1
|
Shi M, Chu F, Zhu F, Zhu J. Peripheral blood amyloid-β involved in the pathogenesis of Alzheimer's disease via impacting on peripheral innate immune cells. J Neuroinflammation 2024; 21:5. [PMID: 38178136 PMCID: PMC10765910 DOI: 10.1186/s12974-023-03003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
A key pathological factor of Alzheimer's disease (AD), the most prevalent form of age-related dementia in the world, is excessive β-amyloid protein (Aβ) in extracellular aggregation in the brain. And in the peripheral blood, a large amount of Aβ is derived from platelets. So far, the causality between the levels of peripheral blood Aβ and its aggregation in the brain, particularly the role of the peripheral blood Aβ in the pathology of AD, is still unclear. And the relation between the peripheral blood Aβ and tau tangles of brain, another crucial pathologic factor contributing to the pathogenesis of AD, is also ambiguous. More recently, the anti-Aβ monoclonal antibodies are approved for treatment of AD patients through declining the peripheral blood Aβ mechanism of action to enhance plasma and central nervous system (CNS) Aβ clearance, leading to a decrease Aβ burden in brain and improving cognitive function, which clearly indicates that the levels of the peripheral blood Aβ impacted on the Aβ burden in brain and involved in the pathogenesis of AD. In addition, the role of peripheral innate immune cells in AD remains mostly unknown and the results obtained were controversial. In the present review, we summarize recent studies on the roles of peripheral blood Aβ and the peripheral innate immune cells in the pathogenesis of AD. Finally, based on the published data and our own work, we believe that peripheral blood Aβ plays an important role in the development and progression of AD by impacting on the peripheral innate immune cells.
Collapse
Affiliation(s)
- Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Feiqi Zhu
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China.
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
2
|
Rathod SS, Agrawal YO, Nakhate KT, Meeran MFN, Ojha S, Goyal SN. Neuroinflammation in the Central Nervous System: Exploring the Evolving Influence of Endocannabinoid System. Biomedicines 2023; 11:2642. [PMID: 37893016 PMCID: PMC10604915 DOI: 10.3390/biomedicines11102642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including those with pro-inflammatory functions, in the outer regions. While neuronal inflammation is common in various central nervous system disorders, the specific inflammatory pathways linked with different immune-mediated cell types and the various factors influencing the blood-brain barrier significantly contribute to disease-specific characteristics. The endocannabinoid system consists of cannabinoid receptors, endogenous cannabinoids, and enzymes responsible for synthesizing and metabolizing endocannabinoids. The primary cannabinoid receptor is CB1, predominantly found in specific brain regions such as the brainstem, cerebellum, hippocampus, and cortex. The presence of CB2 receptors in certain brain components, like cultured cerebellar granular cells, Purkinje fibers, and microglia, as well as in the areas like the cerebral cortex, hippocampus, and cerebellum is also evidenced by immunoblotting assays, radioligand binding, and autoradiography studies. Both CB1 and CB2 cannabinoid receptors exhibit noteworthy physiological responses and possess diverse neuromodulatory capabilities. This review primarily aims to outline the distribution of CB1 and CB2 receptors across different brain regions and explore their potential roles in regulating neuroinflammatory processes.
Collapse
Affiliation(s)
- Sumit S. Rathod
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
- Department of Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Yogeeta O. Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| |
Collapse
|
3
|
Li J, Lu L, Binder K, Xiong J, Ye L, Cheng YH, Majri-Morrison S, Lu W, Lee JW, Zhang Z, Wu YZ, Zheng L, Lenardo MJ. Mechanisms of antigen-induced reversal of CNS inflammation in experimental demyelinating disease. SCIENCE ADVANCES 2023; 9:eabo2810. [PMID: 36857453 PMCID: PMC9977187 DOI: 10.1126/sciadv.abo2810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Autoimmune central nervous system (CNS) demyelinating diseases are a major public health burden and poorly controlled by current immunosuppressants. More precise immunotherapies with higher efficacy and fewer side effects are sought. We investigated the effectiveness and mechanism of an injectable myelin-based antigenic polyprotein MMPt (myelin oligodendrocyte glycoprotein, myelin basic protein and proteolipid protein, truncated). We find that it suppresses mouse experimental autoimmune encephalomyelitis without major side effects. MMPt induces rapid apoptosis of the encephalitogenic T cells and suppresses inflammation in the affected CNS. Intravital microscopy shows that MMPt is taken up by perivascular F4/80+ cells but not conventional antigen-presenting dendritic cells, B cells, or microglia. MMPt-stimulated F4/80+ cells induce reactive T cell immobilization and apoptosis in situ, resulting in reduced infiltration of inflammatory cells and chemokine production. Our study reveals alternative mechanisms that explain how cognate antigen suppresses CNS inflammation and may be applicable for effectively and safely treating demyelinating diseases.
