4-1BB, CD127, and CD28. Three days post-mRNA electroporation of CD8 TILs, caCD40 elevated IFN-γ and TNF-α production and cytolytic activity in the presence of autologous but not HLA-I-mismatched melanoma. Enhanced killing of autologous melanoma by young TILs was observed 4 d posttransfection. These findings suggest that caCD40 can function as a potent T cell adjuvant and provide essential guidelines for similar manipulation of other key members of the TNFR family.
Collapse
Affiliation(s)
- Noam Levin
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel.,Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Hadas Weinstein-Marom
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel.,Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Aviad Pato
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel.,Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Orit Itzhaki
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel.,Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; and
| | - Galit Eisenberg
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Gideon Gross
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel; .,Department of Biotechnology, Tel-Hai College, Upper Galilee 1220800, Israel
| |
Collapse
|
12
|
Chiodetti AL, Sánchez Vallecillo MF, Dolina JS, Crespo MI, Marin C, Schoenberger SP, Allemandi DA, Palma SD, Pistoresi-Palencia MC, Morón G, Maletto BA. Class-B CpG-ODN Formulated With a Nanostructure Induces Type I Interferons-Dependent and CD4 + T Cell-Independent CD8 + T-Cell Response Against Unconjugated Protein Antigen. Front Immunol 2018; 9:2319. [PMID: 30364187 PMCID: PMC6192457 DOI: 10.3389/fimmu.2018.02319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
There is a need for new vaccine adjuvant strategies that offer both vigorous antibody and T-cell mediated protection to combat difficult intracellular pathogens and cancer. To this aim, we formulated class-B synthetic oligodeoxynucleotide containing unmethylated cytosine-guanine motifs (CpG-ODN) with a nanostructure (Coa-ASC16 or coagel) formed by self-assembly of 6-0-ascorbyl palmitate ester. Our previous results demonstrated that mice immunized with ovalbumin (OVA) and CpG-ODN formulated with Coa-ASC16 (OVA/CpG-ODN/Coa-ASC16) elicited strong antibodies (IgG1 and IgG2a) and Th1/Th17 cellular responses without toxic systemic effects. These responses were superior to those induced by a solution of OVA with CpG-ODN or OVA/CpG-ODN formulated with aluminum salts. In this study, we investigated the capacity of this adjuvant strategy (CpG-ODN/Coa-ASC16) to elicit CD8+ T-cell response and some of the underlying cellular and molecular mechanisms involved in adaptive response. We also analyzed whether this adjuvant strategy allows a switch from an immunization scheme of three-doses to one of single-dose. Our results demonstrated that vaccination with OVA/CpG-ODN/Coa-ASC16 elicited an antigen-specific long-lasting humoral response and importantly-high quality CD8+ T-cell immunity with a single-dose immunization. Moreover, Coa-ASC16 promoted co-uptake of OVA and CpG-ODN by dendritic cells. The CD8+ T-cell response induced by OVA/CpG-ODN/Coa-ASC16 was dependent of type I interferons and independent of CD4+ T-cells, and showed polyfunctionality and efficiency against an intracellular pathogen. Furthermore, the cellular and humoral responses elicited by the nanostructured formulation were IL-6-independent. This system provides a simple and inexpensive adjuvant strategy with great potential for future rationally designed vaccines.
Collapse
Affiliation(s)
- Ana L. Chiodetti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - María F. Sánchez Vallecillo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Joseph S. Dolina
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - María I. Crespo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Constanza Marin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Stephen P. Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Daniel A. Allemandi
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Tecnología Farmacéutica, Córdoba, Argentina
| | - Santiago D. Palma
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Tecnología Farmacéutica, Córdoba, Argentina
| | - María C. Pistoresi-Palencia
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Gabriel Morón
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Belkys A. Maletto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| |
Collapse
|
13
|
Ara A, Ahmed KA, Xiang J. Multiple effects of CD40-CD40L axis in immunity against infection and cancer. Immunotargets Ther 2018; 7:55-61. [PMID: 29988701 PMCID: PMC6029590 DOI: 10.2147/itt.s163614] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CD8+ cytotoxic T lymphocyte (CTL) protects against infection and cancer cells. Understanding the mechanisms involved in generation and maintenance of effective CTL responses is essential for improving disease therapy and vaccine protocols. During CTL responses, immune cells encounter several tightly regulated signaling pathways; therefore, in such a dynamic process, proper integration of critical signals is necessary to orchestrate an effective immune response. In this review, we have focused on CD40-CD40L interactions (a key signal) in the regulation of dendritic cell (DC)-T cell (CD4+ T and CD8+ T) cross-talk, rescuing CTL exhaustion, and converting DC tolerization. We have also highlighted the knowledge gap and future directions to design immunotherapies.
Collapse
Affiliation(s)
- Anjuman Ara
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Khawaja Ashfaque Ahmed
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| |
Collapse
|
14
|
Bathke B, Pätzold J, Kassub R, Giessel R, Lämmermann K, Hinterberger M, Brinkmann K, Chaplin P, Suter M, Hochrein H, Lauterbach H. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice. Immunology 2018; 154:285-297. [PMID: 29281850 PMCID: PMC5980220 DOI: 10.1111/imm.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022] Open
Abstract
The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic® (MVA-BN® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN® backbone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mark Suter
- Vetsuisse Fakultät, Dekanat, Bereich Immunologie, Universität Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
15
|
Innate and adaptive T cells in influenza disease. Front Med 2018; 12:34-47. [DOI: 10.1007/s11684-017-0606-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
|
16
|
Tay NQ, Lee DCP, Chua YL, Prabhu N, Gascoigne NRJ, Kemeny DM. CD40L Expression Allows CD8 + T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells. Front Immunol 2017; 8:1484. [PMID: 29163545 PMCID: PMC5672143 DOI: 10.3389/fimmu.2017.01484] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022] Open
Abstract
CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses.
Collapse
Affiliation(s)
- Neil Q Tay
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Debbie C P Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yen Leong Chua
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Nayana Prabhu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - David M Kemeny
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Neyt K, GeurtsvanKessel CH, Lambrecht BN. Double-negative T resident memory cells of the lung react to influenza virus infection via CD11c(hi) dendritic cells. Mucosal Immunol 2016; 9:999-1014. [PMID: 26376363 DOI: 10.1038/mi.2015.91] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/22/2015] [Indexed: 02/04/2023]
Abstract
Immunity to Influenza A virus (IAV) is controlled by conventional TCRαβ(+) CD4(+) and CD8(+) T lymphocytes, which mediate protection or cause immunopathology. Here, we addressed the kinetics, differentiation, and antigen specificity of CD4(-)CD8(-) double-negative (DN) T cells. DNT cells expressed intermediate levels of TCR/CD3 and could be further divided in γδ T cells, CD1d-reactive type I NKT cells, NK1.1(+) NKT-like cells, and NK1.1(-) DNT cells. NK1.1(-) DNT cells had a separate antigen-specific repertoire in the steady-state lung, and expanded rapidly in response to IAV infection, irrespectively of the severity of infection. Up to 10% of DNT cells reacted to viral nucleoprotein. Reinfection experiments with heterosubtypic IAV revealed that viral replication was a major trigger for recruitment. Unlike conventional T cells, the NK1.1(-) DNT cells were in a preactivated state, expressing memory markers CD44, CD11a, CD103, and the cytotoxic effector molecule FasL. DNT cells resided in the lung parenchyma, protected from intravascular labeling with CD45 antibody. The recruitment and maintenance of CCR2(+) CCR5(+) CXCR3(+) NK1.1(-) DNT cells depended on CD11c(hi) dendritic cells (DCs). Functionally, DNT cells controlled the lung DC subset balance, suggesting they might act as immunoregulatory cells. In conclusion, we identify activation of resident memory NK1.1(-) DNT cells as an integral component of the mucosal immune response to IAV infection.
Collapse
Affiliation(s)
- K Neyt
- VIB Inflammation Research Center, Laboratory of Immunoregulation, Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | | | - B N Lambrecht
- VIB Inflammation Research Center, Laboratory of Immunoregulation, Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Basu S, Kaw S, D’Souza L, Vaidya T, Bal V, Rath S, George A. Constitutive CD40 Signaling Calibrates Differentiation Outcomes in Responding B Cells via Multiple Molecular Pathways. THE JOURNAL OF IMMUNOLOGY 2016; 197:761-70. [DOI: 10.4049/jimmunol.1600077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
|
19
|
Bedoui S, Heath WR, Mueller SN. CD
4
+
T‐cell help amplifies innate signals for primary
CD
8
+
T‐cell immunity. Immunol Rev 2016; 272:52-64. [DOI: 10.1111/imr.12426] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sammy Bedoui
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
| | - William R. Heath
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Melbourne Parkville Vic. Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Melbourne Parkville Vic. Australia
| |
Collapse
|
20
|
Abstract
The ultimate outcome of alloreactivity versus tolerance following transplantation is potently influenced by the constellation of cosignaling molecules expressed by immune cells during priming with alloantigen, and the net sum of costimulatory and coinhibitory signals transmitted via ligation of these molecules. Intense investigation over the last two decades has yielded a detailed understanding of the kinetics, cellular distribution, and intracellular signaling networks of cosignaling molecules such as the CD28, TNF, and TIM families of receptors in alloimmunity. More recent work has better defined the cellular and molecular mechanisms by which engagement of cosignaling networks serve to either dampen or augment alloimmunity. These findings will likely aid in the rational development of novel immunomodulatory strategies to prolong graft survival and improve outcomes following transplantation.
Collapse
Affiliation(s)
- Mandy L Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Duan S, Thomas PG. Balancing Immune Protection and Immune Pathology by CD8(+) T-Cell Responses to Influenza Infection. Front Immunol 2016; 7:25. [PMID: 26904022 PMCID: PMC4742794 DOI: 10.3389/fimmu.2016.00025] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/05/2023] Open
Abstract
Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.
Collapse
Affiliation(s)
- Susu Duan
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| |
Collapse
|
22
|
Elayeb R, Tamagne M, Bierling P, Noizat-Pirenne F, Vingert B. Red blood cell alloimmunization is influenced by the delay between Toll-like receptor agonist injection and transfusion. Haematologica 2016; 101:209-18. [PMID: 26430173 PMCID: PMC4938341 DOI: 10.3324/haematol.2015.134171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022] Open
Abstract
Murine models of red blood cell transfusion show that inflammation associated with viruses or methylated DNA promotes red blood cell alloimmunization. In vaccination studies, the intensity of antigen-specific responses depends on the delay between antigen and adjuvant administration, with a short delay limiting immune responses. In mouse models of alloimmunization, the delay between the injection of Toll-like receptor agonists and transfusion is usually short. In this study, we hypothesized that the timing of Toll-like receptor 3 agonist administration affects red blood cell alloimmunization. Poly(I:C), a Toll-like receptor 3 agonist, was administered to B10BR mice at various time points before the transfusion of HEL-expressing red blood cells. For each time point, we measured the activation of splenic HEL-presenting dendritic cells, HEL-specific CD4(+) T cells and anti-HEL antibodies in serum. The phenotype of activated immune cells depended on the delay between transfusion and Toll-like receptor-dependent inflammation. The production of anti-HEL antibodies was highest when transfusion occurred 7 days after agonist injection. The proportion of HEL-presenting CD8α(+) dendritic cells producing interleukin-12 was highest in mice injected with poly(I:C) 3 days before transfusion. Although the number of early-induced HEL-specific CD4(+) T cells was similar between groups, a high proportion of these cells expressed CD134, CD40 and CD44 in mice injected with poly(I:C) 7 days before transfusion. This study clearly shows that the delay between transfusion and Toll-like receptor-induced inflammation influences the immune response to transfused red blood cells.
Collapse
Affiliation(s)
- Rahma Elayeb
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Tamagne
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - Philippe Bierling
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Université Paris Est, Faculté de Médecine, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - France Noizat-Pirenne
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Université Paris Est, Faculté de Médecine, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Vingert
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
23
|
Demberg T, Mohanram V, Musich T, Brocca-Cofano E, McKinnon KM, Venzon D, Robert-Guroff M. Loss of marginal zone B-cells in SHIVSF162P4 challenged rhesus macaques despite control of viremia to low or undetectable levels in chronic infection. Virology 2015; 484:323-333. [PMID: 26151223 DOI: 10.1016/j.virol.2015.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Marginal zone (MZ) B cells generate T-independent antibody responses to pathogens before T-dependent antibodies arise in germinal centers. They have been identified in cynomolgus monkeys and monitored during acute SIV infection, yet have not been well-studied in rhesus macaques. Here we characterized rhesus macaque MZ B cells, present in secondary lymphoid tissue but not peripheral blood, as CD19(+), CD20(+), CD21(hi), IgM(+), CD22(+), CD38(+), BTLA(+), CD40(+), CCR6(+) and BCL-2(+). Compared to healthy macaques, SHIVSF162P4-infected animals showed decreased total B cells and MZ B cells and increased MZ B cell Ki-67 expression early in chronic infection. These changes persisted in late chronic infection, despite viremia reductions to low or undetectable levels. Expression levels of additional phenotypic markers and RNA PCR array analyses were in concert with continued low-level activation and diminished function of MZ B cells. We conclude that MZ B-cell dysregulation and dysfunction associated with SIV/HIV infection are not readily reversible.