Collapse
Affiliation(s)
- Jian Li
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lisen Lu
- MoE Key Laboratory for Biomedical Photonics, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Kyle Binder
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jian Xiong
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan H. Cheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sonia Majri-Morrison
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Lu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jae W. Lee
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zhihong Zhang
- MoE Key Laboratory for Biomedical Photonics, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu-zhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Osafo N, Yeboah OK, Antwi AO. Endocannabinoid system and its modulation of brain, gut, joint and skin inflammation. Mol Biol Rep 2021; 48:3665-3680. [PMID: 33909195 DOI: 10.1007/s11033-021-06366-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
The discovery of endogenous cannabinoid receptors CB1 and CB2 and their endogenous ligands has generated interest in the endocannabinoid system and has contributed to the understanding of the role of the endocannabinoid system. Its role in the normal physiology of the body and its implication in pathological states such as cardiovascular diseases, neoplasm, depression and pain have been subjects of scientific interest. In this review the authors focus on the endogenous cannabinoids, and the critical role of cannabinoid receptor signaling in neurodegeneration and other inflammatory responses such as gut, joint and skin inflammation. This review also discusses the potential of endocannabinoid pathways as drug targets in the amelioration of some inflammatory conditions. Though the exact role of the endocannabinoid system is not fully understood, the evidence found much clearly points to a great potential in exploiting both its central and peripheral pathways in disease management. Cannabinoid therapy has proven promising in several preclinical and clinical trials.
Collapse
Affiliation(s)
- Newman Osafo
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Oduro K Yeboah
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Aaron O Antwi
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
5
|
Wyatt-Johnson SK, Brutkiewicz RR. The Complexity of Microglial Interactions With Innate and Adaptive Immune Cells in Alzheimer's Disease. Front Aging Neurosci 2020; 12:592359. [PMID: 33328972 PMCID: PMC7718034 DOI: 10.3389/fnagi.2020.592359] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the naïve mouse brain, microglia and astrocytes are the most abundant immune cells; however, there is a complexity of other immune cells present including monocytes, neutrophils, and lymphocytic cells, such as natural killer (NK) cells, T cells, and B cells. In Alzheimer’s disease (AD), there is high inflammation, reactive microglia, and astrocytes, leaky blood–brain barrier, the buildup of amyloid-beta (Aβ) plaques, and neurofibrillary tangles which attract infiltrating peripheral immune cells that are interacting with the resident microglia. Limited studies have analyzed how these infiltrating immune cells contribute to the neuropathology of AD and even fewer have analyzed their interactions with the resident microglia. Understanding the complexity and dynamics of how these immune cells interact in AD will be important for identifying new and novel therapeutic targets. Thus, this review will focus on discussing our current understanding of how macrophages, neutrophils, NK cells, T cells, and B cells, alongside astrocytes, are altered in AD and what this means for the disorder, as well as how these cells are affected relative to the resident microglia.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr Opin Anaesthesiol 2018; 31:407-414. [PMID: 29794855 DOI: 10.1097/aco.0000000000000616] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This narrative review summarizes recent insights into the role of the cannabinoid type 2 (CB2) receptor as potential therapeutic target in neuropathic pain and neurodegenerative conditions. RECENT FINDINGS The cannabinoid system continues to receive attention as a therapeutic target. The CB2 receptor is primarily expressed on glial cells only when there is active inflammation and appears to be devoid of undesired psychotropic effects or addiction liability. The CB2 receptor has been shown to have potential as a therapeutic target in models of diseases with limited or no currently approved therapies, such as neuropathic pain and neurodegenerative conditions such as Alzheimer's disease. SUMMARY The functional involvement of CB2 receptor in neuropathic pain and other neuroinflammatory diseases highlights the potential therapeutic role of drugs acting at the CB2 receptor.
Collapse
|