Collapse
Affiliation(s)
- Thorsten Demberg
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, United States
| | - Venkatramanan Mohanram
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, United States
| | - Thomas Musich
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, United States
| | - Egidio Brocca-Cofano
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, United States
| | - Katherine M McKinnon
- FACS Core, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, United States
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, MD 20892, United States
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, United States.
| |
Collapse
|
24
|
Pilat N, Klaus C, Schwarz C, Hock K, Oberhuber R, Schwaiger E, Gattringer M, Ramsey H, Baranyi U, Zelger B, Brandacher G, Wrba F, Wekerle T. Rapamycin and CTLA4Ig synergize to induce stable mixed chimerism without the need for CD40 blockade. Am J Transplant 2015; 15:1568-79. [PMID: 25783859 DOI: 10.1111/ajt.13154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/12/2014] [Accepted: 11/30/2014] [Indexed: 01/25/2023]
Abstract
The mixed chimerism approach achieves donor-specific tolerance in organ transplantation, but clinical use is inhibited by the toxicities of current bone marrow (BM) transplantation (BMT) protocols. Blocking the CD40:CD154 pathway with anti-CD154 monoclonal antibodies (mAbs) is exceptionally potent in inducing mixed chimerism, but these mAbs are clinically not available. Defining the roles of donor and recipient CD40 in a murine allogeneic BMT model, we show that CD4 or CD8 activation through an intact direct or CD4 T cell activation through the indirect pathway is sufficient to trigger BM rejection despite CTLA4Ig treatment. In the absence of CD4 T cells, CD8 T cell activation via the direct pathway, in contrast, leads to a state of split tolerance. Interruption of the CD40 signals in both the direct and indirect pathway of allorecognition or lack of recipient CD154 is required for the induction of chimerism and tolerance. We developed a novel BMT protocol that induces mixed chimerism and donor-specific tolerance to fully mismatched cardiac allografts relying on CD28 costimulation blockade and mTOR inhibition without targeting the CD40 pathway. Notably, MHC-mismatched/minor antigen-matched skin grafts survive indefinitely whereas fully mismatched grafts are rejected, suggesting that non-MHC antigens cause graft rejection and split tolerance.
Collapse
Affiliation(s)
- N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - C Klaus
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - R Oberhuber
- Department of Visceral, Transplant, and Thoracic Surgery, Center of Operative Medicine, Innsbruck Medical University, Austria
| | - E Schwaiger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - M Gattringer
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - H Ramsey
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - U Baranyi
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - B Zelger
- Institute of Pathology, Medical University of Innsbruck, Austria
| | - G Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - F Wrba
- Institute of Clinical Pathology, Medical University of Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| |
Collapse
|
25
|
Silva A, Mount A, Krstevska K, Pejoski D, Hardy MP, Owczarek C, Scotney P, Maraskovsky E, Baz Morelli A. The combination of ISCOMATRIX adjuvant and TLR agonists induces regression of established solid tumors in vivo. THE JOURNAL OF IMMUNOLOGY 2015; 194:2199-207. [PMID: 25646304 DOI: 10.4049/jimmunol.1402228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of therapeutic vaccines for treatment of established cancer has proven challenging. Cancer vaccines not only need to induce a robust tumor Ag-specific immune response but also need to overcome the tolerogenic and immunosuppressive microenvironments that exist within many solid cancers. ISCOMATRIX adjuvant (ISCOMATRIX) is able to induce both tumor Ag-specific cellular and Ab responses to protect mice against tumor challenge, but this is insufficient to result in regression of established solid tumors. In the current study, we have used B16-OVA melanoma, Panc-OVA pancreatic, and TRAMP-C1 prostate cancer mouse tumor models to test therapeutic efficacy of ISCOMATRIX vaccines combined with other immune modulators. The coadministration of an ISCOMATRIX vaccine with the TLR3 agonist, polyinosinic-polycytidylic acid, and TLR9 agonist, CpG, reduced tumor growth in all tumor models and the presence of ISCOMATRIX in the formulation was critical for the therapeutic efficacy of the vaccine. This vaccine combination induced a robust and multifunctional CD8(+) T cell response. Therapeutic protection required IFN-γ and CD8(+) T cells, whereas NK and CD4(+) T cells were found to be redundant. ISCOMATRIX vaccines combined with TLR3 and TLR9 agonists represent a promising cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Anabel Silva
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | - Adele Mount
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | | | - David Pejoski
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | - Matthew P Hardy
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | | | - Pierre Scotney
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
26
|
Pinelli DF, Ford ML. Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance. Immunotherapy 2015; 7:399-410. [PMID: 25917630 PMCID: PMC5441999 DOI: 10.2217/imt.15.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of the CD40-CD154 costimulatory pathway and its critical role in the adaptive immune response, there has been considerable interest in therapeutically targeting this interaction with monoclonal antibodies in transplantation. Unfortunately, initial promise in animal models gave way to disappointment in clinical trials following a number of thromboembolic complications. However, recent mechanistic studies have identified the mechanism of these adverse events, as well as detailed a myriad of interactions between CD40 and CD154 on a wide variety of immune cell types and the critical role of this pathway in generating both humoral and cell-mediated alloreactive responses. This has led to resurgence in interest and the potential resurrection of anti-CD154 and anti-CD40 antibodies as clinically viable therapeutic options.
Collapse
Affiliation(s)
| | - Mandy L. Ford
- Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
27
|
Yi Z, Bishop GA. Regulatory role of CD40 in obesity-induced insulin resistance. Adipocyte 2015; 4:65-9. [PMID: 26167405 DOI: 10.4161/adip.32214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 12/11/2022] Open
Abstract
Excessive nutrient intake in obesity triggers the accumulation of various types of immune cells in adipose tissue, particularly visceral adipose tissue (VAT). This can result in chronic inflammation which disrupts insulin effects on adipocytes and muscle cells and culminates in development of insulin resistance. The interplay between immune cells and adipose tissue is a key event for the development of insulin resistance that precedes type 2 diabetes. CD40, a well-documented costimulatory receptor, is required for efficient systemic adaptive immune responses. However, we and other groups recently showed that CD40 unexpectedly ameliorates inflammation in VAT and accordingly attenuates obesity-induced insulin resistance. Specifically, although CD40 is typically considered to play its principal immune roles on B lymphocytes and myeloid cells, we found that CD40(+)CD8(+) T lymphocytes were major contributors to the protective effect. This unexpected inhibitory role of CD40 on CD8(+) T cell activation in VAT may reflect unique features of this microenvironment. Additional knowledge gaps include whether CD40 also plays roles in mucosal immunity that control the homeostasis of gut microbiota, and human metabolic diseases. Potential therapeutic approaches, including stimulating CD40 signaling and/or manipulating specific CD40 signaling pathways in the VAT microenvironment, may open new avenues for treatment of obesity-induced insulin resistance, and prevention of type 2 diabetes.
Collapse
Key Words
- Ab, antibody
- CD40
- CD40KO, CD40 deficiency
- DIO, diet induced obesity
- HFD, high fat diet
- HIGM, Hyper-IgM syndrome
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- IR, insulin resistance
- Ig, immunoglobulin
- LFD, low fat diet
- MCP-1, Monocyte Chemoattractant Protein-1
- Mφ, macrophage
- PPAR-γ, peroxisome proliferator-activated receptor-γ
- Rag1, recombination activating gene 1
- T cell
- TNF-α, tumor necrosis factor-α
- Treg, regulatory T cells
- UPR, unfolded protein response
- VAT, visceral adipose tissue
- gut microbiota
- insulin resistance
- mucosal immunity
- obesity
Collapse
|
28
|
Hu Z, Molloy MJ, Usherwood EJ. CD4(+) T-cell dependence of primary CD8(+) T-cell response against vaccinia virus depends upon route of infection and viral dose. Cell Mol Immunol 2014; 13:82-93. [PMID: 25544501 DOI: 10.1038/cmi.2014.128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 11/09/2022] Open
Abstract
CD4(+) T-cell help (CD4 help) plays a pivotal role in CD8(+) T-cell responses against viral infections. However, the role in primary CD8(+) T-cell responses remains controversial. We evaluated the effects of infection route and viral dose on primary CD8(+) T-cell responses to vaccinia virus (VACV) in MHC class II(-/-) mice. CD4 help deficiency diminished the generation of VACV-specific CD8(+) T cells after intraperitoneal (i.p.) but not after intranasal (i.n.) infection. A large viral dose could not restore normal expansion of VACV-specific CD8(+) T cells in i.p. infected MHC II(-/-) mice. In contrast, dependence on CD4 help was observed in i.n. infected MHC II(-/-) mice when a small viral dose was used. These data suggested that primary CD8(+) T-cell responses are less dependent on CD4 help in i.n. infection compared to i.p. infection. Activated CD8(+) T cells produced more IFN-γ, TNF-α and granzyme B in i.n. infected mice than those in i.p. infected mice, regardless of CD4 help. IL-2 signaling via CD25 was not necessary to drive expansion of VACV-specific CD8(+) T cells in i.n. infection, but it was crucial in i.p. infection. VACV-specific CD8(+) T cells underwent increased apoptosis in the absence of CD4 help, but proliferated normally and had cytotoxic potential, regardless of infection route. Our results indicate that route of infection and viral dose are two determinants for CD4 help dependence, and intranasal infection induces more potent effector CD8(+) T cells than i.p. infection.
Collapse
|
29
|
Olson MR, Seah SGK, Cullen J, Greyer M, Edenborough K, Doherty PC, Bedoui S, Lew AM, Turner SJ. Helping themselves: optimal virus-specific CD4 T cell responses require help via CD4 T cell licensing of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5420-33. [PMID: 25339661 DOI: 10.4049/jimmunol.1303359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD4(+) T cell help (Th) is critical for inducing optimal B cell and CD8(+) T cell responses, it remains unclear whether induction of CD4(+) Th responses postinfection are also dependent on CD4(+) T cell help. In this study, we show that activation of adoptively transferred Th cells during primary influenza A virus (IAV) infection enhances both the magnitude and functional breadth of endogenous primary IAV-specific CD4(+) T cell responses. This enhancement was dependent on CD154-CD40-dependent dendritic cell licensing and resulted in a greater recall capacity of IAV-specific CD4(+) and CD8(+) T memory responses after heterologous IAV infection. These data suggest that engaging pre-existing CD4 responses at the time of priming may be a strategy for improving cellular immunity after vaccination.
Collapse
Affiliation(s)
- Matthew R Olson
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Shirley G K Seah
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; and
| | - Jolie Cullen
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Marie Greyer
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Kathryn Edenborough
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; and
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia;
| |
Collapse
|
30
|
Handisurya A, Day PM, Thompson CD, Bonelli M, Lowy DR, Schiller JT. Strain-specific properties and T cells regulate the susceptibility to papilloma induction by Mus musculus papillomavirus 1. PLoS Pathog 2014; 10:e1004314. [PMID: 25121947 PMCID: PMC4133403 DOI: 10.1371/journal.ppat.1004314] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022] Open
Abstract
The immunocytes that regulate papillomavirus infection and lesion development in humans and animals remain largely undefined. We found that immunocompetent mice with varying H-2 haplotypes displayed asymptomatic skin infection that produced L1 when challenged with 6×1010 MusPV1 virions, the recently identified domestic mouse papillomavirus (also designated "MmuPV1"), but were uniformly resistant to MusPV1-induced papillomatosis. Broad immunosuppression with cyclosporin A resulted in variable induction of papillomas after experimental infection with a similar dose, from robust in Cr:ORL SENCAR to none in C57BL/6 mice, with lesional outgrowth correlating with early viral gene expression and partly with reported strain-specific susceptibility to chemical carcinogens, but not with H-2 haplotype. Challenge with 1×1012 virions in the absence of immunosuppression induced small transient papillomas in Cr:ORL SENCAR but not in C57BL/6 mice. Antibody-induced depletion of CD3+ T cells permitted efficient virus replication and papilloma formation in both strains, providing experimental proof for the crucial role of T cells in controlling papillomavirus infection and associated disease. In Cr:ORL SENCAR mice, immunodepletion of either CD4+ or CD8+ T cells was sufficient for efficient infection and papillomatosis, although deletion of one subset did not inhibit the recruitment of the other subset to the infected epithelium. Thus, the functional cooperation of CD4+ and CD8+ T cells is required to protect this strain. In contrast, C57BL/6 mice required depletion of both CD4+ and CD8+ T cells for infection and papillomatosis, and separate CD4 knock-out and CD8 knock-out C57BL/6 were also resistant. Thus, in C57BL/6 mice, either CD4+ or CD8+ T cell-independent mechanisms exist that can protect this particular strain from MusPV1-associated disease. These findings may help to explain the diversity of pathological outcomes in immunocompetent humans after infection with a specific human papillomavirus genotype.
Collapse
Affiliation(s)
- Alessandra Handisurya
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patricia M. Day
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cynthia D. Thompson
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Bonelli
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Rheumatology, Internal Medicine III, General Hospital of Vienna, Medical University of Vienna, Vienna, Austria
| | - Douglas R. Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John T. Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Chronic inflammation in visceral adipose tissue is considered a key element for induction of insulin resistance in obesity. CD40 is required for efficient systemic adaptive immune responses and is implicated in various inflammatory conditions. However, its role in modulating immunity in the microanatomical niches of adipose tissue remains largely undefined. Here, we show that, in contrast to its well-documented costimulatory effects, CD40 regulates development of insulin resistance in a diet-induced obesity (DIO) mouse model by ameliorating local inflammation in adipose tissues. CD40 deficiency (CD40KO) resulted in greater body weight gain, more severe inflammation in epididymal adipose tissue (EAT), and aggravated insulin resistance in response to DIO. Interestingly, we found that CD40KO CD8(+) T lymphocytes were major contributors to exacerbated insulin resistance. Specifically, CD8(+) T cells in EAT of DIO CD40KO mice produced elevated chemokines and proinflammatory cytokines and were critical for macrophage recruitment. These results indicate that CD40 plays distinct roles in different tissues and, unexpectedly, plays an important role in maintaining immune homeostasis in EAT. Further study of how CD40 promotes maintenance of healthy metabolism could contribute to better understanding of and ability to therapeutically manipulate the increasing health problem of obesity and insulin resistance.
Collapse
Affiliation(s)
- Zuoan Yi
- Department of Microbiology, University of Iowa, Iowa City, IA
| | - Laura L Stunz
- Department of Microbiology, University of Iowa, Iowa City, IA
| | - Gail A Bishop
- Department of Microbiology, University of Iowa, Iowa City, IADepartment of Internal Medicine, University of Iowa, Iowa City, IAGraduate Immunology Program, University of Iowa, Iowa City, IAVA Medical Center, Iowa City, IA
| |
Collapse
|
32
|
La Gruta NL, Turner SJ. T cell mediated immunity to influenza: mechanisms of viral control. Trends Immunol 2014; 35:396-402. [PMID: 25043801 DOI: 10.1016/j.it.2014.06.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 12/31/2022]
Abstract
Infection with influenza A virus (IAV) is a major cause of worldwide morbidity and mortality. Recent findings indicate that T cell immunity is key to limiting severity of disease arising from IAV infection, particularly in instances where antibody immunity is ineffective. As such, there is a need to understand better the mechanisms that mediate effective IAV-specific cellular immunity, especially given that T cell immunity must form an integral part of any vaccine designed to elicit crossreactive immunity against existing and new strains of influenza virus. Here, we review the current understanding of cellular immunity to IAV, highlighting recent findings that demonstrate important roles for both CD4+ and CD8+ T cell immunity in protection from IAV-mediated disease.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
33
|
Lozza L, Farinacci M, Bechtle M, Stäber M, Zedler U, Baiocchini A, Del Nonno F, Kaufmann SHE. Communication between Human Dendritic Cell Subsets in Tuberculosis: Requirements for Naive CD4(+) T Cell Stimulation. Front Immunol 2014; 5:324. [PMID: 25071784 PMCID: PMC4094910 DOI: 10.3389/fimmu.2014.00324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/27/2014] [Indexed: 02/03/2023] Open
Abstract
Human primary dendritic cells (DCs) are heterogeneous by phenotype, function, and tissue localization and distinct from inflammatory monocyte-derived DCs. Current information regarding the susceptibility and functional role of primary human DC subsets to Mycobacterium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+ cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochemistry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α, and IL-1β but not IL-12p70, a cytokine important for Th1 activation and host defenses against Mtb. Yet, CD1c+ DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification with fluorescence-activated cell sorting and gene expression profiling on rare cell populations, we detected in responding CD4+ T cells, genes related to effector-cytolytic functions and transcription factors associated with Th1, Th17, and Treg polarization, suggesting multifunctional properties in our experimental conditions. Finally, immunohistologic analyses revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation of CD4+ T cells.
Collapse
Affiliation(s)
- Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Maura Farinacci
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Marina Bechtle
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Manuela Stäber
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Ulrike Zedler
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Andrea Baiocchini
- Pathology Division, National Institute for Infectious Disease 'Lazzaro Spallanzani' , Rome , Italy
| | - Franca Del Nonno
- Pathology Division, National Institute for Infectious Disease 'Lazzaro Spallanzani' , Rome , Italy
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| |
Collapse
|
34
|
Provine NM, Larocca RA, Penaloza-MacMaster P, Borducchi EN, McNally A, Parenteau LR, Kaufman DR, Barouch DH. Longitudinal requirement for CD4+ T cell help for adenovirus vector-elicited CD8+ T cell responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:5214-25. [PMID: 24778441 PMCID: PMC4025612 DOI: 10.4049/jimmunol.1302806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/26/2014] [Indexed: 11/19/2022]
Abstract
Despite the widespread use of replication-incompetent recombinant adenovirus (Ad) vectors as candidate vaccine platforms, the mechanism by which these vectors elicit CD8(+) T cell responses remains poorly understood. Our data demonstrate that induction and maintenance of CD8(+) T cell responses by Ad vector immunization is longitudinally dependent on CD4(+) T cell help for a prolonged period. Depletion of CD4(+) T cells in wild type mice within the first 8 d following Ad immunization resulted in dramatically reduced induction of Ag-specific CD8(+) T cells, decreased T-bet and eomesodermin expression, impaired KLRG1(+) effector differentiation, and atypical expression of the memory markers CD127, CD27, and CD62L. Moreover, these CD8(+) T cells failed to protect against a lethal recombinant Listeria monocytogenes challenge. Depletion of CD4(+) T cells between weeks 1 and 4 following immunization resulted in increased contraction of memory CD8(+) T cells. These data demonstrate a prolonged temporal requirement for CD4(+) T cell help for vaccine-elicited CD8(+) T cell responses in mice. These findings have important implications in the design of vaccines aimed at eliciting CD8(+) T cell responses and may provide insight into the impaired immunogenicity of vaccines in the context of AIDS and other CD4(+) T cell immune deficiencies.
Collapse
Affiliation(s)
- Nicholas M Provine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Pablo Penaloza-MacMaster
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Anna McNally
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Lily R Parenteau
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - David R Kaufman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
35
|
Olson MR, Seah SGK, Edenborough K, Doherty PC, Lew AM, Turner SJ. CD154
+
CD4
+
T‐cell dependence for effective memory influenza virus‐specific CD8
+
T‐cell responses. Immunol Cell Biol 2014; 92:605-11. [DOI: 10.1038/icb.2014.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew R Olson
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of MelbourneParkvilleVictoriaAustralia
| | - Shirley GK Seah
- Division of Immunology, Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Kathryn Edenborough
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of MelbourneParkvilleVictoriaAustralia
| | - Peter C Doherty
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of MelbourneParkvilleVictoriaAustralia
- Department of Immunology, St Judes Childrens Research HospitalMemphisTNUSA
| | - Andrew M Lew
- Division of Immunology, Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Stephen J Turner
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
36
|
Soong RS, Song L, Trieu J, Lee SY, He L, Tsai YC, Wu TC, Hung CF. Direct T cell activation via CD40 ligand generates high avidity CD8+ T cells capable of breaking immunological tolerance for the control of tumors. PLoS One 2014; 9:e93162. [PMID: 24664420 PMCID: PMC3963987 DOI: 10.1371/journal.pone.0093162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/28/2014] [Indexed: 11/19/2022] Open
Abstract
CD40 and CD40 ligand (CD40L) are costimulatory molecules that play a pivotal role in the proinflammatory immune response. Primarily expressed by activated CD4+ T cells, CD40L binds to CD40 on antigen presenting cells (APCs), thereby inducing APC activation. APCs, in turn, prime cytotoxic T lymphocytes (CTLs). Here, two tumor-associated antigen (TAA) animal models, p53-based and GP100-based, were utilized to examine the ability of CD40-CD40L to improve antigen-specific CTL-mediated antitumor immune responses. Although p53 and GP100 are self-antigens that generate low affinity antigen-specific CD8+ T cells, studies have shown that their functional avidity can be improved with CD40L-expressing APCs. Therefore, in the current study, we immunized mice with a DNA construct encoding a TAA in conjunction with another construct encoding CD40L via intramuscular injection followed by electroporation. We observed a significant increase in the antigen-specific CTL-mediated immune responses as well as the potent antitumor effects in both models. Antibody depletion experiments demonstrated that CD8+ T cells play a crucial role in eliciting antitumor effects in vaccinated mice. Furthermore, we showed that in vitro stimulation with irradiated tumor cells expressing both TAA and CD40L improved the functional avidity of antigen-specific CD8+ T cells. Thus, our data show that vaccination with TAA/CD40L DNA can induce potent antitumor effects against TAA-expressing tumors through the generation of better functioning antigen-specific CD8+ T cells. Our study serves as an important foundation for future clinical translation.
Collapse
Affiliation(s)
- Ruey-Shyang Soong
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of General Surgery, Chang Gung Memorial Hospital at Keelung, Keelung City, Taiwan
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Liwen Song
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Pharmacy School of Fudan University, Shanghai, China
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Janson Trieu
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sung Yong Lee
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Internal Medicine, Korea University Medical Center, Seoul, South Korea
| | - Liangmei He
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- * E-mail: (C-FH); (T-CW)
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- * E-mail: (C-FH); (T-CW)
| |
Collapse
|
37
|
Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice. PLoS One 2014; 9:e83575. [PMID: 24465383 PMCID: PMC3894962 DOI: 10.1371/journal.pone.0083575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023] Open
Abstract
The objective of the study was to identify immune cell populations, in addition to Foxp3+ T-regulatory cells, that participate in the mechanisms of action of tolerogenic dendritic cells shown to prevent and reverse type 1 diabetes in the Non-Obese Diabetic (NOD) mouse strain. Co-culture experiments using tolerogenic dendritic cells and B-cells from NOD as well as transgenic interleukin-10 promoter-reporter mice along with transfer of tolerogenic dendritic cells and CD19+ B-cells into NOD and transgenic mice, showed that these dendritic cells increased the frequency and numbers of interleukin-10-expressing B-cells in vitro and in vivo. The expansion of these cells was a consequence of both the proliferation of pre-existing interleukin-10-expressing B-lymphocytes and the conversion of CD19+ B-lymphcytes into interleukin-10-expressing cells. The tolerogenic dendritic cells did not affect the suppressive activity of these B-cells. Furthermore, we discovered that the suppressive murine B-lymphocytes expressed receptors for retinoic acid which is produced by the tolerogenic dendritic cells. These data assist in identifying the nature of the B-cell population increased in response to the tolerogenic dendritic cells in a clinical trial and also validate very recent findings demonstrating a mechanistic link between human tolerogenic dendritic cells and immunosuppressive regulatory B-cells.
Collapse
|
38
|
Abstract
The myriad of co-stimulatory signals expressed, or induced, upon T-cell activation suggests that these signalling pathways shape the character and magnitude of the resulting autoreactive or alloreactive T-cell responses during autoimmunity or transplantation, respectively. Reducing pathological T-cell responses by targeting T-cell co-stimulatory pathways has met with therapeutic success in many instances, but challenges remain. In this Review, we discuss the T-cell co-stimulatory molecules that are known to have critical roles during T-cell activation, expansion, and differentiation. We also outline the functional importance of T-cell co-stimulatory molecules in transplantation, tolerance and autoimmunity, and we describe how therapeutic blockade of these pathways might be harnessed to manipulate the immune response to prevent or attenuate pathological immune responses. Ultimately, understanding the interplay between individual co-stimulatory and co-inhibitory pathways engaged during T-cell activation and differentiation will lead to rational and targeted therapeutic interventions to manipulate T-cell responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Mandy L Ford
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| | - Andrew B Adams
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| | - Thomas C Pearson
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| |
Collapse
|
39
|
Pinelli DF, Wagener ME, Liu D, Yamniuk A, Tamura J, Grant S, Larsen CP, Suri A, Nadler SG, Ford ML. An anti-CD154 domain antibody prolongs graft survival and induces Foxp3(+) iTreg in the absence and presence of CTLA-4 Ig. Am J Transplant 2013; 13:3021-30. [PMID: 24007441 PMCID: PMC4287239 DOI: 10.1111/ajt.12417] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/14/2013] [Accepted: 07/01/2013] [Indexed: 01/25/2023]
Abstract
The use of monoclonal antibodies targeting the CD154 molecule remains one of the most effective means of promoting graft tolerance in animal models, but thromboembolic complications during early clinical trials have precluded their use in humans. Furthermore, the role of Fc-mediated deletion of CD154-expressing cells in the observed efficacy of these reagents remains controversial. Therefore, determining the requirements for anti-CD154-induced tolerance will instruct the development of safer but equally efficacious treatments. To investigate the mechanisms of action of anti-CD154 therapy, two alternative means of targeting the CD40-CD154 pathway were used: a nonagonistic anti-CD40 antibody and an Fc-silent anti-CD154 domain antibody. We compared these therapies to an Fc-intact anti-CD154 antibody in both a fully allogeneic model and a surrogate minor antigen model in which the fate of alloreactive cells could be tracked. Results indicated that anti-CD40 mAbs as well as Fc-silent anti-CD154 domain antibodies were equivalent to Fc-intact anti-CD154 mAbs in their ability to inhibit alloreactive T cell expansion, attenuate cytokine production of antigen-specific T cells and promote the conversion of Foxp3(+) iTreg. Importantly, iTreg conversion observed with Fc-silent anti-CD154 domain antibodies was preserved in the presence of CTLA4-Ig, suggesting that this therapy is a promising candidate for translation to clinical use.
Collapse
Affiliation(s)
- D F Pinelli
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yu S, Downey EF, Braley-Mullen H. Agonistic anti-CD40 promotes early development and increases the incidence of severe thyroid epithelial cell hyperplasia (TEC H/P) in CD4-/- mice. IMMUNITY INFLAMMATION AND DISEASE 2013; 1:14-25. [PMID: 25400914 PMCID: PMC4217545 DOI: 10.1002/iid3.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 12/24/2022]
Abstract
IFN-γ−/−NOD.H-2h4 mice develop thyroid epithelial cell hyperplasia (TEC H/P) characterised by abnormal proliferation of thyrocytes and infiltration of thyroids by CD4+ and CD8+ T cells, macrophages and dendritic cells. CD8+ T cells from mice with severe TEC H/P transfer similar lesions to SCID recipients, whereas CD4+ T cells transfer mild TEC H/P. CD4− and CD8− deficient IFN-γ−/−NOD.H-2h4 mice were generated to determine if CD4+ T cells were required for initial activation of the CD8+ T cells that transfer TEC H/P. After 6–8 months on NaI water, only 2 of 60 CD8−/− mice developed severe TEC H/P, whereas 31 of 101 CD4−/− mice developed severe TEC H/P and fibrosis comparable in severity to that of IFN-γ−/− mice. However, splenocytes from CD4−/− mice with severe TEC H/P did not effectively transfer severe TEC H/P to SCID recipients. When CD4−/− donors were given agonistic anti-CD40 mAb, most developed severe TEC H/P and their cells transferred severe TEC H/P to SCID recipients. These results indicate that agonistic anti-CD40 can provide an important signal for activation of autoreactive CD8+ T cells that transfer severe TEC H/P. Therefore, targeting or blocking CD40 could provide effective therapy for diseases involving hyperplasia and fibrosis mediated by CD8+ T cells.
Collapse
Affiliation(s)
- Shiguang Yu
- Department of Veterans Affairs Research Service Columbia, Missouri, 65212 ; Departments of Internal Medicine, University of Missouri School of Medicine Columbia, Missouri, 65212 ; Department of Biological Science, Arkansas State University, Arkansas Biosciences Institute Jonesboro, Arkansas, 72467
| | - Edward F Downey
- Departments of Internal Medicine, University of Missouri School of Medicine Columbia, Missouri, 65212
| | - Helen Braley-Mullen
- Department of Veterans Affairs Research Service Columbia, Missouri, 65212 ; Departments of Internal Medicine, University of Missouri School of Medicine Columbia, Missouri, 65212 ; Molecular Microbiology and Immunology, University of Missouri School of Medicine Columbia, Missouri, 65212
| |
Collapse
|
41
|
Lauterbach H, Pätzold J, Kassub R, Bathke B, Brinkmann K, Chaplin P, Suter M, Hochrein H. Genetic Adjuvantation of Recombinant MVA with CD40L Potentiates CD8 T Cell Mediated Immunity. Front Immunol 2013; 4:251. [PMID: 23986761 PMCID: PMC3753717 DOI: 10.3389/fimmu.2013.00251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/10/2013] [Indexed: 12/15/2022] Open
Abstract
Modified vaccinia Ankara (MVA) is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70) early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression) was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated cytotoxic T-lymphocytes (CTLs) also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality, and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases.
Collapse
Affiliation(s)
- Henning Lauterbach
- Department of Research Immunology, Bavarian Nordic GmbH , Martinsried , Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ballesteros-Tato A, León B, Lund FE, Randall TD. CD4+ T helper cells use CD154-CD40 interactions to counteract T reg cell-mediated suppression of CD8+ T cell responses to influenza. ACTA ACUST UNITED AC 2013; 210:1591-601. [PMID: 23835849 PMCID: PMC3727323 DOI: 10.1084/jem.20130097] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
CD40+ DCs interact with CD154+CD4+ T cells to abrogate T reg cell–mediated suppression of influenza-specific CD8+ T cells. CD4+ T cells promote CD8+ T cell priming by licensing dendritic cells (DCs) via CD40–CD154 interactions. However, the initial requirement for CD40 signaling may be replaced by the direct activation of DCs by pathogen-derived signals. Nevertheless, CD40–CD154 interactions are often required for optimal CD8+ T cell responses to pathogens for unknown reasons. Here we show that CD40 signaling is required to prevent the premature contraction of the influenza-specific CD8+ T cell response. CD40 is required on DCs but not on B cells or T cells, whereas CD154 is required on CD4+ T cells but not CD8+ T cells, NKT cells, or DCs. Paradoxically, even though CD154-expressing CD4+ T cells are required for robust CD8+ T cell responses, primary CD8+ T cell responses are apparently normal in the absence of CD4+ T cells. We resolved this paradox by showing that the interaction of CD40-bearing DCs with CD154-expressing CD4+ T cells precludes regulatory T cell (T reg cell)–mediated suppression and prevents premature contraction of the influenza-specific CD8+ T cell response. Thus, CD4+ T helper cells are not required for robust CD8+ T cell responses to influenza when T reg cells are absent.
Collapse
Affiliation(s)
- André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
43
|
Alsharifi M, Koskinen A, Wijesundara DK, Bettadapura J, Müllbacher A. MHC class II-alpha chain knockout mice support increased viral replication that is independent of their lack of MHC class II cell surface expression and associated immune function deficiencies. PLoS One 2013; 8:e68458. [PMID: 23840854 PMCID: PMC3695910 DOI: 10.1371/journal.pone.0068458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/03/2013] [Indexed: 01/14/2023] Open
Abstract
MHCII molecules are heterodimeric cell surface proteins composed of an α and β chain. These molecules are almost exclusively expressed on thymic epithelium and antigen presenting cells (APCs) and play a central role in the development and function of CD4 T cells. Various MHC-II knockout mice have been generated including MHC-IIAα-/- (I-Aα-/-), MHC-IIAβ-/- (I-β-/-) and the double knockout (I-Aαxβ-/-). Here we report a very striking observation, namely that alphaviruses including the avirulent strain of Semliki Forest virus (aSFV), which causes asymptomatic infection in wild-type C57BL6/J (B6) mice, causes a very acute and lethal infection in I-Aα-/-, but not in I-β-/- or I-Aαxβ-/-, mice. This susceptibility to aSFV is associated with high virus titres in muscle, spleen, liver, and brain compared to B6 mice. In addition, I-Aα-/- mice show intact IFN-I responses in terms of IFN-I serum levels and IFN-I receptor expression and function. Radiation bone marrow chimeras of B6 mice reconstituted with I-Aα-/- bone marrow expressed B6 phenotype, whereas radiation chimeras of I-Aα-/- mice reconstituted with B6 bone marrow expressed the phenotype of high viral susceptibility. Virus replication experiments both in vivo and in vitro showed enhanced virus growth in tissues and cell cultures derived form I-Aα-/- compared to B6 mice. This enhanced virus replication is evident for other alpha-, flavi- and poxviruses and may be of great benefit to producers of viral vaccines. In conclusion, I-Aα-/- mice exhibit a striking susceptibility to virus infections independent of their defective MHC-II expression. Detailed genetic analysis will be carried out to characterise the underlining genetic defects responsible for the observed phenomenon.
Collapse
Affiliation(s)
- Mohammed Alsharifi
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (MA); (AM)
| | - Aulikki Koskinen
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Danushka K. Wijesundara
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jayaram Bettadapura
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Arno Müllbacher
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (MA); (AM)
| |
Collapse
|
44
|
Sun J, Braciale TJ. Role of T cell immunity in recovery from influenza virus infection. Curr Opin Virol 2013; 3:425-9. [PMID: 23721865 DOI: 10.1016/j.coviro.2013.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 12/22/2022]
Abstract
Influenza virus infection has the potential to induce excess pulmonary inflammation and massive tissue damage in the infected host. Conventional CD4(+) and CD8(+) as well as nonconventional innate like T cells respond to infection and make an essential contribution to the clearance of virus infected cells and the resolution of pulmonary inflammation and injury. Emerging evidence in recent years has suggested a critical role of local interactions between lung effector T cells and antigen presenting cells in guiding the accumulation, differentiation and function of effector T cells beyond their initial activation in the draining lymph nodes during influenza infection. As such, lung effector CD4(+) and CD8(+) T cells utilize multiple effector and regulatory mechanisms to eliminate virus infected cells as well as fine tune the control of pulmonary inflammation and injury. Elucidating the mechanisms by which conventional and nonconventional T cells orchestrate their response in the lung as well as defining the downstream events required for the resolution of influenza infection will be important areas of future basic research which in turn may result in new therapeutic strategies to control the severity of influenza virus infection.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
45
|
Umeshappa CS, Nanjundappa RH, Xie Y, Freywald A, Xu Q, Xiang J. Differential requirements of CD4(+) T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming and functional memory CTL development at higher CD8(+) T-cell precursor frequency. Immunology 2013; 138:298-306. [PMID: 23113741 DOI: 10.1111/imm.12033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 02/02/2023] Open
Abstract
Increased CD8(+) T-cell precursor frequency (PF) precludes the requirement of CD4(+) helper T (Th) cells for primary CD8(+) cytotoxic T-lymphocyte (CTL) responses. However, the key questions of whether unhelped CTLs generated at higher PF are functional effectors, and whether unhelped CTLs can differentiate into functional memory cells at higher PF are unclear. In this study, ovalbumin (OVA) -pulsed dendritic cells (DC(OVA)) derived from C57BL/6, CD40 knockout (CD40(-/-)) or CD40 ligand knockout (CD40L(-/-)) mice were used to immunize C57BL/6, Ia(b-/-), CD40(-/-) or CD40L(-/-) mice, whose PF was previously increased with transfer of 1 × 10(6) CD8(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTI, OTI(CD40(-/-)) or OTI(CD40L(-/-)) mice. All the immunized mice were then assessed for effector and memory CTL responses. Following DC immunization, relatively comparable CTL priming occurred without CD4(+) T-cell help and Th-provided CD40/CD40L signalling. In addition, the unhelped CTLs were functional effectors capable of inducing therapeutic immunity against established OVA-expressing tumours. In contrast, the functional memory development of CTLs was severely impaired in the absence of CD4(+) T-cell help and CD40/CD40L signalling. Finally, unhelped memory CTLs failed to protect mice against lethal tumour challenge. Taken together, these results demonstrate that CD4(+) T-cell help at higher PF, is not required for effector CTL priming, but is required for functional memory CTL development against cancer. Our data may impact the development of novel preventive and therapeutic approaches in cancer patients with compromised CD4(+) T-cell functions.
Collapse
Affiliation(s)
- Channakeshava S Umeshappa
- Cancer Research Unit, Department of Oncology, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection. PLoS One 2013; 8:e61795. [PMID: 23637908 PMCID: PMC3634828 DOI: 10.1371/journal.pone.0061795] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/13/2013] [Indexed: 12/13/2022] Open
Abstract
In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.
Collapse
|
47
|
Seah SGK, Brady JL, Carrington EM, Ng WC, Sutherland RM, Hancock MS, La Gruta NL, Brown LE, Turner SJ, Lew AM, Zhan Y. Influenza-induced, helper-independent CD8+ T cell responses use CD40 costimulation at the late phase of the primary response. J Leukoc Biol 2012; 93:145-54. [PMID: 23108101 DOI: 10.1189/jlb.0612266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The helper-dependent pathway of priming CD8(+) T cells involves "licensing" of DCs by CD40L on CD4(+) T cells. The helper-independent ("helpless") pathways elicited by many viruses, including influenza, are less widely understood. We have postulated that CD40L can be up-regulated on DCs by such viruses, and this promotes priming of CD8(+) T cells via CD40. Most studies on costimulation have been performed in the presence of CD4(+) T cells, and so the role of CD40L costimulation under helpless circumstances has not been fully elucidated. Here, we investigated such a role for CD40L using CD40L KO mice. Although the number of influenza-specific CD8(+) T cells was unaffected by the absence of CD4(+) T cells, it was markedly decreased in the absence of CD40L. Proliferation (the number of CD44(+)BrdU(+) influenza-specific CD8(+) T cells) in the primary response was diminished in CD40L KO mice at Day 8 but not at Day 5 after infection. MLR studies indicated that CD40L expression on DCs was critical for CD8(+) T cell activation. Adoptive transfer of CD40 KO CD8(+) T cells compared with WT cells confirmed that CD40 on such cells was critical for the generation of primary anti-influenza CD8(+) T cell responses. The late effect also corresponded with the late expression of CD40 by influenza-specific CD8(+) T cells. We suggest that costimulation via CD40L on DCs and CD40 on CD8(+) T cells is important in optimizing primary CD8(+) T cell responses during influenza infection.
Collapse
Affiliation(s)
- Shirley G K Seah
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Receptor internalization is a common mechanism underlying surface receptor down-regulation (and thus receptor signaling) upon its engagement with the cognate ligand. Tight regulation of surface CD40 expression is critical in regulating different functional properties of dendritic cell (DC). Engagement of CD40 on mature DC and the cognate CD40 ligand on T cell activates c-Jun N-terminal MAPK, p38 and ERK1/2 MAPK pathways in mature DC. JNK-associated leucine zipper protein (JLP) is a scaffolding protein that interacted with p38 and JNK. The molecular mechanism underlying CD40 internalization and its physiological impact on DC functions remained unclear. Here we reported that the engagement of CD40 on the LPS-activated DC down-regulated the surface expression of CD40. We examined the role of the JLP protein in DC differentiation, and in the regulation of DC function(s) in vitro. In contrast to the abundant JLP expression observed in immortal cell lines, primary immature DC expressed low levels of the JLP proteins. The induction of the JLP protein expression was observed in the LPS-mature DC that were activated by CD40 ligation, and also in the poly I:C stimulated DC. JLP-silenced DC was impaired in regulating CD40 surface expression upon LPS stimulation and CD40 induced receptor internalization. Such aberrant change in the regulation of surface CD40 expression was associated with an augmented capacity of the JLP-silenced DC in IL-12 production. Collectively, our data identified a novel role of a scaffolding protein JLP in the regulation of surface CD40 expression and fine-tuning of DC function.
Collapse
|
49
|
|
50
|
Functional regulation of monocyte-derived dendritic cells by microRNAs. Protein Cell 2012; 3:497-507. [PMID: 22773340 DOI: 10.1007/s13238-012-0042-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/15/2012] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) as a rare type of leukocytes play an important role in bridging the innate and adaptive immune system. A subset of DCs, monocyte-derived dendritic cells (moDCs), exists in very low numbers at steady state but become abundant in inflammatory states. These inflammation-associated DCs are potent producers of pro-inflammatory cytokines and potent inducers of T helper differentiation. They behave as a "double-edge" sword so that they not only mediate protective immunity but also immuno-pathology. It is still incompletely understood how their function is regulated. Emerging evidence indicates that microRNAs (miRNAs), as a new class of gene regulators, potently regulate the function of moDCs. Here we summarize recent progress in this area.
Collapse
|